100+ datasets found
  1. Weekly United States COVID-19 Hospitalization Metrics by Jurisdiction –...

    • data.cdc.gov
    • data.virginia.gov
    • +1more
    csv, xlsx, xml
    Updated Jan 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC Division of Healthcare Quality Promotion (DHQP) Surveillance Branch, National Healthcare Safety Network (NHSN) (2025). Weekly United States COVID-19 Hospitalization Metrics by Jurisdiction – ARCHIVED [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/Weekly-United-States-COVID-19-Hospitalization-Metr/7dk4-g6vg
    Explore at:
    xml, xlsx, csvAvailable download formats
    Dataset updated
    Jan 17, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC Division of Healthcare Quality Promotion (DHQP) Surveillance Branch, National Healthcare Safety Network (NHSN)
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Area covered
    United States
    Description

    Note: After May 3, 2024, this dataset will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, hospital capacity, or occupancy data to HHS through CDC’s National Healthcare Safety Network (NHSN). The related CDC COVID Data Tracker site was revised or retired on May 10, 2023.

    This dataset represents weekly COVID-19 hospitalization data and metrics aggregated to national, state/territory, and regional levels. COVID-19 hospitalization data are reported to CDC’s National Healthcare Safety Network, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN and included in this dataset represent aggregated counts and include metrics capturing information specific to COVID-19 hospital admissions, and inpatient and ICU bed capacity occupancy.

    Reporting information:

    • As of December 15, 2022, COVID-19 hospital data are required to be reported to NHSN, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN represent aggregated counts and include metrics capturing information specific to hospital capacity, occupancy, hospitalizations, and admissions. Prior to December 15, 2022, hospitals reported data directly to the U.S. Department of Health and Human Services (HHS) or via a state submission for collection in the HHS Unified Hospital Data Surveillance System (UHDSS).
    • While CDC reviews these data for errors and corrects those found, some reporting errors might still exist within the data. To minimize errors and inconsistencies in data reported, CDC removes outliers before calculating the metrics. CDC and partners work with reporters to correct these errors and update the data in subsequent weeks.
    • Many hospital subtypes, including acute care and critical access hospitals, as well as Veterans Administration, Defense Health Agency, and Indian Health Service hospitals, are included in the metric calculations provided in this report. Psychiatric, rehabilitation, and religious non-medical hospital types are excluded from calculations.
    • Data are aggregated and displayed for hospitals with the same Centers for Medicare and Medicaid Services (CMS) Certification Number (CCN), which are assigned by CMS to counties based on the CMS Provider of Services files.
    • Full details on COVID-19 hospital data reporting guidance can be found here: https://www.hhs.gov/sites/default/files/covid-19-faqs-hospitals-hospital-laboratory-acute-care-facility-data-reporting.pdf

    Metric details:

    • Time Period: timeseries data will update weekly on Mondays as soon as they are reviewed and verified, usually before 8 pm ET. Updates will occur the following day when reporting coincides with a federal holiday. Note: Weekly updates might be delayed due to delays in reporting. All data are provisional. Because these provisional counts are subject to change, including updates to data reported previously, adjustments can occur. Data may be updated since original publication due to delays in reporting (to account for data received after a given Thursday publication) or data quality corrections.
    • New COVID-19 Hospital Admissions (count): Number of new admissions of patients with laboratory-confirmed COVID-19 in the previous week (including both adult and pediatric admissions) in the entire jurisdiction.
    • New COVID-19 Hospital Admissions (7-Day Average): 7-day average of new admissions of patients with laboratory-confirmed COVID-19 in the previous week (including both adult and pediatric admissions) in the entire jurisdiction.
    • Cumulative COVID-19 Hospital Admissions: Cumulative total number of admissions of patients with laboratory-confirmed COVID-19 (including both adult and pediatric admissions) in the entire jurisdiction since August 1, 2020.
    • Cumulative COVID-19 Hospital Admissions Rate: Cumulative total number of admissions of patients with laboratory-confirmed COVID-19 (including both adult and pediatric admissions) in the entire jurisdiction since August 1, 2020 divided by 2019 intercensal population estimate for that jurisdiction multiplied by 100,000.
    • New COVID-19 Hospital Admissions Rate (7-day average) percent change from prior week: Percent change in the 7-day average new admissions of patients with laboratory-confirmed COVID-19 per 100,000 population compared with the prior week.
    • New COVID-19 Hospital Admissions (7-Day Total): 7-day total number of new admissions of patients with laboratory-confirmed COVID-19 (including both adult and pediatric admissions) in the entire jurisdiction.
    • New COVID-19 Hospital Admissions Rate (7-Day Total): 7-day total number of new admissions of patients with laboratory-confirmed COVID-19 (including both adult and pediatric admissions) for the entire jurisdiction divided by 2019 intercensal population estimate for that jurisdiction multiplied by 100,000.
    • Total Hospitalized COVID-19 Patients: 7-day total number of patients currently hospitalized with laboratory-confirmed COVID-19 (including both adult and pediatric patients) for the entire jurisdiction.
    • Total Hospitalized COVID-19 Patients (7-Day Average): 7-day average of the number of patients currently hospitalized with laboratory-confirmed COVID-19 (including both adult and pediatric patients) for the entire jurisdiction.
    • COVID-19 Inpatient Bed Occupancy (7-Day Average): Percentage of all staffed inpatient beds occupied by patients with laboratory-confirmed COVID-19 (including both adult and pediatric patients) within the entire jurisdiction is calculated as an average of valid daily values within the past 7 days (e.g., if only three valid values, the average of those three is taken). Averages are separately calculated for the daily numerators (patients hospitalized with confirmed COVID-19) and denominators (staffed inpatient beds). The average percentage can then be taken as the ratio of these two values for the entire jurisdiction.
    • COVID-19 Inpatient Bed Occupancy absolute change from prior week: The absolute change in the percent of staffed inpatient beds occupied by patients with laboratory-confirmed COVID-19 represents the week-over-week absolute difference between the 7-day average occupancy of patients with confirmed COVID-19 in staffed inpatient beds in the past 7 days, compared with the prior week, in the entire jurisdiction.
    • COVID-19 ICU Bed Occupancy (7-Day Average): Percentage of all staffed inpatient beds occupied by adult patients with confirmed COVID-19 within the entire jurisdiction is calculated as a 7-day average of valid daily values within the past 7 days (e.g., if only three valid values, the average of those three is taken). Averages are separately calculated for the daily numerators (adult patients hospitalized with confirmed COVID-19) and denominators (staffed adult ICU beds). The average percentage can then be taken as the ratio of these two values for the entire jurisdiction.
    • COVID-19 ICU Bed Occupancy absolute change from prior week: The absolute change in the percent of staffed ICU beds occupied by patients with laboratory-confirmed COVID-19 represents the week-over-week absolute difference between the average occupancy of patients with confirmed COVID-19 in staffed adult ICU beds for the past 7 days, compared with the prior week, in the in the entire jurisdiction.

