This map shows the diversity index of the population in the USA in 2010 by block group. "The diversity index summarizes racial and ethnic diversity. The index shows the likelihood that two people, chosen at random from the same area, belong to different race or ethnic groups. The index ranges from 0 (no diversity) to 100 (complete diversity). For example, a diversity index of 59 means there is a 59 percent probability that two people randomly chosen would belong to different race or ethnic groups." -Esri DemographicsIt calls to the 2010 Census service with attributes related to race and ethnicity. The field PctNonWhite calculates the total percentage of non-white population by subtracting the Total white population from the reported population total. This yields the total non-white population (Field "TotNonWhite"). This number was then divided by the total reported population and multipled by 100 to yield a percetage of the population that is non-white (Field "PctNonWhite"). Original data sourced from: https://tpc.maps.arcgis.com/home/item.html?id=04a8fbbf59aa48ebbc646ba2bc8d9b1c
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population density per pixel at 100 metre resolution. WorldPop provides estimates of numbers of people residing in each 100x100m grid cell for every low and middle income country. Through ingegrating cencus, survey, satellite and GIS datasets in a flexible machine-learning framework, high resolution maps of population counts and densities for 2000-2020 are produced, along with accompanying metadata. DATASET: Alpha version 2010 and 2015 estimates of numbers of people per grid square, with national totals adjusted to match UN population division estimates (http://esa.un.org/wpp/) and remaining unadjusted. REGION: Africa SPATIAL RESOLUTION: 0.000833333 decimal degrees (approx 100m at the equator) PROJECTION: Geographic, WGS84 UNITS: Estimated persons per grid square MAPPING APPROACH: Land cover based, as described in: Linard, C., Gilbert, M., Snow, R.W., Noor, A.M. and Tatem, A.J., 2012, Population distribution, settlement patterns and accessibility across Africa in 2010, PLoS ONE, 7(2): e31743. FORMAT: Geotiff (zipped using 7-zip (open access tool): www.7-zip.org) FILENAMES: Example - AGO10adjv4.tif = Angola (AGO) population count map for 2010 (10) adjusted to match UN national estimates (adj), version 4 (v4). Population maps are updated to new versions when improved census or other input data become available. Taiwan data available from WorldPop here. Data and Resources TIFF Taiwan - Population density (2015) DATASET: Alpha version 2010 and 2015 estimates of numbers of people per grid...
These are the data used for the Racial and Ethnic Diversity for the Austin MSA story map. The story map was published July 2024 but displays data from 2000, 2010, and 2020.
Decennial census data were used for all three years. 2000: DEC Summary File 1, P004 2010: DEC Redistricting Data (PL 94-171), P2 2020: DEC Redistricting Data (PL 94-171), P2
Geographic crosswalks were used to harmonize 2000, 2010, and 2020 geographies.
Racial and Ethnic Diversity Index for the Austin MSA Storymap: https://storymaps.arcgis.com/stories/88ee265f00934af7a750b57f7faebd2c
City of Austin Open Data Terms of Use – https://data.austintexas.gov/stories/s/ranj-cccq
Census geographic areas are used by the Census Bureau to collect, tabulate, and aggregate decennial census data, and are also used in more frequent demographics reports like the annual American Community Survey (ACS). Three levels of areal geography are available from MassGIS (with layer name in parentheses): Blocks, Block Groups, and TractsSee the datalayer metadata for full details.Map service also available.
https://www.caliper.com/license/maptitude-license-agreement.htmhttps://www.caliper.com/license/maptitude-license-agreement.htm
Census Blocks data for use with GIS mapping software, databases, and web applications are from Caliper Corporation and contain block boundaries with associated 2020 Census demographic data.
This layer shows the age statistics in Tucson by neighborhood, aggregated from block level data, between 2010-2019. For questions, contact GIS_IT@tucsonaz.gov. The data shown is from Esri's 2019 Updated Demographic estimates.Esri's U.S. Updated Demographic (2019/2024) Data - Population, age, income, sex, race, home value, and marital status are among the variables included in the database. Each year, Esri's Data Development team employs its proven methodologies to update more than 2,000 demographic variables for a variety of U.S. geographies.Additional Esri Resources:Esri DemographicsU.S. 2019/2024 Esri Updated DemographicsEssential demographic vocabularyPermitted use of this data is covered in the DATA section of the Esri Master Agreement (E204CW) and these supplemental terms.
