These data were compiled to determine whether transient population dynamics substantially alter population growth rates of sagebrush after disturbance, impede resilience and restoration, and in turn drive ecosystem transformation. Data were collected from 2014-2016 on sagebrush population height distributions at 531 sites across the Great Basin that had burned and were subsequently reseeded by the BLM. These data include field data on sagebrush density in 6 size classes and site attributes (seeding year, sampling year, random site designation, elevation, seeding rate). Also included are modeled spring soil moisture data at each site from the year of seeding to sampling. This data release includes associated software code allows the inference of demographic rates (survival, reproduction, and individual growth) of sagebrush using Hamiltonian Monte Carlo approaches in Stan (https://mc-stan.org/).
The median income indicates the income bracket separating the income earners into two halves of equal size.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This study examined the mediation effect of practical training on the relationship of demographic characteristics with bystander self-efficacy in cardiopulmonary resuscitation (CPR) performance. We used nationwide, cross-sectional data from the Korea Community Health Survey and analyzed 25,082 Korean adults who participated in CPR training within the last 2 years. A mediation model was applied to explore the pathway from demographic characteristics via CPR practical training to self-efficacy in CPR performance. A multiple logistic regression analysis was performed to examine each path in the mediation model. Of the 25,082 respondents recently trained, 19,168 (76.8%) practiced on a manikin. In the unadjusted CPR practical training model, the demographic characteristics associated with high self-efficacy in CPR performance were male gender (odds ratio [OR] = 2.54); 50s age group (OR = 1.30); college or more (OR = 1.39) and high school education (OR = 1.32); white collar (OR = 1.24) and soldier (OR = 2.98) occupational statuses. The characteristics associated with low self-efficacy were 30s age group (OR = 0.69) and capital (OR = 0.79) and metropolitan (OR = 0.84) areas of residence (p < 0.05). In the adjusted CPR practical training model, the significance of the relationship between demographics and self-efficacy in CPR performance decreased in male gender, 30s age group, college or more and high school education, and soldier occupational status (i.e., partial mediation), and disappeared in metropolitan residents (i.e., complete mediation). The degree of the mediating effect of CPR practical training on self-efficacy differed for each demographic characteristic. Thus, individualized educational strategies considering recipient demographics are needed for effective practice-based CPR training and improving bystander CPR performance.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the data for the Bay St. Louis, MS population pyramid, which represents the Bay St. Louis population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Bay St. Louis Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This Excel workbook contains projections of population totals of SA3 areas (2016 ASGS) in Australia from 2020 to 2035. The projections are created as the average of four extrapolative models:
(i) a constant share of population model in which local area populations are projected as the jump-off year proportion of the national population multiplied by the national projected population;
(ii) a linear/exponential model which projects local area population using linear extrapolation if base period growth is positive and exponential extrapolation if it is negative;
(iii) a share of growth model in which projected local population growth from the linear/exponential model is adjusted to match projected national population change; and
(iv) a modified exponential model in which the exponential model is subject to floor and ceiling limits to avoid excessive growth or decline.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the data for the Des Arc, MO population pyramid, which represents the Des Arc population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey 5-Year estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Des Arc Population by Age. You can refer the same here
Every four years, the Wasatch Front’s two metropolitan planning organizations (MPOs), Wasatch Front Regional Council (WFRC) and Mountainland Association of Governments (MAG), collaborate to update a set of annual small area -- traffic analysis zone and ‘city area’, see descriptions below) -- population and employment projections for the Salt Lake City-West Valley City (WFRC), Ogden-Layton (WFRC), and Provo-Orem (MAG) urbanized areas.
These projections are primarily developed for the purpose of informing long-range transportation infrastructure and services planning done as part of the 4 year Regional Transportation Plan update cycle, as well as Utah’s Unified Transportation Plan, 2023-2050. Accordingly, the foundation for these projections is largely data describing existing conditions for a 2019 base year, the first year of the latest RTP process. The projections are included in the official travel models, which are publicly released at the conclusion of the RTP process.
Projections within the Wasatch Front urban area ( SUBAREAID = 1) were produced with using the Real Estate Market Model as described below. Socioeconomic forecasts produced for Cache MPO (Cache County, SUBAREAID = 2), Dixie MPO (Washington County, SUBAREAID = 3), Summit County (SUBAREAID = 4), and UDOT (other areas of the state, SUBAREAID = 0) all adhere to the University of Utah Gardner Policy Institute's county-level projection controls, but other modeling methods are used to arrive at the TAZ-level forecasts for these areas.