    Note: October 27, 2023: Due to a data processing error, reported values for avg_percent_inpatient_beds_occupied_covid_confirmed will appear lower than previously reported values by an average difference of less than 1%. Therefore, previously reported values for avg_percent_inpatient_beds_occupied_covid_confirmed may have been overestimated and should be interpreted with caution.

    October 27, 2023: Due to a data processing error, reported values for abs_chg_avg_percent_inpatient_beds_occupied_covid_confirmed will differ from previously reported values by an average absolute difference of less than 1%. Therefore, previously reported values for abs_chg_avg_percent_inpatient_beds_occupied_covid_confirmed should be interpreted with caution.

    December 29, 2023: Hospitalization data reported to CDC’s National Healthcare Safety Network (NHSN) through December 23, 2023, should be interpreted with caution due to potential reporting delays that are impacted by Christmas and New Years holidays. As a result, metrics including new hospital admissions for COVID-19 and influenza and hospital occupancy may be underestimated for the week ending December 23, 2023.

    January 5, 2024: Hospitalization data reported to CDC’s National Healthcare Safety Network (NHSN) through December 30, 2023 should be interpreted with caution due to potential reporting delays that are impacted by Christmas and New Years holidays. As a result, metrics including new hospital admissions for COVID-19 and influenza and hospital occupancy may be underestimated for the week ending December 30, 2023.

  2. COVID-19 Daily Rolling Average Case, Death, and Hospitalization Rates -...

    • healthdata.gov
    • data.cityofchicago.org
    • +1more
    csv, xlsx, xml
    Updated Apr 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofchicago.org (2025). COVID-19 Daily Rolling Average Case, Death, and Hospitalization Rates - Historical [Dataset]. https://healthdata.gov/dataset/COVID-19-Daily-Rolling-Average-Case-Death-and-Hosp/sd6k-dtx6
    Explore at:
    xlsx, xml, csvAvailable download formats
    Dataset updated
    Apr 8, 2025
    Dataset provided by
    data.cityofchicago.org
    Description

    NOTE: This dataset has been retired and marked as historical-only.

    This dataset is a companion to the COVID-19 Daily Cases and Deaths dataset (https://data.cityofchicago.org/d/naz8-j4nc). The major difference in this dataset is that the case, death, and hospitalization corresponding rates per 100,000 population are not those for the single date indicated. They are rolling averages for the seven-day period ending on that date. This rolling average is used to account for fluctuations that may occur in the data, such as fewer cases being reported on weekends, and small numbers. The intent is to give a more representative view of the ongoing COVID-19 experience, less affected by what is essentially noise in the data.

    All rates are per 100,000 population in the indicated group, or Chicago, as a whole, for “Total” columns.

    Only Chicago residents are included based on the home address as provided by the medical provider.

    Cases with a positive molecular (PCR) or antigen test are included in this dataset. Cases are counted based on the date the test specimen was collected. Deaths among cases are aggregated by day of death. Hospitalizations are reported by date of first hospital admission. Demographic data are based on what is reported by medical providers or collected by CDPH during follow-up investigation.

    Denominators are from the U.S. Census Bureau American Community Survey 1-year estimate for 2018 and can be seen in the Citywide, 2018 row of the Chicago Population Counts dataset (https://data.cityofchicago.org/d/85cm-7uqa).

    All data are provisional and subject to change. Information is updated as additional details are received and it is, in fact, very common for recent dates to be incomplete and to be updated as time goes on. At any given time, this dataset reflects cases and deaths currently known to CDPH.

    Numbers in this dataset may differ from other public sources due to definitions of COVID-19-related cases and deaths, sources used, how cases and deaths are associated to a specific date, and similar factors.

    Data Source: Illinois National Electronic Disease Surveillance System, Cook County Medical Examiner’s Office, U.S. Census Bureau American Community Survey

  3. S

    COVID-19 Cumulative Demographics (archived)

    • splitgraph.com
    • data.marincounty.gov
    Updated Apr 3, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    marincounty (2023). COVID-19 Cumulative Demographics (archived) [Dataset]. https://www.splitgraph.com/marincounty/covid19-cumulative-demographics-archived-uu8g-ckxh
    Explore at:
    application/vnd.splitgraph.image, json, application/openapi+jsonAvailable download formats
    Dataset updated
    Apr 3, 2023
    Authors
    marincounty
    Description

    This dataset has been retired as of February 17, 2023. This dataset will be kept for historical purposes, but will no longer be updated. Similar data are available on the state’s open data portal: https://data.chhs.ca.gov/dataset/covid-19-time-series-metrics-by-county-and-state.

    Provides the proportion of COVID-19 Cases, Hospitalizations, and Deaths by Age, Gender, and Race/Ethnicity categories.

    Note: Between 1/1/2022 and 3/4/2022 hospitalization counts did not include in-patient hospitalizations with a COVID-19 positive test when the patient was in the hospital for a reason other than COVID-19. This included in-patient stays due to labor/delivery, trauma, or emergency surgery. Hospitalization reporting was modified to represent the disease severity of the Omicron variant accurately. As of 3/5/2022, we have resumed publishing the CDPH daily hospitalized patient census, which includes all in-patient hospitalizations with a COVID-19 positive test.

    Splitgraph serves as an HTTP API that lets you run SQL queries directly on this data to power Web applications. For example:

    See the Splitgraph documentation for more information.

  4. COVID-19 Dashboard

    • data.chhs.ca.gov
    • data.ca.gov
    • +2more
    csv, zip
    Updated Nov 14, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). COVID-19 Dashboard [Dataset]. https://data.chhs.ca.gov/dataset/covid-19-dashboard
    Explore at:
    zip, csv(349074)Available download formats
    Dataset updated
    Nov 14, 2025
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    Description

    The dashboard is updated each Friday.