Map for question/section 1: "Who lives there?"Containing Rural areas as defined by US Census 2013 urban/rural defined areas, http://nmcdc.maps.arcgis.com/home/item.html?id=fbd1e91ec0a54c58b6fcca8a5138c1fc. Filtered to include: 'RURAL' in 2 category designation, Population of LESS THAN 5001 persons, AND % Low access low-income at 20 miles to AT LEAST 5%. Map displaying by Esri 2019 Age Dependency Ratios.
Census Year 1960 Census Tracts. The dataset contains polygons representing CY 1960 census tracts, created as part of the D.C. Geographic Information System (DC GIS) for the D.C. Office of the Chief Technology Officer (OCTO) and participating D.C. government agencies. Census tracts were identified from maps provided by the U.S. Census Bureau and the D.C. Office of Planning. The tract polygons were created by selecting street arcs from the WGIS planimetric street centerlines. Where necessary, polygons were also heads-up digitized from 1995/1999 orthophotographs.
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
FY2024 full and partial census tracts that qualify as Low-Moderate Income Areas (LMA) where 51% or more of the population are considered as having Low-Moderate Income. The low- and moderate-income summary data (LMISD) is based on the 2016-2020 American Community Survey (ACS). As of August 1, 2024, to qualify any new low- and moderate-income area (LMA) activities, Community Development Block Grant (CDBG) grantees should use this map and data.
For more information about LMA/LMI click the following link to open in new browser tab https://www.hudexchange.info/programs/cdbg/cdbg-low-moderate-income-data/
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Census block-level data focusing on race and ethnicity. This layer captures the distribution of 2010 Census respondents self-identifying as "two or more races/ ethnicities" in the City of Johns Creek, GA.
This dataset contains model-based census tract level estimates for the PLACES 2022 release in GIS-friendly format. PLACES covers the entire United States—50 states and the District of Columbia (DC)—at county, place, census tract, and ZIP Code Tabulation Area levels. It provides information uniformly on this large scale for local areas at 4 geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. PLACES was funded by the Robert Wood Johnson Foundation in conjunction with the CDC Foundation. Data sources used to generate these model-based estimates include Behavioral Risk Factor Surveillance System (BRFSS) 2020 or 2019 data, Census Bureau 2010 population estimates, and American Community Survey (ACS) 2015–2019 estimates. The 2022 release uses 2020 BRFSS data for 25 measures and 2019 BRFSS data for 4 measures (high blood pressure, taking high blood pressure medication, high cholesterol, and cholesterol screening) that the survey collects data on every other year. These data can be joined with the census tract 2015 boundary file in a GIS system to produce maps for 29 measures at the census tract level. An ArcGIS Online feature service is also available for users to make maps online or to add data to desktop GIS software. https://cdcarcgis.maps.arcgis.com/home/item.html?id=3b7221d4e47740cab9235b839fa55cd7
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The world's most accurate population datasets. Seven maps/datasets for the distribution of various populations in Mayotte: (1) Overall population density (2) Women (3) Men (4) Children (ages 0-5) (5) Youth (ages 15-24) (6) Elderly (ages 60+) (7) Women of reproductive age (ages 15-49).
This layer shows health insurance coverage sex and race by age group and is symbolized to show shows the percentage of the Black or African American population without health insurance. This is shown by 2020 census tract centroids. Sums may add to more than the total, as people can be in multiple race groups (for example, Hispanic and Black)This layer uses the 2020 American Community Survey (ACS) 5-year data and contains estimates and margins of error. There are additional calculated attributes related to this topic, which can be mapped or used within analysis. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. For more information regarding the ACS vintage, table sources and data processing notes, please see the item page for the source map service.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The population of the world, allocated to 1 arcsecond blocks. This refines CIESIN’s Gridded Population of the World project, using machine learning models on high-resolution worldwide Digital Globe satellite imagery. More information.
There is also a tiled version of this dataset that may be easier to use if you are interested in many countries.
This EnviroAtlas dataset is a summary of key demographic groups for the EnviroAtlas community. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://res1wwwd-o-tepad-o-tgov.vcapture.xyz/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://res1edgd-o-tepad-o-tgov.vcapture.xyz/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://res1wwwd-o-tepad-o-tgov.vcapture.xyz/enviroatlas/enviroatlas-fact-sheets).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The population of the world, allocated to 1 arcsecond blocks. This refines CIESIN’s Gridded Population of the World project, using machine learning models on high-resolution worldwide Digital Globe satellite imagery.