As these projections may be a valuable input to other analyses, this dataset is made available here as a public service for informational purposes only. It is solely the responsibility of the end user to determine the appropriate use of this dataset for other purposes.
Wasatch Front Real Estate Market Model (REMM) Projections
WFRC and MAG have developed a spatial statistical model using the UrbanSim modeling platform to assist in producing these annual projections. This model is called the Real Estate Market Model, or REMM for short. REMM is used for the urban portion of Weber, Davis, Salt Lake, and Utah counties. REMM relies on extensive inputs to simulate future development activity across the greater urbanized region. Key inputs to REMM include:
Demographic data from the decennial census
County-level population and employment projections -- used as REMM control totals -- are produced by the University of Utah’s Kem C. Gardner Policy Institute (GPI) funded by the Utah State Legislature
Current employment locational patterns derived from the Utah Department of Workforce Services
Land use visioning exercises and feedback, especially in regard to planned urban and local center development, with city and county elected officials and staff
Current land use and valuation GIS-based parcel data stewarded by County Assessors
Traffic patterns and transit service from the regional Travel Demand Model that together form the landscape of regional accessibility to workplaces and other destinations
Calibration of model variables to balance the fit of current conditions and dynamics at the county and regional level
‘Traffic Analysis Zone’ Projections
The annual projections are forecasted for each of the Wasatch Front’s 3,546 Traffic Analysis Zone (TAZ) geographic units. TAZ boundaries are set along roads, streams, and other physical features and average about 600 acres (0.94 square miles). TAZ sizes vary, with some TAZs in the densest areas representing only a single city block (25 acres).
‘City Area’ Projections
The TAZ-level output from the model is also available for ‘city areas’ that sum the projections for the TAZ geographies that roughly align with each city’s current boundary. As TAZs do not align perfectly with current city boundaries, the ‘city area’ summaries are not projections specific to a current or future city boundary, but the ‘city area’ summaries may be suitable surrogates or starting points upon which to base city-specific projections.
Summary Variables in the Datasets
Annual projection counts are available for the following variables (please read Key Exclusions note below):
Demographics
Household Population Count (excludes persons living in group quarters)
Household Count (excludes group quarters)
Employment
Typical Job Count (includes job types that exhibit typical commuting and other travel/vehicle use patterns)
Retail Job Count (retail, food service, hotels, etc)
Office Job Count (office, health care, government, education, etc)
Industrial Job Count (manufacturing, wholesale, transport, etc)
Non-Typical Job Count* (includes agriculture, construction, mining, and home-based jobs) This can be calculated by subtracting Typical Job Count from All Employment Count
All Employment Count* (all jobs, this sums jobs from typical and non-typical sectors).
Key Exclusions from TAZ and ‘City Area’ Projections
As the primary purpose for the development of these population and employment projections is to model future travel in the region, REMM-based projections do not include population or households that reside in group quarters (prisons, senior centers, dormitories, etc), as residents of these facilities typically have a very low impact on regional travel. USTM-based projections also excludes group quarter populations. Group quarters population estimates are available at the county-level from GPI and at various sub-county geographies from the Census Bureau.
Statewide Projections
Population and employment projections for the Wasatch Front area can be combined with those developed by Dixie MPO (St. George area), Cache MPO (Logan area), and the Utah Department of Transportation (for the remainder of the state) into one database for use in the Utah Statewide Travel Model (USTM). While projections for the areas outside of the Wasatch Front use different forecasting methods, they contain the same summary-level population and employment projections making similar TAZ and ‘City Area’ data available statewide. WFRC plans, in the near future, to add additional areas to these projections datasets by including the projections from the USTM model.
