39 datasets found
  1. H

    CDE Patient Demographics

    • dtechtive.com
    • find.data.gov.scot
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    BARTS HEALTH (2023). CDE Patient Demographics [Dataset]. https://dtechtive.com/datasets/25890
    Explore at:
    Dataset updated
    May 31, 2023
    Dataset provided by
    BARTS HEALTH
    Description

    Locally defined dataset containing a full list of patient registrations held within the Trust's EHR system. Details extend to include GP details and patient identifers.

  2. Medical Service Study Areas

    • data.chhs.ca.gov
    • healthdata.gov
    • +5more
    Updated Dec 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Health Care Access and Information (2024). Medical Service Study Areas [Dataset]. https://data.chhs.ca.gov/dataset/medical-service-study-areas
    Explore at:
    csv, html, geojson, kml, zip, arcgis geoservices rest apiAvailable download formats
    Dataset updated
    Dec 6, 2024
    Dataset authored and provided by
    Department of Health Care Access and Information
    Description
    This is the current Medical Service Study Area. California Medical Service Study Areas are created by the California Department of Health Care Access and Information (HCAI).

    Check the Data Dictionary for field descriptions.


    Checkout the California Healthcare Atlas for more Medical Service Study Area information.

    This is an update to the MSSA geometries and demographics to reflect the new 2020 Census tract data. The Medical Service Study Area (MSSA) polygon layer represents the best fit mapping of all new 2020 California census tract boundaries to the original 2010 census tract boundaries used in the construction of the original 2010 MSSA file. Each of the state's new 9,129 census tracts was assigned to one of the previously established medical service study areas (excluding tracts with no land area), as identified in this data layer. The MSSA Census tract data is aggregated by HCAI, to create this MSSA data layer. This represents the final re-mapping of 2020 Census tracts to the original 2010 MSSA geometries. The 2010 MSSA were based on U.S. Census 2010 data and public meetings held throughout California.


    <a href="https://hcai.ca.gov/">https://hcai.ca.gov/</a>

    Source of update: American Community Survey 5-year 2006-2010 data for poverty. For source tables refer to InfoUSA update procedural documentation. The 2010 MSSA Detail layer was developed to update fields affected by population change. The American Community Survey 5-year 2006-2010 population data pertaining to total, in households, race, ethnicity, age, and poverty was used in the update. The 2010 MSSA Census Tract Detail map layer was developed to support geographic information systems (GIS) applications, representing 2010 census tract geography that is the foundation of 2010 medical service study area (MSSA) boundaries. ***This version is the finalized MSSA reconfiguration boundaries based on the US Census Bureau 2010 Census. In 1976 Garamendi Rural Health Services Act, required the development of a geographic framework for determining which parts of the state were rural and which were urban, and for determining which parts of counties and cities had adequate health care resources and which were "medically underserved". Thus, sub-city and sub-county geographic units called "medical service study areas [MSSAs]" were developed, using combinations of census-defined geographic units, established following General Rules promulgated by a statutory commission. After each subsequent census the MSSAs were revised. In the scheduled revisions that followed the 1990 census, community meetings of stakeholders (including county officials, and representatives of hospitals and community health centers) were held in larger metropolitan areas. The meetings were designed to develop consensus as how to draw the sub-city units so as to best display health care disparities. The importance of involving stakeholders was heightened in 1992 when the United States Department of Health and Human Services' Health and Resources Administration entered a formal agreement to recognize the state-determined MSSAs as "rational service areas" for federal recognition of "health professional shortage areas" and "medically underserved areas". After the 2000 census, two innovations transformed the process, and set the stage for GIS to emerge as a major factor in health care resource planning in California. First, the Office of Statewide Health Planning and Development [OSHPD], which organizes the community stakeholder meetings and provides the staff to administer the MSSAs, entered into an Enterprise GIS contract. Second, OSHPD authorized at least one community meeting to be held in each of the 58 counties, a significant number of which were wholly rural or frontier counties. For populous Los Angeles County, 11 community meetings were held. As a result, health resource data in California are collected and organized by 541 geographic units. The boundaries of these units were established by community healthcare experts, with the objective of maximizing their usefulness for needs assessment purposes. The most dramatic consequence was introducing a data simultaneously displayed in a GIS format. A two-person team, incorporating healthcare policy and GIS expertise, conducted the series of meetings, and supervised the development of the 2000-census configuration of the MSSAs.

    MSSA Configuration Guidelines (General Rules):- Each MSSA is composed of one or more complete census tracts.- As a general rule, MSSAs are deemed to be "rational service areas [RSAs]" for purposes of designating health professional shortage areas [HPSAs], medically underserved areas [MUAs] or medically underserved populations [MUPs].- MSSAs will not cross county lines.- To the extent practicable, all census-defined places within the MSSA are within 30 minutes travel time to the largest population center within the MSSA, except in those circumstances where meeting this criterion would require splitting a census tract.- To the extent practicable, areas that, standing alone, would meet both the definition of an MSSA and a Rural MSSA, should not be a part of an Urban MSSA.- Any Urban MSSA whose population exceeds 200,000 shall be divided into two or more Urban MSSA Subdivisions.- Urban MSSA Subdivisions should be within a population range of 75,000 to 125,000, but may not be smaller than five square miles in area. If removing any census tract on the perimeter of the Urban MSSA Subdivision would cause the area to fall below five square miles in area, then the population of the Urban MSSA may exceed 125,000. - To the extent practicable, Urban MSSA Subdivisions should reflect recognized community and neighborhood boundaries and take into account such demographic information as income level and ethnicity. Rural Definitions: A rural MSSA is an MSSA adopted by the Commission, which has a population density of less than 250 persons per square mile, and which has no census defined place within the area with a population in excess of 50,000. Only the population that is located within the MSSA is counted in determining the population of the census defined place. A frontier MSSA is a rural MSSA adopted by the Commission which has a population density of less than 11 persons per square mile. Any MSSA which is not a rural or frontier MSSA is an urban MSSA. Last updated December 6th 2024.
  3. Mexico-WHO Health Indicators