    Laboratory surveillance data: California laboratories report SARS-CoV-2 test results to CDPH through electronic laboratory reporting. Los Angeles County SARS-CoV-2 lab data has a 7-day reporting lag. Test positivity is calculated using SARS-CoV-2 lab tests that has a specimen collection date reported during a given week. Specimens for testing are collected from patients in healthcare settings and do not reflect all testing for COVID-19 in California. Test positivity for a given week is calculated by dividing the number of positive COVID-19 results by the total number of specimens tested for that virus. Weekly laboratory surveillance data are defined as Sunday through Saturday.

    Hospitalization data: Data on COVID-19 and influenza hospital admissions are from Centers for Disease Control and Prevention’s (CDC) National Healthcare Safety Network (NHSN) Hospitalization dataset. The requirement to report COVID-19-associated hospitalizations was effective November 1, 2024. CDPH pulls NHSN data from the CDC on the Wednesday prior to the publication of the report. Results may differ depending on which day data are pulled. Admission rates are calculated using population estimates from the P-3: Complete State and County Projections Dataset (https://dof.ca.gov/forecasting/demographics/projections/) provided by the State of California Department of Finance. Reported weekly admission rates for the entire season use the population estimates for the year the season started. For more information on NHSN data including the protocol and data collection information, see the CDC NHSN webpage (https://www.cdc.gov/nhsn/index.html). Weekly hospitalization data are defined as Sunday through Saturday.

    Death certificate data: CDPH receives weekly year-to-date dynamic data on deaths occurring in California from the CDPH Center for Health Statistics and Informatics. These data are limited to deaths occurring among California residents and are analyzed to identify COVID-19-coded deaths. These deaths are not necessarily laboratory-confirmed and are an underestimate of all COVID-19-associated deaths in California. Weekly death data are defined as Sunday through Saturday.

  5. COVID-19 Daily Cases, Deaths, and Hospitalizations - Historical

    • healthdata.gov
    • data.cityofchicago.org
    • +1more
    csv, xlsx, xml
    Updated Apr 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofchicago.org (2025). COVID-19 Daily Cases, Deaths, and Hospitalizations - Historical [Dataset]. https://healthdata.gov/dataset/COVID-19-Daily-Cases-Deaths-and-Hospitalizations-H/ac5n-dai7
    Explore at:
    csv, xml, xlsxAvailable download formats
    Dataset updated
    Apr 8, 2025
    Dataset provided by
    data.cityofchicago.org
    Description

    NOTE: This dataset has been retired and marked as historical-only.

    Only Chicago residents are included based on the home ZIP Code, as provided by the medical provider, or the address, as provided by the Cook County Medical Examiner.

    Cases with a positive molecular (PCR) or antigen test are included in this dataset. Cases are counted on the date the test specimen was collected. Deaths are those occurring among cases based on the day of death. Hospitalizations are based on the date of first hospitalization. Only one hospitalization is counted for each case. Demographic data are based on what is reported by medical providers or collected by CDPH during follow-up investigation.

    Because of the nature of data reporting to CDPH, hospitalizations will be blank for recent dates They will fill in on later updates when the data are received, although, as for cases and deaths, may continue to be updated as further data are received.

    All data are provisional and subject to change. Information is updated as additional details are received and it is, in fact, very common for recent dates to be incomplete and to be updated as time goes on. At any given time, this dataset reflects data currently known to CDPH.

    Numbers in this dataset may differ from other public sources due to definitions of COVID-19-related cases, deaths, and hospitalizations, sources used, how cases, deaths and hospitalizations are associated to a specific date, and similar factors.

    Data Source: Illinois National Electronic Disease Surveillance System, Cook County Medical Examiner’s Office

  6. COVID-19 Hospital Admissions Over Time

    • healthdata.gov
    csv, xlsx, xml
    Updated Apr 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.sfgov.org (2025). COVID-19 Hospital Admissions Over Time [Dataset]. https://healthdata.gov/dataset/COVID-19-Hospital-Admissions-Over-Time/ydyb-je5g
    Explore at:
    xlsx, csv, xmlAvailable download formats
    Dataset updated
    Apr 8, 2025
    Dataset provided by
    data.sfgov.org
    Description

    As of 9/12/2024, we have resumed reporting on COVID-19 hospitalization data using a San Francisco specific dataset. These new data differ slightly from previous hospitalization data sources but the overall patterns and trends in hospitalizations remain consistent. You can access the previous data here.

    A. SUMMARY This dataset includes information on COVID+ hospital admissions for San Francisco residents into San Francisco hospitals. Specifically, the dataset includes the count and rate of COVID+ hospital admissions per 100,000. The data are reported by week.

    B. HOW THE DATASET IS CREATED Hospital admission data is reported to the San Francisco Department of Public Health (SFDPH) via the COVID Hospital Data Repository (CHDR), a system created via health officer order C19-16. The data includes all San Francisco hospitals except for the San Francisco VA Medical Center.

    San Francisco population estimates are pulled from a view based on the San Francisco Population and Demographic Census dataset. These population estimates are from the 2018-2022 5-year American Community Survey (ACS).

    C. UPDATE PROCESS Data updates weekly on Wednesday with data for the past Wednesday-Tuesday (one week lag). Data may change as more current information becomes available.

    D. HOW TO USE THIS DATASET New admissions are the count of COVID+ hospital admissions among San Francisco residents to San Francisco hospitals by week.

    The admission rate per 100,000 is calculated by multiplying the count of admissions each week by 100,000 and dividing by the population estimate.

    E. CHANGE LOG

  7. COVID-19 hospitalization rates in the U.S. from March 1 to 28, 2020, by age...

    • statista.com
    Updated Apr 20, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2020). COVID-19 hospitalization rates in the U.S. from March 1 to 28, 2020, by age group [Dataset]. https://www.statista.com/statistics/1111368/covid-hospitalization-rates-age-us/
    Explore at:
    Dataset updated
    Apr 20, 2020
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Mar 1, 2020 - Mar 28, 2020
    Area covered
    United States
    Description

    The COVID-19–associated hospitalization rate among patients aged 85 years and older identified through COVID-NET for the 4-week period ending March 28, 2020, was 17.2 per 100,000 population. This statistic shows laboratory-confirmed COVID-19 associated hospitalization rates per 100,000 population from March 1 to 28, in the 14 U.S. states under surveillance by COVID-NET.