The American black bear (Ursus americanus) has one of the broadest geographic distributions of any mammalian carnivore in North America. Populations occur from high to low elevations and from mesic to arid environments, and their demographic traits have been documented in a wide variety of environments. However, the demography of American black bears in semiarid environments, which comprise a significant portion of the geographic range, is poorly documented. To fill this gap in understanding, we used data from a long-term mark-recapture study of black bears in the semiarid environment of eastern Utah, USA. Cub and yearling survival were low and adult survival was high relative to other populations. Adult life stages had the highest reproductive value, comprised the largest proportion of the population, and exhibited the highest elasticity contribution to the population growth rate (i.e., λ). Vital rates of black bears in this semiarid environment are skewed toward higher survival of adu..., Mark-Recapture study We estimated survival rates from long-term mark-recapture data gathered as part of a 27-year study on American black bears of the East Tavaputs Plateau. During the first 12 years of the study (June to August 1991-2003) female bears were captured and radio-collared, and all bears were tagged in the ear, except for cubs and yearlings. For the entire study (1992 – 2019), collared females were visited in their dens annually during their winter hibernation to count newborn cubs and surviving yearlings. Age of individual bears was determined by 2 methods: (1) direct observation of cubs or yearlings (i.e., year of birth was known) or (2) cementum annuli analysis of a cross-section of the root of an extracted premolar (Palochak, 2004; Willey, 1974). The data we used to derive survival and fecundity rates consisted of the ID_number, cohort (cub, yearling, subadult, prime-aged adult, and old adult), age in years, sex (female, male, unknown), number of cubs, number of yearling..., , # Demography of American black bears (Ursus americanus) in a semiarid environment
https://doi.org/10.5061/dryad.98sf7m0t8
Description:Â
This CSV file contains data collected from a mark-recapture study during 1991 - 2019. We calculated the age-specific average survival rate for each cohort. The average survival rate of each cohort was later used in the matrix transition model as matrix elements to retrieve important demographic information about this population of North American black bears (Ursus americanus) found in a semiarid environment.Â
Estimating the contribution of demographic parameters to changes in population growth is essential for understanding why populations fluctuate. Integrated Population Models (IPMs) offer a possibility to estimate contributions of additional demographic parameters, for which no data have been explicitly collected: typically immigration. Such parametersare often subsequently highlighted as important drivers of population growth. Yet, accuracy in estimating their temporal variation, and consequently their contribution to changes in population growth rate, has not been investigated.
To quantify the magnitude and cause of potential biases when estimating the contribution of immigration using IPMs, we simulated data (using Northern Wheatear Oenanthe oenanthe population estimates) from controlled scenarios to examine potential biases and how they depend on IPM parameterization, formulation of priors, the level of temporal variation in immigration, and sample size. We also used empirical data...
This layer shows the age statistics in Tucson by neighborhood, aggregated from block level data, between 2010-2019. For questions, contact GIS_IT@tucsonaz.gov. The data shown is from Esri's 2019 Updated Demographic estimates.Esri's U.S. Updated Demographic (2019/2024) Data - Population, age, income, sex, race, home value, and marital status are among the variables included in the database. Each year, Esri's Data Development team employs its proven methodologies to update more than 2,000 demographic variables for a variety of U.S. geographies.Additional Esri Resources:Esri DemographicsU.S. 2019/2024 Esri Updated DemographicsEssential demographic vocabularyPermitted use of this data is covered in the DATA section of the Esri Master Agreement (E204CW) and these supplemental terms.
A study comparing reintroduction scenarios for the San Francisco gartersnake (Thamnophis sirtalis tetrataenia), an endangered subspecies native to San Mateo County and Santa Cruz County in northern California. Models for snake survival, growth, fecundity, and reproductive status were used to construct a demographic population model. Data are posterior distributions for demographic parameters from Markov Chain Monte Carlo sampling in hierarchical Bayesian models.
The table OH-Demographic-2025-05-10 is part of the dataset L2 Voter and Demographic Dataset, available at https://stanford.redivis.com/datasets/t6qv-ad1vt3wqf. It contains 7832094 rows across 698 variables.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the data for the Medford, OR population pyramid, which represents the Medford population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Medford Population by Age. You can refer the same here
A peer reviewed paper published in Economic Geography, Vol 46. The paper describes the process of developing a holistic model for urban planning in Detroit. In one classification of models the simulation to be described would be considered a demographic model whose primary objectives are instructional. The model developed here may be used for forecasting, but was not constructed for this specific purpose, and it is a demographic model since it describes only population growth, with particular emphasis on the geographical distribution of this growth.
Website: http://www.jstor.org/stable/143141
Premium B2C Consumer Database - 269+ Million US Records
Supercharge your B2C marketing campaigns with comprehensive consumer database, featuring over 269 million verified US consumer records. Our 20+ year data expertise delivers higher quality and more extensive coverage than competitors.