    • kaggle.com
    zip
    Updated Jan 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Mexico-WHO Health Indicators [Dataset]. https://www.kaggle.com/datasets/thedevastator/mexico-who-health-indicators
    Explore at:
    zip(818791 bytes)Available download formats
    Dataset updated
    Jan 22, 2023
    Authors
    The Devastator
    Area covered
    Mexico
    Description

    Mexico-WHO Health Indicators

    Demographic, Disease, and Treatment Coverage Data

    By Humanitarian Data Exchange [source]

    About this dataset

    This Kaggle dataset contains a wide array of health and socioeconomic indicators relating to Mexico. It covers topics ranging from mortality and global health estimates, to Sustainable Development Goals, Millennium Development Goals (MDGs), Health Systems, Malaria and Tuberculosis, Child Health, Infectious Diseases, World Health Statistics, Health Financing and Public Heath & Environment. Furthermore, it includes indicators for Substance Use & Mental Health; Tobacco use; Injuries & Violence; HIV/AIDS & Other STIs; Nutrition; Urban Health; Noncommunicable Diseases (NCDs); Neglected Tropical Diseases (NTDs); Infrastructure; Essential Technologies in healthcare systems; Demographic & Socioeconomic Statistics. Finally it features indicators surrounding International Regulations Monitoring Frameworks as well as Insecticides Resistance amongst other topics.

    This dataset is bursting with information on how Mexico stands in a variety of different aspects across its development spectrum- enabling researchers to gain deeper insight into the country's ecosystem as well as providing them with the data required to pinpoint potential ‘hotspots’- Areas which may require heightened attention either from policy makers or individuals looking for smarter ways through which their efforts might benefit their target population most efficiently. Don’t miss your chance at unlocking the power of this comprehensive dataset so you can make sure that no stone is left unturned when it comes to realising tangible outcomes from your research!

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    The dataset is organized into several key categories and each category contains a number of different indicators related to that particular area of healthcare. In order to better understand any given indicator in more detail, each one also has an associated metadata page with additional information about its definition and calculation method.

    In order to make use of the data in this dataset there are several steps you will need to take: - Decide what aspect or area of healthcare you would like to explore further in more detail; - Review/understand any associated metadata provided regarding its definition or calculation method;
    - Download any necessary files containing relevant numbers or figures;
    - Analyze or explore this data further;
    6 Use your findings to inform decisions about policy interventions for improving general public health outcomes in Mexico!

    Research Ideas

    • Analyzing Mexico's progress towards achieving the desired health indicators for the Sustainable Development Goals (SDGs).
    • Examining how access to healthcare and mental health services vary by region, as well as disparities in treatment within regions.
    • Developing machine learning models to predict outcome based on different factors such as environment and socioeconomic status

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    See the dataset description for more information.

    Columns

    File: infrastructure-indicators-for-mexico-11.csv | Column name | Description | |:---------------------------|:---------------------------------------------------------------| | GHO (CODE) | The Global Health Observatory code for the indicator. (String) | | GHO (DISPLAY) | The name of the indicator. (String) | | GHO (URL) | The URL for the indicator. (URL) | | PUBLISHSTATE (CODE) | The code for the publication state of the indicator. (String) | | PUBLISHSTATE (DISPLAY) | The name of the publication state of the indicator. (String) | | PUBLISHSTATE (URL) | The URL for the publication state of the indicator. (URL) | | YEAR (CODE) | The code for the year of the indicator. (String) | | YEAR (DISPLAY) | The name of the year of the indicator. (String) | | YEAR (URL) | The URL for the year of the indicator. (URL) | | REGION (CODE) | The code for the region of the indicator. (String) | | REGION (DISPLAY) | The name of the region of the indicator. (String) | | REGION (URL) |...

  4. D

    [Archived] COVID-19 Deaths by Population Characteristics Over Time

    • data.sfgov.org
    • healthdata.gov
    • +1more
    csv, xlsx, xml
    Updated Jun 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). [Archived] COVID-19 Deaths by Population Characteristics Over Time [Dataset]. https://data.sfgov.org/Health-and-Social-Services/-Archived-COVID-19-Deaths-by-Population-Characteri/kkr3-wq7h
    Explore at:
    xlsx, xml, csvAvailable download formats
    Dataset updated
    Jun 27, 2024
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Description

    As of July 2nd, 2024 the COVID-19 Deaths by Population Characteristics Over Time dataset has been retired. This dataset is archived and will no longer update. We will be publishing a cumulative deaths by population characteristics dataset that will update moving forward.

    A. SUMMARY This dataset shows San Francisco COVID-19 deaths by population characteristics and by date. This data may not be immediately available for recently reported deaths. Data updates as more information becomes available. Because of this, death totals for previous days may increase or decrease. More recent data is less reliable.

    Population characteristics are subgroups, or demographic cross-sections, like age, race, or gender. The City tracks how deaths have been distributed among different subgroups. This information can reveal trends and disparities among groups.

    B. HOW THE DATASET IS CREATED As of January 1, 2023, COVID-19 deaths are defined as persons who had COVID-19 listed as a cause of death or a significant condition contributing to their death on their death certificate. This definition is in alignment with the California Department of Public Health and the national https://preparedness.cste.org/wp-content/uploads/2022/12/CSTE-Revised-Classification-of-COVID-19-associated-Deaths.Final_.11.22.22.pdf">Council of State and Territorial Epidemiologists. Death certificates are maintained by the California Department of Public Health.

    Data on the population characteristics of COVID-19 deaths are from: *Case reports *Medical records *Electronic lab reports *Death certificates

    Data are continually updated to maximize completeness of information and reporting on San Francisco COVID-19 deaths.

    To protect resident privacy, we summarize COVID-19 data by only one characteristic at a time. Data are not shown until cumulative citywide deaths reach five or more.

    Data notes on each population characteristic type is listed below.

    Race/ethnicity * We include all race/ethnicity categories that are collected for COVID-19 cases.

    Gender * The City collects information on gender identity using these guidelines.