  8. D

    ARCHIVED: COVID-19 Hospital Admissions Over Time

    • data.sfgov.org
    • catalog.data.gov
    csv, xlsx, xml
    Updated Jul 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). ARCHIVED: COVID-19 Hospital Admissions Over Time [Dataset]. https://data.sfgov.org/w/82gu-asz5/ikek-yizv?cur=rScaOdEErCP
    Explore at:
    csv, xml, xlsxAvailable download formats
    Dataset updated
    Jul 17, 2025
    Description

    On 11/14/2025, we launched updated hospitalization reporting using data from the National Healthcare Safety Network (NHSN). The new dataset includes hospital admissions for respiratory viruses including COVID-19, flu, and RSV. You can access the new dataset here.

    A. SUMMARY This dataset includes information on COVID+ hospital admissions for San Francisco residents into San Francisco hospitals. Specifically, the dataset includes the count and rate of COVID+ hospital admissions per 100,000. The data are reported by week.

    B. HOW THE DATASET IS CREATED Hospital admission data is reported to the San Francisco Department of Public Health (SFDPH) via the COVID Hospital Data Repository (CHDR), a system created via health officer order C19-16. The data includes all San Francisco hospitals except for the San Francisco VA Medical Center.

    San Francisco population estimates are pulled from a view based on the San Francisco Population and Demographic Census dataset. These population estimates are from the 2018-2022 5-year American Community Survey (ACS).

    C. UPDATE PROCESS Data updates weekly on Wednesday with data for the past Wednesday-Tuesday (one week lag). Data may change as more current information becomes available.

    D. HOW TO USE THIS DATASET New admissions are the count of COVID+ hospital admissions among San Francisco residents to San Francisco hospitals by week.

    The admission rate per 100,000 is calculated by multiplying the count of admissions each week by 100,000 and dividing by the population estimate.

    E. CHANGE LOG

    • 11/14/2025 COVID-19 hosipital admissions is tracked in a new dataset
    • 7/18/2025 - Dataset update is paused to assess data quality and completeness.
    • 9/12/2024 - We updated the data source for our COVID-19 hospitalization data to a San Francisco specific dataset. These new data differ slightly from previous hospitalization data sources but the overall patterns and trends in hospitalizations remain consistent. You can access the previous data here.

  9. Weekly United States COVID-19 Hospitalization Metrics by County (Historical)...

    • data.virginia.gov
    • healthdata.gov
    • +1more
    csv, json, rdf, xsl
    Updated Feb 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Weekly United States COVID-19 Hospitalization Metrics by County (Historical) – ARCHIVED [Dataset]. https://data.virginia.gov/dataset/weekly-united-states-covid-19-hospitalization-metrics-by-county-historical-archived
    Explore at:
    rdf, json, xsl, csvAvailable download formats
    Dataset updated
    Feb 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Area covered
    United States
    Description

    Note: After May 3, 2024, this dataset will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, hospital capacity, or occupancy data to HHS through CDC’s National Healthcare Safety Network (NHSN). The related CDC COVID Data Tracker site was revised or retired on May 10, 2023.

    Note: May 3,2024: Due to incomplete or missing hospital data received for the April 21,2024 through April 27, 2024 reporting period, the COVID-19 Hospital Admissions Level could not be calculated for CNMI and will be reported as “NA” or “Not Available” in the COVID-19 Hospital Admissions Level data released on May 3, 2024.

    This dataset represents COVID-19 hospitalization data and metrics aggregated to county or county-equivalent, for all counties or county-equivalents (including territories) in the United States as of the initial date of reporting for each weekly metric. COVID-19 hospitalization data are reported to CDC’s National Healthcare Safety Network, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN and included in this dataset represent aggregated counts and include metrics capturing information specific to COVID-19 hospital admissions, and inpatient and ICU bed capacity occupancy.

    Reporting information:

    • As of December 15, 2022, COVID-19 hospital data are required to be reported to NHSN, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN represent aggregated counts and include metrics capturing information specific to hospital capacity, occupancy, hospitalizations, and admissions. Prior to December 15, 2022, hospitals reported data directly to the U.S. Department of Health and Human Services (HHS) or via a state submission for collection in the HHS Unified Hospital Data Surveillance System (UHDSS).
    • While CDC reviews these data for errors and corrects those found, some reporting errors might still exist within the data. To minimize errors and inconsistencies in data reported, CDC removes outliers before calculating the metrics. CDC and partners work with reporters to correct these errors and update the data in subsequent weeks.
    • Many hospital subtypes, including acute care and critical access hospitals, as well as Veterans Administration, Defense Health Agency, and Indian Health Service hospitals, are included in the metric calculations provided in this report. Psychiatric, rehabilitation, and religious non-medical hospital types are excluded from calculations.
    • Data are aggregated and displayed for hospitals with the same Centers for Medicare and Medicaid Services (CMS) Certification Number (CCN), which are assigned by CMS to counties based on the CMS Provider of Services files.
    • Full details on COVID-19 hospital data reporting guidance can be found here: https://www.hhs.gov/sites/default/files/covid-19-faqs-hospitals-hospital-laboratory-acute-care-facility-data-reporting.pdf
    Calculation of county-level hospital metrics:
    • County-level hospital data are derived using calculations performed at the Health Service Area (HSA) level. An HSA is defined by CDC’s National Center for Health Statistics as a geographic area containing at least one county which is self-contained with respect to the population’s provision of routine hospital care. Every county in the United States is assigned to an HSA, and each HSA must contain at least one hospital. Therefore, use of HSAs in the calculation of local hospital metrics allows for more accurate characterization of the relationship between health care utilization and health status at the local level.
    • Data presented at the county-level represent admissions, hosp

  10. f

    Estimated isolation costs of the 1106 patients hospitalized with COVID-19...