The percent of persons, out of all persons living in an area, 65 years and above. Source: U.S. Bureau of the Census, American Community SurveyYears Available: 2010, 2011-2015, 2012-2016, 2013-2017, 2014-2018, 2015-2019, 2017-2021, 2018-2022, 2019-2023Please note: We do not recommend comparing overlapping years of data due to the nature of this dataset. For more information, please visit: https://www.census.gov/programs-surveys/acs/guidance/comparing-acs-data.html
This map symbolizes the relative population counts for the City's 12 Data Divisions, aggregating the tract-level estimates from the the Census Bureau's American Community Survey 2018 five-year samples. Please refer to the map's legend for context to the color shading -- darker hues indicate more population.If you click on each Data Division, you can view other Census demographic information about that Data Division in addition to the population count.About the Census Data:The data comes from the U.S. Census Bureau's American Community Survey's 2014-2018 five-year samples. The American Community Survey (ACS) is an ongoing survey conducted by the federal government that provides vital information annually about America and its population. Information from the survey generates data that help determine how more than $675 billion in federal and state funds are distributed each year.For more information about the Census Bureau's ACS data and process of constructing the survey, visit the ACS's About page.About the City's Data Divisions:As a planning analytic tool, an interdepartmental working group divided Rochester into 12 “data divisions.” These divisions are well-defined and static so they are positioned to be used by the City of Rochester for statistical and planning purposes. Census data is tied to these divisions and serves as the basis for analyses over time. As such, the data divisions are designed to follow census boundaries, while also recognizing natural and human-made boundaries, such as the River, rail lines, and highways. Historical neighborhood boundaries, while informative in the division process, did not drive the boundaries. Data divisions are distinct from the numerous neighborhoods in Rochester. Neighborhood boundaries, like quadrant boundaries, police precincts, and legislative districts often change, which makes statistical analysis challenging when looking at data over time. The data division boundaries, however, are intended to remain unchanged. It is hoped that over time, all City data analysts will adopt the data divisions for the purpose of measuring change over time throughout the city.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
All demographic data compiled by neighborhoods in Johns Creek, GA.Neighborhood boundaries are created and maintained by Johns Creek, GA.Demographics data is from Esri GeoEnrichment Services.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population density per pixel at 100 metre resolution. WorldPop provides estimates of numbers of people residing in each 100x100m grid cell for every low and middle income country. Through ingegrating cencus, survey, satellite and GIS datasets in a flexible machine-learning framework, high resolution maps of population counts and densities for 2000-2020 are produced, along with accompanying metadata. DATASET: Alpha version 2010 and 2015 estimates of numbers of people per grid square, with national totals adjusted to match UN population division estimates and remaining unadjusted. REGION: Africa SPATIAL RESOLUTION: 0.000833333 decimal degrees (approx 100m at the equator) PROJECTION: Geographic, WGS84 UNITS: Estimated persons per grid square MAPPING APPROACH: Land cover based, as described in: Linard, C., Gilbert, M., Snow, R.W., Noor, A.M. and Tatem, A.J., 2012, Population distribution, settlement patterns and accessibility across Africa in 2010, PLoS ONE, 7(2): e31743. FORMAT: Geotiff (zipped using 7-zip (open access tool): www.7-zip.org) FILENAMES: Example - AGO10adjv4.tif = Angola (AGO) population count map for 2010 (10) adjusted to match UN national estimates (adj), version 4 (v4). Population maps are updated to new versions when improved census or other input data become available.
This map shows the diversity index of the population in the USA in 2010 by block group. "The diversity index summarizes racial and ethnic diversity. The index shows the likelihood that two people, chosen at random from the same area, belong to different race or ethnic groups. The index ranges from 0 (no diversity) to 100 (complete diversity). For example, a diversity index of 59 means there is a 59 percent probability that two people randomly chosen would belong to different race or ethnic groups." -Esri DemographicsIt calls to the 2010 Census service with attributes related to race and ethnicity. The field PctNonWhite calculates the total percentage of non-white population by subtracting the Total white population from the reported population total. This yields the total non-white population (Field "TotNonWhite"). This number was then divided by the total reported population and multipled by 100 to yield a percetage of the population that is non-white (Field "PctNonWhite"). Original data sourced from: https://tpc.maps.arcgis.com/home/item.html?id=04a8fbbf59aa48ebbc646ba2bc8d9b1c