    C. UPDATE PROCESS Updates automatically at 06:30 and 07:30 AM Pacific Time on Wednesday each week.

    Dataset will not update on the business day following any federal holiday.

    D. HOW TO USE THIS DATASET Population estimates are only available for age groups and race/ethnicity categories. San Francisco population estimates for race/ethnicity and age groups can be found in a view based on the San Francisco Population and Demographic Census dataset. These population estimates are from the 2016-2020 5-year American Community Survey (ACS).

    This dataset includes many different types of characteristics. Filter the “Characteristic Type” column to explore a topic area. Then, the “Characteristic Group” column shows each group or category within that topic area and the number of deaths on each date.

    New deaths are the count of deaths within that characteristic group on that specific date. Cumulative deaths are the running total of all San Francisco COVID-19 deaths in that characteristic group up to the date listed.

    This data may not be immediately available for more recent deaths. Data updates as more information becomes available.

    To explore data on the total number of deaths, use the COVID-19 Deaths Over Time dataset.

    E. CHANGE LOG

    • 9/11/2023 - on this date, we began using an updated definition of a COVID-19 death to align with the California Department of Public Health. This change was applied to COVID-19 deaths retrospectively beginning on 1/1/2023. More information about the recommendation by the Council of State and Territorial Epidemiologists that motivated this change can be found https://preparedness.cste.org/wp-content/uploads/2022/12/CSTE-Revised-Classification-of-COVID-19-associated-Deaths.Final_.11.22.22.pdf">here.
    • 6/6/2023 - data on deaths by transmission type have been removed. See section ARCHIVED DATA for more detail.
    • 5/16/2023 - data on deaths by sexual orientation, comorbidities, homelessness, and single room occupancy have been removed. See section ARCHIVED DATA for more detail.
    • 4/6/2023 - the State implemented system updates to improve the integrity of historical data.
    • 1/31/2023 - column “population_estimate” added.
    • 3/23/2022 - ‘Native American’ changed to ‘American Indian or Alaska Native’ to align with the census.
    • 1/22/2022 - system updates to improve timeliness and accuracy of cases and deaths data were implemented.

  5. Medical Service Study Area Data Dictionary

    • data.chhs.ca.gov
    • data.ca.gov
    • +4more
    Updated Sep 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Health Care Access and Information (2024). Medical Service Study Area Data Dictionary [Dataset]. https://data.chhs.ca.gov/dataset/medical-service-study-area-data-dictionary
    Explore at:
    kml, zip, html, arcgis geoservices rest api, geojson, csvAvailable download formats
    Dataset updated
    Sep 5, 2024
    Dataset authored and provided by
    Department of Health Care Access and Information
    Description
    Field NameData TypeDescription
    StatefpNumberUS Census Bureau unique identifier of the state
    CountyfpNumberUS Census Bureau unique identifier of the county
    CountynmTextCounty name
    TractceNumberUS Census Bureau unique identifier of the census tract
    GeoidNumberUS Census Bureau unique identifier of the state + county + census tract
    AlandNumberUS Census Bureau defined land area of the census tract
    AwaterNumberUS Census Bureau defined water area of the census tract
    AsqmiNumberArea calculated in square miles from the Aland
    MSSAidTextID of the Medical Service Study Area (MSSA) the census tract belongs to
    MSSAnmTextName of the Medical Service Study Area (MSSA) the census tract belongs to
    DefinitionTextType of MSSA, possible values are urban, rural and frontier.
    TotalPovPopNumberUS Census Bureau total population for whom poverty status is determined of the census tract, taken from the 2020 ACS 5 YR S1701
  6. a

    Medical Service Study Area Demographics

    • usc-geohealth-hub-uscssi.hub.arcgis.com
    Updated Nov 10, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Spatial Sciences Institute (2021). Medical Service Study Area Demographics [Dataset]. https://usc-geohealth-hub-uscssi.hub.arcgis.com/datasets/medical-service-study-area-demographics
    Explore at:
    Dataset updated
    Nov 10, 2021
    Dataset authored and provided by
    Spatial Sciences Institute
    Area covered
    Description

    Medical Service Study Areas (MSSAs)As defined by California's Office of Statewide Health Planning and Development (OSHPD) in 2013, "MSSAs are sub-city and sub-county geographical units used to organize and display population, demographic and physician data" (Source). Each census tract in CA is assigned to a given MSSA. The most recent MSSA dataset (2014) was used. Spatial data are available via OSHPD at the California Open Data Portal. This information may be useful in studying health equity.Definitions:Race/Ethnicity: Race/ethnicity is categorized as: All races/ethnicities, Non-Hispanic (NH) White, NH Black, Asian/Pacific Islander, or Hispanic. "All races" includes all of the above, as well as other and unknown race/ethnicity and American Indian/Alaska Native. The latter two groups are not reported separately due to small numbers for many cancer sites.Racial/Ethnic Composition: Distribution of residents' race/ethnicity (e.g., % Hispanic, % non-Hispanic White, % non-Hispanic Black, % non-Hispanic Asian/Pacific Islander). (Source: US Census, 2010.)Rural: Percent of residents who reside in blocks that are designated as rural. (Source: US Census, 2010.)Foreign Born: Percent of residents who were born outside the United States. (Source: American Community Survey, 2008-2012.)Socioeconomic Status (Neighborhood Level): A composite measure of seven indicator variables created by principal component analysis; indicators include: education, blue-collar job, unemployment, household income, poverty, rent, and house value. Quintiles based on state distribution, with quintile 1 being the lowest SES and 5 being the highest. (Source: American Community Survey, 2008-2012.)Spatial extent: CaliforniaSpatial Unit: MSSACreated: n/aUpdated: n/aSource: California Health MapsContact Email: gbacr@ucsf.eduSource Link: https://www.californiahealthmaps.org/?areatype=mssa&address=&sex=Both&site=AllSite&race=&year=05yr&overlays=none&choropleth=Obesity

  7. d

    MeSH Population Groups (Type 5 SCR)