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    xls
    Updated May 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mari Kanerva; Kalle Rautava; Tiina Kurvinen; Harri Marttila; Taru Finnilä; Kaisu Rantakokko-Jalava; Mikko Pietilä; Pirjo Mustonen; Mika Kortelainen (2025). Estimated isolation costs of the 1106 patients hospitalized with COVID-19 (other diseases as a primary reason for hospitalization). [Dataset]. http://doi.org/10.1371/journal.pone.0323200.t005
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 14, 2025
    Dataset provided by
    PLOS ONE
    Authors
    Mari Kanerva; Kalle Rautava; Tiina Kurvinen; Harri Marttila; Taru Finnilä; Kaisu Rantakokko-Jalava; Mikko Pietilä; Pirjo Mustonen; Mika Kortelainen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Estimated isolation costs of the 1106 patients hospitalized with COVID-19 (other diseases as a primary reason for hospitalization).

  11. Preliminary 2024-2025 U.S. COVID-19 Burden Estimates

    • data.cdc.gov
    • data.virginia.gov
    • +1more
    csv, xlsx, xml
    Updated Sep 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Coronavirus and Other Respiratory Viruses Division (CORVD), National Center for Immunization and Respiratory Diseases (NCIRD). (2025). Preliminary 2024-2025 U.S. COVID-19 Burden Estimates [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/Preliminary-2024-2025-U-S-COVID-19-Burden-Estimate/ahrf-yqdt
    Explore at:
    xlsx, csv, xmlAvailable download formats
    Dataset updated
    Sep 26, 2025
    Dataset provided by
    National Center for Immunization and Respiratory Diseases
    Authors
    Coronavirus and Other Respiratory Viruses Division (CORVD), National Center for Immunization and Respiratory Diseases (NCIRD).
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Description

    This dataset represents preliminary estimates of cumulative U.S. COVID-19 disease burden for the 2024-2025 period, including illnesses, outpatient visits, hospitalizations, and deaths. The weekly COVID-19-associated burden estimates are preliminary and based on continuously collected surveillance data from patients hospitalized with laboratory-confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. The data come from the Coronavirus Disease 2019 (COVID-19)-Associated Hospitalization Surveillance Network (COVID-NET), a surveillance platform that captures data from hospitals that serve about 10% of the U.S. population. Each week CDC estimates a range (i.e., lower estimate and an upper estimate) of COVID-19 -associated burden that have occurred since October 1, 2024.

    Note: Data are preliminary and subject to change as more data become available. Rates for recent COVID-19-associated hospital admissions are subject to reporting delays; as new data are received each week, previous rates are updated accordingly.

    References

    1. Reed C, Chaves SS, Daily Kirley P, et al. Estimating influenza disease burden from population-based surveillance data in the United States. PLoS One. 2015;10(3):e0118369. https://doi.org/10.1371/journal.pone.0118369 
    2. Rolfes, MA, Foppa, IM, Garg, S, et al. Annual estimates of the burden of seasonal influenza in the United States: A tool for strengthening influenza surveillance and preparedness. Influenza Other Respi Viruses. 2018; 12: 132– 137. https://doi.org/10.1111/irv.12486
    3. Tokars JI, Rolfes MA, Foppa IM, Reed C. An evaluation and update of methods for estimating the number of influenza cases averted by vaccination in the United States. Vaccine. 2018;36(48):7331-7337. doi:10.1016/j.vaccine.2018.10.026 
    4. Collier SA, Deng L, Adam EA, Benedict KM, Beshearse EM, Blackstock AJ, Bruce BB, Derado G, Edens C, Fullerton KE, Gargano JW, Geissler AL, Hall AJ, Havelaar AH, Hill VR, Hoekstra RM, Reddy SC, Scallan E, Stokes EK, Yoder JS, Beach MJ. Estimate of Burden and Direct Healthcare Cost of Infectious Waterborne Disease in the United States. Emerg Infect Dis. 2021 Jan;27(1):140-149. doi: 10.3201/eid2701.190676. PMID: 33350905; PMCID: PMC7774540.
    5. Reed C, Kim IK, Singleton JA,  et al. Estimated influenza illnesses and hospitalizations averted by vaccination–United States, 2013-14 influenza season. MMWR Morb Mortal Wkly Rep. 2014 Dec 12;63(49):1151-4. https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6349a2.htm 
    6. Reed C, Angulo FJ, Swerdlow DL, et al. Estimates of the Prevalence of Pandemic (H1N1) 2009, United States, April–July 2009. Emerg Infect Dis. 2009;15(12):2004-2007. https://dx.doi.org/10.3201/eid1512.091413
    7. Devine O, Pham H, Gunnels B, et al. Extrapolating Sentinel Surveillance Information to Estimate National COVID-19 Hospital Admission Rates: A Bayesian Modeling Approach. Influenza and Other Respiratory Viruses. https://onlinelibrary.wiley.com/doi/10.1111/irv.70026. Volume18, Issue10. October 2024.
    8. https://www.cdc.gov/covid/php/covid-net/index.html">COVID-NET | COVID-19 | CDC 
    9. https://www.cdc.gov/covid/hcp/clinical-care/systematic-review-process.html 
    10. https://academic.oup.com/pnasnexus/article/1/3/pgac079/6604394?login=false">Excess natural-cause deaths in California by cause and setting: March 2020 through February 2021 | PNAS Nexus | Oxford Academic (oup.com)
    11. Kruschke, J. K. 2011. Doing Bayesian data analysis: a tutorial with R and BUGS. Elsevier, Amsterdam, Section 3.3.5.

  12. f

    Yearly numbers of patients and their hospital days with COVID-19 as the...

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    xls
    Updated May 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mari Kanerva; Kalle Rautava; Tiina Kurvinen; Harri Marttila; Taru Finnilä; Kaisu Rantakokko-Jalava; Mikko Pietilä; Pirjo Mustonen; Mika Kortelainen (2025). Yearly numbers of patients and their hospital days with COVID-19 as the primary reason for tertiary care hospitalization. [Dataset]. http://doi.org/10.1371/journal.pone.0323200.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 14, 2025
    Dataset provided by
    PLOS ONE
    Authors
    Mari Kanerva; Kalle Rautava; Tiina Kurvinen; Harri Marttila; Taru Finnilä; Kaisu Rantakokko-Jalava; Mikko Pietilä; Pirjo Mustonen; Mika Kortelainen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Yearly numbers of patients and their hospital days with COVID-19 as the primary reason for tertiary care hospitalization.