Core Database Statistics
Consumer Records: Over 269 million
Email Addresses: Over 160 million (verified and deliverable)
Phone Numbers: Over 76 million (mobile and landline)
Mailing Addresses: Over 116,000,000 (NCOA processed)
Geographic Coverage: Complete US (all 50 states)
Compliance Status: CCPA compliant with consent management
Targeting Categories Available
Demographics: Age ranges, education levels, occupation types, household composition, marital status, presence of children, income brackets, and gender (where legally permitted)
Geographic: Nationwide, state-level, MSA (Metropolitan Service Area), zip code radius, city, county, and SCF range targeting options
Property & Dwelling: Home ownership status, estimated home value, years in residence, property type (single-family, condo, apartment), and dwelling characteristics
Financial Indicators: Income levels, investment activity, mortgage information, credit indicators, and wealth markers for premium audience targeting
Lifestyle & Interests: Purchase history, donation patterns, political preferences, health interests, recreational activities, and hobby-based targeting
Behavioral Data: Shopping preferences, brand affinities, online activity patterns, and purchase timing behaviors
Multi-Channel Campaign Applications
Deploy across all major marketing channels:
Email marketing and automation
Social media advertising
Search and display advertising (Google, YouTube)
Direct mail and print campaigns
Telemarketing and SMS campaigns
Programmatic advertising platforms
Data Quality & Sources
Our consumer data aggregates from multiple verified sources:
Public records and government databases
Opt-in subscription services and registrations
Purchase transaction data from retail partners
Survey participation and research studies
Online behavioral data (privacy compliant)
Technical Delivery Options
File Formats: CSV, Excel, JSON, XML formats available
Delivery Methods: Secure FTP, API integration, direct download
Processing: Real-time NCOA, email validation, phone verification
Custom Selections: 1,000+ selectable demographic and behavioral attributes
Minimum Orders: Flexible based on targeting complexity
Unique Value Propositions
Dual Spouse Targeting: Reach both household decision-makers for maximum impact
Cross-Platform Integration: Seamless deployment to major ad platforms
Real-Time Updates: Monthly data refreshes ensure maximum accuracy
Advanced Segmentation: Combine multiple targeting criteria for precision campaigns
Compliance Management: Built-in opt-out and suppression list management
Ideal Customer Profiles
E-commerce retailers seeking customer acquisition
Financial services companies targeting specific demographics
Healthcare organizations with compliant marketing needs
Automotive dealers and service providers
Home improvement and real estate professionals
Insurance companies and agents
Subscription services and SaaS providers
Performance Optimization Features
Lookalike Modeling: Create audiences similar to your best customers
Predictive Scoring: Identify high-value prospects using AI algorithms
Campaign Attribution: Track performance across multiple touchpoints
A/B Testing Support: Split audiences for campaign optimization
Suppression Management: Automatic opt-out and DNC compliance
Pricing & Volume Options
Flexible pricing structures accommodate businesses of all sizes:
Pay-per-record for small campaigns
Volume discounts for large deployments
Subscription models for ongoing campaigns
Custom enterprise pricing for high-volume users
Data Compliance & Privacy
VIA.tools maintains industry-leading compliance standards:
CCPA (California Consumer Privacy Act) compliant
CAN-SPAM Act adherence for email marketing
TCPA compliance for phone and SMS campaigns
Regular privacy audits and data governance reviews
Transparent opt-out and data deletion processes
Getting Started
Our data specialists work with you to:
Define your target audience criteria
Recommend optimal data selections
Provide sample data for testing
Configure delivery methods and formats
Implement ongoing campaign optimization
Why We Lead the Industry
With over two decades of data industry experience, we combine extensive database coverage with advanced targeting capabilities. Our commitment to data quality, compliance, and customer success has made us the preferred choice for businesses seeking superior B2C marketing performance.
Contact our team to discuss your specific targeting requirements and receive custom pricing for your marketing objectives.