    • catalog.data.gov
    • datadiscovery.nlm.nih.gov
    • +2more
    Updated Jun 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Library of Medicine (2025). MeSH Population Groups (Type 5 SCR) [Dataset]. https://catalog.data.gov/dataset/mesh-population-groups-type-5-scr
    Explore at:
    Dataset updated
    Jun 19, 2025
    Dataset provided by
    National Library of Medicine
    Description

    Working with partners across NIH, led by NIMHD and the NLM OBSSR-Behavioral Ontology Working Group, MeSH on November 29, 2022 added Federally recognized American Indian and Alaskan Native (AI/AN) tribal names and ethnic/ethnolinguistic minority terms as newly created type 5 SCR designated as “Population Groups”. These minority names (1,700+ terms) were mapped and reviewed by subject matter experts and scientists within NIH and from outside including Network of the National Library of Medicine members. Structure: All type 5 SCRs have common fields 1. CC=5 Population Group 2. ST=T098 Population Groups 3. HM= At least one HM is to an MH under Population Groups [M01.686] 4. TH= NIMHD(2023)

  8. Population Group Estimates used in the Healthy People 2020 Overview of...

    • catalog.data.gov
    • data.virginia.gov
    • +2more
    Updated Apr 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Population Group Estimates used in the Healthy People 2020 Overview of Health Disparities [Dataset]. https://catalog.data.gov/dataset/population-group-estimates-used-in-the-healthy-people-2020-overview-of-health-disparities-6a062
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    The Overview of Health Disparities analysis is a component of the Healthy People 2020 (HP2020) Final Review. The analysis included 611 objectives in HP2020. See Technical Notes for the Healthy People 2020 Overview of Health Disparities (https://www.cdc.gov/nchs/healthy_people/hp2020/health-disparities.htm) for additional information and criteria for objectives, data years, and population characteristics included in the analysis and statistical formulas and definitions for the disparities measures. This file contains estimates and standard errors for the baseline and final years for individual population groups used in the Overview of Health Disparities analysis. The number and definitions of population groups varied across the HP2020 objectives and data sources used. These population groups are shown in the disparities file as originally reported by the data source, rather than the harmonized categories that were used for the HP2020 Progress by Population Group analysis (https://www.cdc.gov/nchs/healthy_people/hp2020/population-groups.htm). Additionally, for any given objective, the baseline and final years used for the disparities analysis do not necessarily correspond to the baseline and final years used to evaluate progress toward target attainment in the HP2020 Final Review Progress Table (https://www.cdc.gov/nchs/healthy_people/hp2020/progress-tables.htm) and Progress by Population Group analysis (https://www.cdc.gov/nchs/healthy_people/hp2020/population-groups.htm). These distinctions should be considered when merging the downloadable Progress Table or Progress by Population Group data files with the Overview of Health Disparities data files, or when integrative analyses that incorporate both disparities and progress data are conducted. Data for additional years during the HP2020 tracking period that are not included in the Overview of Health Disparities are available on the HP2020 website (https://www.healthypeople.gov/2020/).

  9. f

    Weighted percentile group means for demographic and health-related...

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Nov 11, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lentz, Trevor A.; Harman, Jeffrey S.; George, Steven Z.; Fillingim, Roger B.; Beneciuk, Jason M.; Marlow, Nicole M. (2019). Weighted percentile group means for demographic and health-related information. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000179409
    Explore at:
    Dataset updated
    Nov 11, 2019
    Authors
    Lentz, Trevor A.; Harman, Jeffrey S.; George, Steven Z.; Fillingim, Roger B.; Beneciuk, Jason M.; Marlow, Nicole M.
    Description

    Weighted percentile group means for demographic and health-related information.

  10. p

    MIMIC-III Clinical Database

    • physionet.org
    • oppositeofnorth.com
    Updated Sep 4, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alistair Johnson; Tom Pollard; Roger Mark (2016). MIMIC-III Clinical Database [Dataset]. http://doi.org/10.13026/C2XW26
    Explore at:
    Dataset updated
    Sep 4, 2016
    Authors
    Alistair Johnson; Tom Pollard; Roger Mark
    License

    https://github.com/MIT-LCP/license-and-dua/tree/master/draftshttps://github.com/MIT-LCP/license-and-dua/tree/master/drafts

    Description

    MIMIC-III is a large, freely-available database comprising deidentified health-related data associated with over forty thousand patients who stayed in critical care units of the Beth Israel Deaconess Medical Center between 2001 and 2012. The database includes information such as demographics, vital sign measurements made at the bedside (~1 data point per hour), laboratory test results, procedures, medications, caregiver notes, imaging reports, and mortality (including post-hospital discharge).MIMIC supports a diverse range of analytic studies spanning epidemiology, clinical decision-rule improvement, and electronic tool development. It is notable for three factors: it is freely available to researchers worldwide; it encompasses a diverse and very large population of ICU patients; and it contains highly granular data, including vital signs, laboratory results, and medications.

  11. d

    DC Health Planning Neighborhoods to Census Tracts

    • opendata.dc.gov
    • datasets.ai
    • +3more
    Updated May 8, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Washington, DC (2020). DC Health Planning Neighborhoods to Census Tracts [Dataset]. https://opendata.dc.gov/datasets/DCGIS::dc-health-planning-neighborhoods-to-census-tracts
    Explore at:
    Dataset updated
    May 8, 2020
    Dataset authored and provided by
    City of Washington, DC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This dataset contains polygons that represent the boundaries of statistical neighborhoods as defined by the DC Department of Health (DC Health). DC Health delineates statistical neighborhoods to facilitate small-area analyses and visualization of health, economic, social, and other indicators to display and uncover disparate outcomes among populations across the city. The neighborhoods are also used to determine eligibility for some health services programs and support research by various entities within and outside of government. DC Health Planning Neighborhood boundaries follow census tract 2010 lines defined by the US Census Bureau. Each neighborhood is a group of between one and seven different, contiguous census tracts. This allows for easier comparison to Census data and calculation of rates per population (including estimates from the American Community Survey and Annual Population Estimates). These do not reflect precise neighborhood locations and do not necessarily include all commonly-used neighborhood designations. There is no formal set of standards that describes which neighborhoods are included in this dataset. Note that the District of Columbia does not have official neighborhood boundaries. Origin of boundaries: each neighborhood is a group of between one and seven different, contiguous census tracts. They were originally determined in 2015 as part of an analytical research project with technical assistance from the Centers for Disease Control and Prevention (CDC) and the Council for State and Territorial Epidemiologists (CSTE) to define small area estimates of life expectancy. Census tracts were grouped roughly following the Office of Planning Neighborhood Cluster boundaries, where possible, and were made just large enough to achieve standard errors of less than 2 for each neighborhood's calculation of life expectancy. The resulting neighborhoods were used in the DC Health Equity Report (2018) with updated names. HPNs were modified slightly in 2019, incorporating one census tract that was consistently suppressed due to low numbers into a neighboring HPN (Lincoln Park incorporated into Capitol Hill). Demographic information were analyzed to identify the bordering group with the most similarities to the single census tract. A second change split a neighborhood (GWU/National Mall) into two to facilitate separate analysis.