  13. Monthly Rates of Laboratory-Confirmed COVID-19 Hospitalizations from the...

    • catalog.data.gov
    • healthdata.gov
    • +2more
    Updated Nov 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Monthly Rates of Laboratory-Confirmed COVID-19 Hospitalizations from the COVID-NET Surveillance System [Dataset]. https://catalog.data.gov/dataset/monthly-rates-of-laboratory-confirmed-covid-19-hospitalizations-from-the-covid-net-surveil
    Explore at:
    Dataset updated
    Nov 18, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    The Coronavirus Disease 2019 (COVID-19) Hospitalization Surveillance Network (COVID-NET) a network that conducts active, population-based surveillance for laboratory-confirmed COVID-19-associated hospitalizations among children and adults. COVID-NET, along with the Respiratory Syncytial Virus Hospitalization Surveillance Network (RSV-NET) and the Influenza Hospitalization Surveillance Network (FluSurv-NET), comprise the Respiratory Virus Hospitalization Surveillance Network (RESP-NET). The RESP-NET platforms have overlapping surveillance areas and use similar methods to collect data. COVID-NET is CDC’s source for important data on rates of hospitalizations associated with COVID-19. Hospitalization rates show how many people in the surveillance area are hospitalized with COVID-19, compared to the total number of people residing in that area. Data are preliminary and subject to change as more data become available. Data will be updated weekly.

  14. f

    Sample sizes of diabetes patients with COVID-19 hospitalization across...

    • datasetcatalog.nlm.nih.gov
    • figshare.com
    Updated Sep 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Miller, Kristen E.; Agor, Joseph K.; Ozaltin, Osman Y.; Mayorga, Maria E.; Paramita, Ni Luh Putu S. P.; Ivy, Julie S. (2023). Sample sizes of diabetes patients with COVID-19 hospitalization across different demographic groups. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001072962
    Explore at:
    Dataset updated
    Sep 28, 2023
    Authors
    Miller, Kristen E.; Agor, Joseph K.; Ozaltin, Osman Y.; Mayorga, Maria E.; Paramita, Ni Luh Putu S. P.; Ivy, Julie S.
    Description

    Sample sizes of diabetes patients with COVID-19 hospitalization across different demographic groups.

  15. d

    Johns Hopkins COVID-19 Case Tracker

    • data.world
    • kaggle.com
    csv, zip
    Updated Dec 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Johns Hopkins COVID-19 Case Tracker [Dataset]. https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Dec 3, 2025
    Authors
    The Associated Press
    Time period covered
    Jan 22, 2020 - Mar 9, 2023
    Area covered
    Description

    Updates

    • Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.

    • April 9, 2020

      • The population estimate data for New York County, NY has been updated to include all five New York City counties (Kings County, Queens County, Bronx County, Richmond County and New York County). This has been done to match the Johns Hopkins COVID-19 data, which aggregates counts for the five New York City counties to New York County.
    • April 20, 2020

      • Johns Hopkins death totals in the US now include confirmed and probable deaths in accordance with CDC guidelines as of April 14. One significant result of this change was an increase of more than 3,700 deaths in the New York City count. This change will likely result in increases for death counts elsewhere as well. The AP does not alter the Johns Hopkins source data, so probable deaths are included in this dataset as well.
    • April 29, 2020

      • The AP is now providing timeseries data for counts of COVID-19 cases and deaths. The raw counts are provided here unaltered, along with a population column with Census ACS-5 estimates and calculated daily case and death rates per 100,000 people. Please read the updated caveats section for more information.
    • September 1st, 2020

      • Johns Hopkins is now providing counts for the five New York City counties individually.
    • February 12, 2021

      • The Ohio Department of Health recently announced that as many as 4,000 COVID-19 deaths may have been underreported through the state’s reporting system, and that the "daily reported death counts will be high for a two to three-day period."
      • Because deaths data will be anomalous for consecutive days, we have chosen to freeze Ohio's rolling average for daily deaths at the last valid measure until Johns Hopkins is able to back-distribute the data. The raw daily death counts, as reported by Johns Hopkins and including the backlogged death data, will still be present in the new_deaths column.
    • February 16, 2021

      - Johns Hopkins has reconciled Ohio's historical deaths data with the state.

      Overview

    The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.

    The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.

    This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.

    The AP is updating this dataset hourly at 45 minutes past the hour.

    To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

    Queries

    Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic

    Interactive

    The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.

    @(https://datawrapper.dwcdn.net/nRyaf/15/)

    Interactive Embed Code

    <iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
    

    Caveats

    • This data represents the number of cases and deaths reported by each state and has been collected by Johns Hopkins from a number of sources cited on their website.
    • In some cases, deaths or cases of people who've crossed state lines -- either to receive treatment or because they became sick and couldn't return home while traveling -- are reported in a state they aren't currently in, because of state reporting rules.
    • In some states, there are a number of cases not assigned to a specific county -- for those cases, the county name is "unassigned to a single county"
    • This data should be credited to Johns Hopkins University's COVID-19 tracking project. The AP is simply making it available here for ease of use for reporters and members.
    • Caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
    • Population estimates at the county level are drawn from 2014-18 5-year estimates from the American Community Survey.
    • The Urban/Rural classification scheme is from the Center for Disease Control and Preventions's National Center for Health Statistics. It puts each county into one of six categories -- from Large Central Metro to Non-Core -- according to population and other characteristics. More details about the classifications can be found here.

    Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here

    Attribution

    This data should be credited to Johns Hopkins University COVID-19 tracking project

  16. f

    Models of likelihood of COVID-19 related hospitalization according to...

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Feb 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gimeno-Feliú, Luis A.; Padilla, María; Moreno-Juste, Aida; Ortega-Larrodé, Cristina; González-Rubio, Francisca; Gimeno-Miguel, Antonio; Laguna-Berna, Clara; Aza-Pascual-Salcedo, Mercedes; Bliek-Bueno, Kevin; Poblador-Plou, Beatriz; Prados-Torres, Alexandra; de-la-Cámara, Concepción (2024). Models of likelihood of COVID-19 related hospitalization according to baseline demographic and clinical variables in COVID-19, by gender. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001433164
    Explore at:
    Dataset updated
    Feb 12, 2024
    Authors
    Gimeno-Feliú, Luis A.; Padilla, María; Moreno-Juste, Aida; Ortega-Larrodé, Cristina; González-Rubio, Francisca; Gimeno-Miguel, Antonio; Laguna-Berna, Clara; Aza-Pascual-Salcedo, Mercedes; Bliek-Bueno, Kevin; Poblador-Plou, Beatriz; Prados-Torres, Alexandra; de-la-Cámara, Concepción
    Description

    Models of likelihood of COVID-19 related hospitalization according to baseline demographic and clinical variables in COVID-19, by gender.