These data were compiled to help understand how climate change may impact dryland pinyon-juniper ecosystems in coming decades, and how resource management might be able to minimize those impacts. Objective(s) of our study were to model the demographic rates of PJ woodlands to estimate the areas that may decline in the future vs. those that will be stable. We quantified populations growth rates across broad geographic areas, and identified the relative roles of recruitment and mortality in driving potential future changes in population viability in 5 tree species that are major components of these dry forests. We used this demographic model to project pinyon-juniper population stability under future climate conditions, assess how robust these projected changes are, and to identify where on the landscape management strategies that decrease tree competition would effectively resist population decline. These data represent estimated recruitment, mortality and population growth across the distribution of five common pinyon-juniper species across the US Southwest. These data were collected by the US Forest service in their monitoring program, which is a systematic survey of forested regions across the entire US. Our data is from western US states, including AZ, CA, CO, ID, MT, NM, ND, NV, OR, SD, TX, UT, and was collected between 2000-2007, depending on state census collection times. These data were collected by the Forest Inventory and Analysis program of the USDA US Forest Service. Within each established plot, all adult trees greater than 12.7 cm (5 in.) diameter at breast height (DBH) are assigned unique tags and tracked within four, 7.32 m (24 ft.) radius subplots. All saplings <12.7 cm & > 2.54 cm (1 in.) DBH are assigned unique tags and tracked within four, 2.07 m (6.8 ft.) radius microplots within the larger adult plots. Finally, seedlings <2.54 cm DBH are counted within the same microplots as the saplings. Two censuses were conducted 10 years apart in each plot. These data can be used to inform how tree species have unique responses to changing climate conditions and how management actions, like tree density reduction, may effectively resist transformation away from pinyon-juniper woodland to other ecosystem types.
Species often experience spatial environmental heterogeneity across their range, and populations may exhibit signatures of adaptation to local environmental characteristics. Other population genetic processes, such as migration and genetic drift, can impede the effects of local adaptation. Genetic drift in particular can have a pronounced effect on population genetic structure during large-scale geographic expansions, where a series of founder effects leads to decreases in genetic variation in the direction of the expansion. Here we explore the genetic diversity of a desert lizard that occupies a wide range of environmental conditions and that has experienced post-glacial expansion northwards along two colonization routes. Based on our analyses of a large SNP dataset, we find evidence that both climate and demographic history have shaped the genetic structure of populations. Pronounced genetic differentiation was evident between populations occupying cold versus hot deserts, and we dete...
The Global Human Footprint Data Set of the Last of the Wild Project, Version 2, 2005 (LWP-2) presents the Human Influence Index (HII) normalized by biome and realm. The HII is a global dataset of 1-kilometer grid cells created from nine global data layers covering human population pressure (population density population settlements), human land use and infrastructure (built up areas, nighttime lights, land use/land cover), and human access (coastlines, roads, railroads, navigable rivers). The data set can be downloaded in Band Interleaf (BIL) format. The data set was produced by the Wildlife Conservation Society (WCS) and the Columbia University Center for International Earth Science Information Network (CIESIN). The purpose is to provide an upgrade to existing maps of wild areas, which in turn can be used in modeling efforts, wildlife conservation planning, natural resource management, policy-making, biodiversity studies and human-environment interactions.
These data were compiled here to fit various versions of Bayesian population models and compare their performance, primarily the time required to make inferences using different softwares and versions of code. The humpback chub data were collected by US Geological Survey and US Fish and Wildlife service in the Colorado and Little Colorado Rivers from April 2009 to October 2017. Adult fish were captured using hoop nets and electro-fishing, measured for total length and given individual marks using passive integrated transponders that were scanned when fish were recaptured. The other three datasets were collected by US Forest Service. Owl data for the N-occupancy model was collected between 1990 and 2015. Owl data for the two-species example was collected between 1990 and 2011. Both owl data sets were collected in a ~1000 km2 area in the Roseburg District of the Bureau of Land Management in western Oregon, USA. Owl vocalizations (vocal lures) were used to detect barred owl or spotted owl pairs in 158 survey polygons spread throughout the study area. The avian community occupancy data were collected from 1991 to 1995 across 92 sites in the Chiricahua Mountains of southeastern Arizona, USA. 149 species were detected through repeated point counts in each year.
These data were compiled to determine whether transient population dynamics substantially alter population growth rates of sagebrush after disturbance, impede resilience and restoration, and in turn drive ecosystem transformation. Data were collected from 2014-2016 on sagebrush population height distributions at 531 sites across the Great Basin that had burned and were subsequently reseeded by the BLM. These data include field data on sagebrush density in 6 size classes and site attributes (seeding year, sampling year, random site designation, elevation, seeding rate). Also included are modeled spring soil moisture data at each site from the year of seeding to sampling. This data release includes associated software code allows the inference of demographic rates (survival, reproduction, and individual growth) of sagebrush using Hamiltonian Monte Carlo approaches in Stan (https://mc-stan.org/).