  12. Healthy People 2020 Overview of Health Disparities

    • catalog.data.gov
    • data.virginia.gov
    • +3more
    Updated Apr 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Healthy People 2020 Overview of Health Disparities [Dataset]. https://catalog.data.gov/dataset/healthy-people-2020-overview-of-health-disparities-6cc72
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    The Overview of Health Disparities analysis is a component of the Healthy People 2020 (HP2020) Final Review. The analysis included 611 objectives in HP2020. This file contains summary level information used for the evaluation of changes in disparities during HP2020, including calculations for the disparities measures and the disparities change categories for all objectives and population characteristics in the analysis. See Technical Notes for the Healthy People 2020 Overview of Health Disparities (https://www.cdc.gov/nchs/healthy_people/hp2020/health-disparities-technical-notes.htm) for additional information and criteria for objectives, data years, and population characteristics included in the analysis and statistical formulas and definitions for the disparities measures. Data for additional years during the HP2020 tracking period that are not included in the Overview of Health Disparities are available on the HP2020 website (https://www.healthypeople.gov/2020/). Note that “rate” as used may refer to a statistical rate expressed per unit population or a proportion, depending on how the HP2020 objective was defined.

  13. d

    COVID-19 Deaths by Population Characteristics

    • catalog.data.gov
    • data.sfgov.org
    • +2more
    Updated Oct 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.sfgov.org (2025). COVID-19 Deaths by Population Characteristics [Dataset]. https://catalog.data.gov/dataset/covid-19-deaths-by-population-characteristics
    Explore at:
    Dataset updated
    Oct 25, 2025
    Dataset provided by
    data.sfgov.org
    Description

    A. SUMMARY This dataset shows San Francisco COVID-19 deaths by population characteristics. This data may not be immediately available for recently reported deaths. Data updates as more information becomes available. Because of this, death totals may increase or decrease. Population characteristics are subgroups, or demographic cross-sections, like age, race, or gender. The City tracks how deaths have been distributed among different subgroups. This information can reveal trends and disparities among groups. B. HOW THE DATASET IS CREATED As of January 1, 2023, COVID-19 deaths are defined as persons who had COVID-19 listed as a cause of death or a significant condition contributing to their death on their death certificate. This definition is in alignment with the California Department of Public Health and the national Council of State and Territorial Epidemiologists. Death certificates are maintained by the California Department of Public Health. Data on the population characteristics of COVID-19 deaths are from: Case reports Medical records Electronic lab reports Death certificates Data are continually updated to maximize completeness of information and reporting on San Francisco COVID-19 deaths. To protect resident privacy, we summarize COVID-19 data by only one population characteristic at a time. Data are not shown until cumulative citywide deaths reach five or more. Data notes on select population characteristic types are listed below. Race/ethnicity * We include all race/ethnicity categories that are collected for COVID-19 cases. Gender * The City collects information on gender identity using these guidelines. C. UPDATE PROCESS Updates automatically at 06:30 and 07:30 AM Pacific Time on Wednesday each week. Dataset will not update on the business day following any federal holiday. D. HOW TO USE THIS DATASET Population estimates are only available for age groups and race/ethnicity categories. San Francisco population estimates for race/ethnicity and age groups can be found in a dataset based on the San Francisco Population and Demographic Census dataset.These population estimates are from the 2018-2022 5-year American Community Survey (ACS). This dataset includes several characteristic types. Filter the “Characteristic Type” column to explore a topic area. Then, the “Characteristic Group” column shows each group or category within that topic area and the number of cumulative deaths. Cumulative deaths are the running total of all San Francisco COVID-19 deaths in that characteristic group up to the date listed. To explore data on the total number of deaths, use the COVID-19 Deaths Over Time dataset. E. CHANGE LOG

  14. CDC WONDER: AIDS Public Use Data

    • catalog.data.gov
    • healthdata.gov
    • +3more
    Updated Jul 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention, Department of Health & Human Services (2025). CDC WONDER: AIDS Public Use Data [Dataset]. https://catalog.data.gov/dataset/cdc-wonder-aids-public-use-data
    Explore at:
    Dataset updated
    Jul 17, 2025
    Description

    The AIDS Public Information Data Set (APIDS) for years 1981-2002 on CDC WONDER online database contains counts of AIDS (Acquired Immune Deficiency Syndrome) cases reported by state and local health departments, by demographics; location (region and selected metropolitan areas); case-definition; month/year and quarter-year of diagnosis, report, and death (if applicable); and HIV exposure group (risk factors for AIDS). Data are produced by the US Department of Health and Human Services (US DHHS), Public Health Service (PHS), Centers for Disease Control and Prevention (CDC), National Center for HIV, STD and TB Prevention (NCHSTP), Division of HIV/AIDS Prevention (DHP).