  17. Yearly numbers of patients and days in the ICU due to COVID-19.

    • figshare.com
    • datasetcatalog.nlm.nih.gov
    xls
    Updated May 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mari Kanerva; Kalle Rautava; Tiina Kurvinen; Harri Marttila; Taru Finnilä; Kaisu Rantakokko-Jalava; Mikko Pietilä; Pirjo Mustonen; Mika Kortelainen (2025). Yearly numbers of patients and days in the ICU due to COVID-19. [Dataset]. http://doi.org/10.1371/journal.pone.0323200.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 14, 2025
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Mari Kanerva; Kalle Rautava; Tiina Kurvinen; Harri Marttila; Taru Finnilä; Kaisu Rantakokko-Jalava; Mikko Pietilä; Pirjo Mustonen; Mika Kortelainen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Yearly numbers of patients and days in the ICU due to COVID-19.

  18. m

    COVID-19 reporting

    • mass.gov
    Updated Mar 4, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Executive Office of Health and Human Services (2020). COVID-19 reporting [Dataset]. https://www.mass.gov/info-details/covid-19-reporting
    Explore at:
    Dataset updated
    Mar 4, 2020
    Dataset provided by
    Department of Public Health
    Executive Office of Health and Human Services
    Area covered
    Massachusetts
    Description

    The COVID-19 dashboard includes data on city/town COVID-19 activity, confirmed and probable cases of COVID-19, confirmed and probable deaths related to COVID-19, and the demographic characteristics of cases and deaths.

  19. Patient Characteristics of Laboratory-Confirmed COVID-19 Hospitalizations...

    • data.virginia.gov
    • healthdata.gov
    • +1more
    csv, json, rdf, xsl
    Updated Oct 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Patient Characteristics of Laboratory-Confirmed COVID-19 Hospitalizations from the COVID-NET Surveillance System [Dataset]. https://data.virginia.gov/dataset/patient-characteristics-of-laboratory-confirmed-covid-19-hospitalizations-from-the-covid-net-su
    Explore at:
    csv, json, xsl, rdfAvailable download formats
    Dataset updated
    Oct 2, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    The Coronavirus Disease 2019 (COVID-19) Hospitalization Surveillance Network (COVID-NET) a network that conducts active, population-based surveillance for laboratory-confirmed COVID-19-associated hospitalizations among children and adults. COVID-NET, along with the Respiratory Syncytial Virus Hospitalization Surveillance Network (RSV-NET) and the Influenza Hospitalization Surveillance Network (FluSurv-NET), comprise the Respiratory Virus Hospitalization Surveillance Network (RESP-NET). The RESP-NET platforms have overlapping surveillance areas and use similar methods to collect data. COVID-NET is CDC’s source for important data on rates of hospitalizations associated with COVID-19. Hospitalization rates show how many people in the surveillance area are hospitalized with COVID-19, compared to the total number of people residing in that area.

    Data are preliminary and subject to change as more data become available. Data will be updated weekly.

  20. Total billing costs of patients hospitalized due to COVID-19.

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    xls
    Updated May 14, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mari Kanerva; Kalle Rautava; Tiina Kurvinen; Harri Marttila; Taru Finnilä; Kaisu Rantakokko-Jalava; Mikko Pietilä; Pirjo Mustonen; Mika Kortelainen (2025). Total billing costs of patients hospitalized due to COVID-19. [Dataset]. http://doi.org/10.1371/journal.pone.0323200.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 14, 2025
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Mari Kanerva; Kalle Rautava; Tiina Kurvinen; Harri Marttila; Taru Finnilä; Kaisu Rantakokko-Jalava; Mikko Pietilä; Pirjo Mustonen; Mika Kortelainen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Total billing costs of patients hospitalized due to COVID-19.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
CDC Division of Healthcare Quality Promotion (DHQP) Surveillance Branch, National Healthcare Safety Network (NHSN) (2025). Weekly United States COVID-19 Hospitalization Metrics by Jurisdiction – ARCHIVED [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/Weekly-United-States-COVID-19-Hospitalization-Metr/7dk4-g6vg
Organization logo

Weekly United States COVID-19 Hospitalization Metrics by Jurisdiction – ARCHIVED

Explore at:
xml, xlsx, csvAvailable download formats
Dataset updated
Jan 17, 2025
Dataset provided by
Centers for Disease Control and Preventionhttp://www.cdc.gov/
Authors
CDC Division of Healthcare Quality Promotion (DHQP) Surveillance Branch, National Healthcare Safety Network (NHSN)
License

https://www.usa.gov/government-workshttps://www.usa.gov/government-works

Area covered
United States
Description

Note: After May 3, 2024, this dataset will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, hospital capacity, or occupancy data to HHS through CDC’s National Healthcare Safety Network (NHSN). The related CDC COVID Data Tracker site was revised or retired on May 10, 2023.

This dataset represents weekly COVID-19 hospitalization data and metrics aggregated to national, state/territory, and regional levels. COVID-19 hospitalization data are reported to CDC’s National Healthcare Safety Network, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN and included in this dataset represent aggregated counts and include metrics capturing information specific to COVID-19 hospital admissions, and inpatient and ICU bed capacity occupancy.