  15. d

    ARCHIVED: COVID-19 Cases by Population Characteristics Over Time

    • catalog.data.gov
    • data.sfgov.org
    • +1more
    Updated Mar 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.sfgov.org (2025). ARCHIVED: COVID-19 Cases by Population Characteristics Over Time [Dataset]. https://catalog.data.gov/dataset/covid-19-cases-by-population-characteristics-over-time
    Explore at:
    Dataset updated
    Mar 29, 2025
    Dataset provided by
    data.sfgov.org
    Description

    A. SUMMARY This archived dataset includes data for population characteristics that are no longer being reported publicly. The date on which each population characteristic type was archived can be found in the field “data_loaded_at”. B. HOW THE DATASET IS CREATED Data on the population characteristics of COVID-19 cases are from:  * Case interviews  * Laboratories  * Medical providers    These multiple streams of data are merged, deduplicated, and undergo data verification processes.   Race/ethnicity * We include all race/ethnicity categories that are collected for COVID-19 cases. * The population estimates for the "Other" or “Multi-racial” groups should be considered with caution. The Census definition is likely not exactly aligned with how the City collects this data. For that reason, we do not recommend calculating population rates for these groups. Gender * The City collects information on gender identity using these guidelines. Skilled Nursing Facility (SNF) occupancy * A Skilled Nursing Facility (SNF) is a type of long-term care facility that provides care to individuals, generally in their 60s and older, who need functional assistance in their daily lives.  * This dataset includes data for COVID-19 cases reported in Skilled Nursing Facilities (SNFs) through 12/31/2022, archived on 1/5/2023. These data were identified where “Characteristic_Type” = ‘Skilled Nursing Facility Occupancy’. Sexual orientation * The City began asking adults 18 years old or older for their sexual orientation identification during case interviews as of April 28, 2020. Sexual orientation data prior to this date is unavailable. * The City doesn’t collect or report information about sexual orientation for persons under 12 years of age. * Case investigation interviews transitioned to the California Department of Public Health, Virtual Assistant information gathering beginning December 2021. The Virtual Assistant is only sent to adults who are 18+ years old. Learn more about our data collection guidelines pertaining to sexual orientation. Comorbidities * Underlying conditions are reported when a person has one or more underlying health conditions at the time of diagnosis or death. Homelessness Persons are identified as homeless based on several data sources: * self-reported living situation * the location at the time of testing * Department of Public Health homelessness and health databases * Residents in Single-Room Occupancy hotels are not included in these figures. These methods serve as an estimate of persons experiencing homelessness. They may not meet other homelessness definitions. Single Room Occupancy (SRO) tenancy * SRO buildings are defined by the San Francisco Housing Code as having six or more "residential guest rooms" which may be attached to shared bathrooms, kitchens, and living spaces. * The details of a person's living arrangements are verified during case interviews. Transmission Type * Information on transmission of COVID-19 is based on case interviews with individuals who have a confirmed positive test. Individuals are asked if they have been in close contact with a known COVID-19 case. If they answer yes, transmission category is recorded as contact with a known case. If they report no contact with a known case, transmission category is recorded as community transmission. If the case is not interviewed or was not asked the question, they are counted as unknown. C. UPDATE PROCESS This dataset has been archived and will no longer update as of 9/11/2023. D. HOW TO USE THIS DATASET Population estimates are only available for age groups and race/ethnicity categories. San Francisco po

  16. o

    Public Health Portfolio (Directly Funded Research - Programmes and Training...

    • nihr.opendatasoft.com
    • nihr.aws-ec2-eu-central-1.opendatasoft.com
    csv, excel, json
    Updated Nov 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Public Health Portfolio (Directly Funded Research - Programmes and Training Awards) [Dataset]. https://nihr.opendatasoft.com/explore/dataset/phof-datase/
    Explore at:
    excel, json, csvAvailable download formats
    Dataset updated
    Nov 4, 2025
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    This Public Health Portfolio (Directly Funded Research - Programme and Training Awards) dataset contains NIHR directly funded research awards where the funding is allocated to an award holder or host organisation to carry out a specific piece of research or complete a training award. The NIHR also invests significantly in centres of excellence, collaborations, services and facilities to support research in England. Collectively these form NIHR infrastructure support. NIHR infrastructure supported projects are available in the Public Health Portfolio (Infrastructure Support) dataset which you can find here.NIHR directly funded research awards (Programmes and Training Awards) that were funded between January 2006 and the present extraction date are eligible for inclusion in this dataset. An agreed inclusion/exclusion criteria is used to categorise awards as public health awards (see below). Following inclusion in the dataset, public health awards are second level coded to one of the four Public Health Outcomes Framework domains. These domains are: (1) wider determinants (2) health improvement (3) health protection (4) healthcare and premature mortality.More information on the Public Health Outcomes Framework domains can be found here.This dataset is updated quarterly to include new NIHR awards categorised as public health awards. Please note that for those Public Health Research Programme projects showing an Award Budget of £0.00, the project is undertaken by an on-call team for example, PHIRST, Public Health Review Team, or Knowledge Mobilisation Team, as part of an ongoing programme of work.Inclusion CriteriaThe NIHR Public Health Overview project team worked with colleagues across NIHR public health research to define the inclusion criteria for NIHR public health research. NIHR directly funded research awards are categorised as public health if they are determined to be ‘investigations of interventions in, or studies of, populations that are anticipated to have an effect on health or on health inequity at a population level.’ This definition of public health is intentionally broad to capture the wide range of NIHR public health research across prevention, health improvement, health protection, and healthcare services (both within and outside of NHS settings). This dataset does not reflect the NIHR’s total investment in public health research. The intention is to showcase a subset of the wider NIHR public health portfolio. This dataset includes NIHR directly funded research awards categorised as public health awards. This dataset does not include public health awards or projects funded by any of the three NIHR Research Schools or NIHR Health Protection Research Units.DisclaimersUsers of this dataset should acknowledge the broad definition of public health that has been used to develop the inclusion criteria for this dataset. Please note that this dataset is currently subject to a limited data quality review. We are working to improve our data collection methodologies. Please also note that some awards may also appear in other NIHR curated datasets. Further InformationFurther information on the individual awards shown in the dataset can be found on the NIHR’s Funding & Awards website here. Further information on individual NIHR Research Programme’s decision making processes for funding health and social care research can be found here.Further information on NIHR’s investment in public health research can be found as follows:The NIHR is one of the main funders of public health research in the UK. Public health research falls within the remit of a range of NIHR Directly Funded Research (Programmes and Training Awards), and NIHR Infrastructure Support. NIHR School for Public Health here.NIHR Public Health Policy Research Unit here. NIHR Health Protection Research Units here.NIHR Public Health Research Programme Health Determinants Research Collaborations (HDRC) here.NIHR Public Health Research Programme Public Health Intervention Responsive Studies Teams (PHIRST) here.

  17. Age by General health by Long-term health problem or disability by Sex 2011

    • statistics.ukdataservice.ac.uk
    csv, zip
    Updated Sep 20, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics; National Records of Scotland; Northern Ireland Statistics and Research Agency; UK Data Service. (2022). Age by General health by Long-term health problem or disability by Sex 2011 [Dataset]. https://statistics.ukdataservice.ac.uk/dataset/age-general-health-long-term-health-problem-or-disability-sex-2011
    Explore at:
    csv, zipAvailable download formats
    Dataset updated
    Sep 20, 2022
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    UK Data Servicehttps://ukdataservice.ac.uk/
    Authors
    Office for National Statistics; National Records of Scotland; Northern Ireland Statistics and Research Agency; UK Data Service.
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Dataset population: Persons in households

    Age

    Age is derived from the date of birth question and is a person's age at their last birthday, at 27 March 2011. Dates of birth that imply an age over 115 are treated as invalid and the person's age is imputed. Infants less than one year old are classified as 0 years of age.

    General health

    General health is a self-assessment of a person's general state of health. People were asked to assess whether their health was very good, good, fair, bad or very bad.

    For England and Wales, this assessment is not based on a person's health over any specified period of time.

    For Northern Ireland, 'General health' refers to a person's health over the 12 months prior to Census day (27 March 2011).

    Long-term health problem or disability

    A long-term health problem or disability that limits a person's day-to-day activities and has lasted or is expected to last at least 12 months. This includes problems that are related to old age.

    People were asked to assess whether their daily activities were limited a lot or a little by such a health problem, or whether their daily activities were not limited at all.

    Sex

    The classification of a person as either male or female.

  18. d

    Long Term Health Problems By Whether They Have Other Health Conditions -...

    • catalogue.data.wa.gov.au
    • regional-wa-rdmp.opendata.arcgis.com
    Updated Dec 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    BenjaminJRobins (2023). Long Term Health Problems By Whether They Have Other Health Conditions - 2021 [Dataset]. https://catalogue.data.wa.gov.au/dataset/regional-development-commissions-wa-long-term-health-problems-by-whether-they-have-other-health-cond/resource/dd8b40d4-24ad-4aef-bb7d-b8f13a9b1283
    Explore at:
    Dataset updated
    Dec 15, 2023
    Dataset authored and provided by
    BenjaminJRobins
    Area covered
    Description

    Dataset examines long term health problems of persons and whether they have identified additional health conditions for the 2021 Census year. Australian Bureau of Statistics extracts from ABS Tablebuilder are used for the construction of the dataset.

  19. u

    OECD Health Statistics, 1970-2017

    • datacatalogue.ukdataservice.ac.uk
    Updated Dec 3, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Organisation for Economic Co-operation and Development (2020). OECD Health Statistics, 1970-2017 [Dataset]. http://doi.org/10.5257/oecd/health/2018-12
    Explore at:
    Dataset updated
    Dec 3, 2020
    Dataset provided by
    UK Data Servicehttps://ukdataservice.ac.uk/
    Authors
    Organisation for Economic Co-operation and Development
    Time period covered
    Jan 1, 1970 - Jan 1, 2017
    Area covered
    Burundi, Gibraltar, Costa Rica, Comoros, Mozambique, European Union Countries (1993-), Chile, Trinidad and Tobago, Multi-nation, Hong Kong
    Description

    The Organisation for Economic Co-operation and Development (OECD) Health Statistics offers the most comprehensive source of comparable statistics on health and health systems across OECD countries. It is an essential tool for health researchers and policy advisors in governments, the private sector and the academic community, to carry out comparative analyses and draw lessons from international comparisons of diverse health care systems. Within UKDS.Stat the data are presented in the following databases:

    Health status

    This datasets presents internationally comparable statistics on morbidity and mortality with variables such as life expectancy, causes of mortality, maternal and infant mortality, potential years of life lost, perceived health status, infant health, dental health, communicable diseases, cancer, injuries, absence from work due to illness. The annual data begins in 2000.

    Non-medical determinants of health

    This dataset examines the non-medical determinants of health by comparing food, alcohol, tobacco consumption and body weight amongst countries. The data are expressed in different measures such as calories, grammes, kilo, gender, population. The data begins in 1960.

    Healthcare resources

    This dataset includes comparative tables analyzing various health care resources such as total health and social employment, physicians by age, gender, categories, midwives, nurses, caring personnel, personal care workers, dentists, pharmacists, physiotherapists, hospital employment, graduates, remuneration of health professionals, hospitals, hospital beds, medical technology with their respective subsets. The statistics are expressed in different units of measure such as number of persons, salaried, self-employed, per population. The annual data begins in 1960.

    Healthcare utilisation

    This dataset includes statistics comparing different countries’ level of health care utilisation in terms of prevention, immunisation, screening, diagnostics exams, consultations, in-patient utilisation, average length of stay, diagnostic categories, acute care, in-patient care, discharge rates, transplants, dialyses, ICD-9-CM. The data is comparable with respect to units of measures such as days, percentages, population, number per capita, procedures, and available beds.

    Health Care Quality Indicators

    This dataset includes comparative tables analyzing various health care quality indicators such as cancer care, care for acute exacerbation of chronic conditions, care for chronic conditions and care for mental disorders. The annual data begins in 1995.

    Pharmaceutical market

    This dataset focuses on the pharmaceutical market comparing countries in terms of pharmaceutical consumption, drugs, pharmaceutical sales, pharmaceutical market, revenues, statistics. The annual data begins in 1960.