Reporting information:

  • As of December 15, 2022, COVID-19 hospital data are required to be reported to NHSN, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN represent aggregated counts and include metrics capturing information specific to hospital capacity, occupancy, hospitalizations, and admissions. Prior to December 15, 2022, hospitals reported data directly to the U.S. Department of Health and Human Services (HHS) or via a state submission for collection in the HHS Unified Hospital Data Surveillance System (UHDSS).
  • While CDC reviews these data for errors and corrects those found, some reporting errors might still exist within the data. To minimize errors and inconsistencies in data reported, CDC removes outliers before calculating the metrics. CDC and partners work with reporters to correct these errors and update the data in subsequent weeks.
  • Many hospital subtypes, including acute care and critical access hospitals, as well as Veterans Administration, Defense Health Agency, and Indian Health Service hospitals, are included in the metric calculations provided in this report. Psychiatric, rehabilitation, and religious non-medical hospital types are excluded from calculations.
  • Data are aggregated and displayed for hospitals with the same Centers for Medicare and Medicaid Services (CMS) Certification Number (CCN), which are assigned by CMS to counties based on the CMS Provider of Services files.
  • Full details on COVID-19 hospital data reporting guidance can be found here: https://www.hhs.gov/sites/default/files/covid-19-faqs-hospitals-hospital-laboratory-acute-care-facility-data-reporting.pdf

Metric details:

  • Time Period: timeseries data will update weekly on Mondays as soon as they are reviewed and verified, usually before 8 pm ET. Updates will occur the following day when reporting coincides with a federal holiday. Note: Weekly updates might be delayed due to delays in reporting. All data are provisional. Because these provisional counts are subject to change, including updates to data reported previously, adjustments can occur. Data may be updated since original publication due to delays in reporting (to account for data received after a given Thursday publication) or data quality corrections.
  • New COVID-19 Hospital Admissions (count): Number of new admissions of patients with laboratory-confirmed COVID-19 in the previous week (including both adult and pediatric admissions) in the entire jurisdiction.
  • New COVID-19 Hospital Admissions (7-Day Average): 7-day average of new admissions of patients with laboratory-confirmed COVID-19 in the previous week (including both adult and pediatric admissions) in the entire jurisdiction.
  • Cumulative COVID-19 Hospital Admissions: Cumulative total number of admissions of patients with laboratory-confirmed COVID-19 (including both adult and pediatric admissions) in the entire jurisdiction since August 1, 2020.
  • Cumulative COVID-19 Hospital Admissions Rate: Cumulative total number of admissions of patients with laboratory-confirmed COVID-19 (including both adult and pediatric admissions) in the entire jurisdiction since August 1, 2020 divided by 2019 intercensal population estimate for that jurisdiction multiplied by 100,000.
  • New COVID-19 Hospital Admissions Rate (7-day average) percent change from prior week: Percent change in the 7-day average new admissions of patients with laboratory-confirmed COVID-19 per 100,000 population compared with the prior week.
  • New COVID-19 Hospital Admissions (7-Day Total): 7-day total number of new admissions of patients with laboratory-confirmed COVID-19 (including both adult and pediatric admissions) in the entire jurisdiction.
  • New COVID-19 Hospital Admissions Rate (7-Day Total): 7-day total number of new admissions of patients with laboratory-confirmed COVID-19 (including both adult and pediatric admissions) for the entire jurisdiction divided by 2019 intercensal population estimate for that jurisdiction multiplied by 100,000.
  • Total Hospitalized COVID-19 Patients: 7-day total number of patients currently hospitalized with laboratory-confirmed COVID-19 (including both adult and pediatric patients) for the entire jurisdiction.
  • Total Hospitalized COVID-19 Patients (7-Day Average): 7-day average of the number of patients currently hospitalized with laboratory-confirmed COVID-19 (including both adult and pediatric patients) for the entire jurisdiction.
  • COVID-19 Inpatient Bed Occupancy (7-Day Average): Percentage of all staffed inpatient beds occupied by patients with laboratory-confirmed COVID-19 (including both adult and pediatric patients) within the entire jurisdiction is calculated as an average of valid daily values within the past 7 days (e.g., if only three valid values, the average of those three is taken). Averages are separately calculated for the daily numerators (patients hospitalized with confirmed COVID-19) and denominators (staffed inpatient beds). The average percentage can then be taken as the ratio of these two values for the entire jurisdiction.
  • COVID-19 Inpatient Bed Occupancy absolute change from prior week: The absolute change in the percent of staffed inpatient beds occupied by patients with laboratory-confirmed COVID-19 represents the week-over-week absolute difference between the 7-day average occupancy of patients with confirmed COVID-19 in staffed inpatient beds in the past 7 days, compared with the prior week, in the entire jurisdiction.
  • COVID-19 ICU Bed Occupancy (7-Day Average): Percentage of all staffed inpatient beds occupied by adult patients with confirmed COVID-19 within the entire jurisdiction is calculated as a 7-day average of valid daily values within the past 7 days (e.g., if only three valid values, the average of those three is taken). Averages are separately calculated for the daily numerators (adult patients hospitalized with confirmed COVID-19) and denominators (staffed adult ICU beds). The average percentage can then be taken as the ratio of these two values for the entire jurisdiction.
  • COVID-19 ICU Bed Occupancy absolute change from prior week: The absolute change in the percent of staffed ICU beds occupied by patients with laboratory-confirmed COVID-19 represents the week-over-week absolute difference between the average occupancy of patients with confirmed COVID-19 in staffed adult ICU beds for the past 7 days, compared with the prior week, in the in the entire jurisdiction.

Note: October 27, 2023: Due to a data processing error, reported values for avg_percent_inpatient_beds_occupied_covid_confirmed will appear lower than previously reported values by an average difference of less than 1%. Therefore, previously reported values for avg_percent_inpatient_beds_occupied_covid_confirmed may have been overestimated and should be interpreted with caution.

October 27, 2023: Due to a data processing error, reported values for abs_chg_avg_percent_inpatient_beds_occupied_covid_confirmed will differ from previously reported values by an average absolute difference of less than 1%. Therefore, previously reported values for abs_chg_avg_percent_inpatient_beds_occupied_covid_confirmed should be interpreted with caution.

December 29, 2023: Hospitalization data reported to CDC’s National Healthcare Safety Network (NHSN) through December 23, 2023, should be interpreted with caution due to potential reporting delays that are impacted by Christmas and New Years holidays. As a result, metrics including new hospital admissions for COVID-19 and influenza and hospital occupancy may be underestimated for the week ending December 23, 2023.

January 5, 2024: Hospitalization data reported to CDC’s National Healthcare Safety Network (NHSN) through December 30, 2023 should be interpreted with caution due to potential reporting delays that are impacted by Christmas and New Years holidays. As a result, metrics including new hospital admissions for COVID-19 and influenza and hospital occupancy may be underestimated for the week ending December 30, 2023.

Search
Clear search
Close search
Google apps
Main menu