    Long-term care resources and utilisation

    This dataset provides statistics comparing long-term care resources and utilisation by country in terms of workers, beds in nursing and residential care facilities and care recipients. In this table data is expressed in different measures such as gender, age and population. The annual data begins in 1960.

    Health expenditure and financing

    This dataset compares countries in terms of their current and total expenditures on health by comparing how they allocate their budget with respect to different health care functions while looking at different financing agents and providers. The data covers the years starting from 1960 extending until 2010. The countries covered are Australia, Austria, Belgium, Canada, Chile, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Israel, Italy, Japan, Korea, Luxembourg, Mexico, Netherlands, New Zealand, Norway, Poland, Portugal, Slovak Republic, Slovenia, Spain, Sweden, Switzerland, Turkey, United Kingdom, and United States.

    Social protection

    This dataset introduces the different health care coverage systems such as the government/social health insurance and private health insurance. The statistics are expressed in percentage of the population covered or number of persons. The annual data begins in 1960.

    Demographic references

    This dataset provides statistics regarding general demographic references in terms of population, age structure, gender, but also in term of labour force. The annual data begins in 1960.

    Economic references

    This dataset presents main economic indicators such as GDP and Purchasing power parities (PPP) and compares countries in terms of those macroeconomic references as well as currency rates, average annual wages. The annual data begins in 1960.

    These data were first provided by the UK Data Service in November 2014.


  20. Data from: Population Assessment of Tobacco and Health (PATH) Study [United...

    • icpsr.umich.edu
    Updated Sep 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Inter-university Consortium for Political and Social Research [distributor] (2025). Population Assessment of Tobacco and Health (PATH) Study [United States] Restricted-Use Files [Dataset]. http://doi.org/10.3886/ICPSR36231.v43
    Explore at:
    Dataset updated
    Sep 30, 2025
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/36231/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/36231/terms

    Area covered
    United States
    Description

    The PATH Study was launched in 2011 to inform the Food and Drug Administration's regulatory activities under the Family Smoking Prevention and Tobacco Control Act (TCA). The PATH Study is a collaboration between the National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH), and the Center for Tobacco Products (CTP), Food and Drug Administration (FDA). The study sampled over 150,000 mailing addresses across the United States to create a national sample of people who use or do not use tobacco. 45,971 adults and youth constitute the first (baseline) wave, Wave 1, of data collected by this longitudinal cohort study. These 45,971 adults and youth along with 7,207 "shadow youth" (youth ages 9 to 11 sampled at Wave 1) make up the 53,178 participants that constitute the Wave 1 Cohort. Respondents are asked to complete an interview at each follow-up wave. Youth who turn 18 by the current wave of data collection are considered "aged-up adults" and are invited to complete the Adult Interview. Additionally, "shadow youth" are considered "aged-up youth" upon turning 12 years old, when they are asked to complete an interview after parental consent. At Wave 4, a probability sample of 14,098 adults, youth, and shadow youth ages 10 to 11 was selected from the civilian, noninstitutionalized population (CNP) at the time of Wave 4. This sample was recruited from residential addresses not selected for Wave 1 in the same sampled Primary Sampling Unit (PSU)s and segments using similar within-household sampling procedures. This "replenishment sample" was combined for estimation and analysis purposes with Wave 4 adult and youth respondents from the Wave 1 Cohort who were in the CNP at the time of Wave 4. This combined set of Wave 4 participants, 52,731 participants in total, forms the Wave 4 Cohort. At Wave 7, a probability sample of 14,863 adults, youth, and shadow youth ages 9 to 11 was selected from the CNP at the time of Wave 7. This sample was recruited from residential addresses not selected for Wave 1 or Wave 4 in the same sampled PSUs and segments using similar within-household sampling procedures. This "second replenishment sample" was combined for estimation and analysis purposes with the Wave 7 adult and youth respondents from the Wave 4 Cohorts who were at least age 15 and in the CNP at the time of Wave 7. This combined set of Wave 7 participants, 46,169 participants in total, forms the Wave 7 Cohort. Please refer to the Restricted-Use Files User Guide that provides further details about children designated as "shadow youth" and the formation of the Wave 1, Wave 4, and Wave 7 Cohorts. Dataset 0002 (DS0002) contains the data from the State Design Data. This file contains 7 variables and 82,139 cases. The state identifier in the State Design file reflects the participant's state of residence at the time of selection and recruitment for the PATH Study. Dataset 1011 (DS1011) contains the data from the Wave 1 Adult Questionnaire. This data file contains 2,021 variables and 32,320 cases. Each of the cases represents a single, completed interview. Dataset 1012 (DS1012) contains the data from the Wave 1 Youth and Parent Questionnaire. This file contains 1,431 variables and 13,651 cases. Dataset 1411 (DS1411) contains the Wave 1 State Identifier data for Adults and has 5 variables and 32,320 cases. Dataset 1412 (DS1412) contains the Wave 1 State Identifier data for Youth (and Parents) and has 5 variables and 13,651 cases. The same 5 variables are in each State Identifier dataset, including PERSONID for linking the State Identifier to the questionnaire and biomarker data and 3 variables designating the state (state Federal Information Processing System (FIPS), state abbreviation, and full name of the state). The State Identifier values in these datasets represent participants' state of residence at the time of Wave 1, which is also their state of residence at the time of recruitment. Dataset 1611 (DS1611) contains the Tobacco Universal Product Code (UPC) data from Wave 1. This data file contains 32 variables and 8,601 cases. This file contains UPC values on the packages of tobacco products used or in the possession of adult respondents at the time of Wave 1. The UPC values can be used to identify and validate the specific products used by respondents and augment the analyses of the characteristics of tobacco products used

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
BARTS HEALTH (2023). CDE Patient Demographics [Dataset]. https://dtechtive.com/datasets/25890

CDE Patient Demographics

Explore at:
Dataset updated
May 31, 2023
Dataset provided by
BARTS HEALTH
Description

Locally defined dataset containing a full list of patient registrations held within the Trust's EHR system. Details extend to include GP details and patient identifers.

Search
Clear search
Close search
Google apps
Main menu