Facebook
TwitterODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
Please note this page provides neighborhood demographic data using 2010 Census tracts. For updated Neighborhood Demographics using 2020 Census tracts consistently across historical years, please refer to the Planning Department Research Division's Exploring Neighborhood Change Tool. The tool visualizes demographic, economic, and housing data for Boston's tracts and neighborhoods from 1950 to 2025 (with projections to 2035) using the most up-to-date 2020 Census tract-based Neighborhood boundaries.
Boston is a city defined by the unique character of its many neighborhoods. The historical tables created by the BPDA Research Division from U.S. Census Decennial data describe demographic changes in Boston’s neighborhoods from 1950 through 2010 using consistent tract-based geographies. For more analysis of these data, please see Historical Trends in Boston's Neighborhoods. The most recent available neighborhood demographic data come from the 5-year American Community Survey (ACS). The ACS tables also present demographic data for Census-tract approximations of Boston’s neighborhoods. For pdf versions of the data presented here plus earlier versions of the analysis, please see Boston in Context.
Facebook
TwitterTable from the American Community Survey (ACS) 5-year series on age and gender related topics for City of Seattle Council Districts, Comprehensive Plan Growth Areas and Community Reporting Areas. Table includes B01001 Sex by Age, B01002 Median Age by Sex. Data is pulled from block group tables for the most recent ACS vintage and summarized to the neighborhoods based on block group assignment.Table created for and used in the Neighborhood Profiles application.Vintages: 2023ACS Table(s): B01001, B01002Data downloaded from: Census Bureau's Explore Census Data The United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estima
Facebook
TwitterThis layer shows the age statistics in Tucson by neighborhood, aggregated from block level data, between 2010-2019. For questions, contact GIS_IT@tucsonaz.gov. The data shown is from Esri's 2019 Updated Demographic estimates.Esri's U.S. Updated Demographic (2019/2024) Data - Population, age, income, sex, race, home value, and marital status are among the variables included in the database. Each year, Esri's Data Development team employs its proven methodologies to update more than 2,000 demographic variables for a variety of U.S. geographies.Additional Esri Resources:Esri DemographicsU.S. 2019/2024 Esri Updated DemographicsEssential demographic vocabularyPermitted use of this data is covered in the DATA section of the Esri Master Agreement (E204CW) and these supplemental terms.
Facebook
TwitterBlock group data from the 2019 - 2023 American Community Survey was aggregated by the Cambridge Community Development Department to generate neighborhood-level statistics. Categories include: Total Population, Population Density, Land Area, Male/Female, Race and Hispanic Origin, Age Distribution, Number of Households, Population in Households, Persons per Household, Number of Families, Household Types and Population in Group Quarters.
Facebook
TwitterThis layer shows employment data in Tucson by neighborhood, aggregated from block level data for 2019. For questions, contact GIS_IT@tucsonaz.gov. The data shown is from Esri's 2019 Updated Demographic estimates.Esri's U.S. Updated Demographic (2019/2024) Data - Population, age, income, sex, race, home value, and marital status are among the variables included in the database. Each year, Esri's Data Development team employs its proven methodologies to update more than 2,000 demographic variables for a variety of U.S. geographies.Additional Esri Resources:Esri DemographicsU.S. 2019/2024 Esri Updated DemographicsEssential demographic vocabularyPermitted use of this data is covered in the DATA section of the Esri Master Agreement (E204CW) and these supplemental terms.
Facebook
Twitter12-04-19: Source for these data? [LA GeoHub, includes 97 NCs, date?]
Facebook
TwitterVITAL SIGNS INDICATOR Population (LU1)
FULL MEASURE NAME
Population estimates
LAST UPDATED
February 2023
DESCRIPTION
Population is a measurement of the number of residents that live in a given geographical area, be it a neighborhood, city, county or region.
DATA SOURCE
California Department of Finance: Population and Housing Estimates - http://www.dof.ca.gov/Forecasting/Demographics/Estimates/
Table E-6: County Population Estimates (1960-1970)
Table E-4: Population Estimates for Counties and State (1970-2021)
Table E-8: Historical Population and Housing Estimates (1990-2010)
Table E-5: Population and Housing Estimates (2010-2021)
Bay Area Jurisdiction Centroids (2020) - https://data.bayareametro.gov/Boundaries/Bay-Area-Jurisdiction-Centroids-2020-/56ar-t6bs
Computed using 2020 US Census TIGER boundaries
U.S. Census Bureau: Decennial Census Population Estimates - http://www.s4.brown.edu/us2010/index.htm- via Longitudinal Tract Database Spatial Structures in the Social Sciences, Brown University
1970-2020
U.S. Census Bureau: American Community Survey (5-year rolling average; tract) - https://data.census.gov/
2011-2021
Form B01003
Priority Development Areas (Plan Bay Area 2050) - https://opendata.mtc.ca.gov/datasets/MTC::priority-development-areas-plan-bay-area-2050/about
CONTACT INFORMATION
vitalsigns.info@bayareametro.gov
METHODOLOGY NOTES (across all datasets for this indicator)
All historical data reported for Census geographies (metropolitan areas, county, city and tract) use current legal boundaries and names. A Priority Development Area (PDA) is a locally-designated area with frequent transit service, where a jurisdiction has decided to concentrate most of its housing and jobs growth for development in the foreseeable future. PDA boundaries are current as of December 2022.
Population estimates for Bay Area counties and cities are from the California Department of Finance, which are as of January 1st of each year. Population estimates for non-Bay Area regions are from the U.S. Census Bureau. Decennial Census years reflect population as of April 1st of each year whereas population estimates for intercensal estimates are as of July 1st of each year. Population estimates for Bay Area tracts are from the decennial Census (1970-2020) and the American Community Survey (2011-2021 5-year rolling average). Estimates of population density for tracts use gross acres as the denominator.
Population estimates for Bay Area tracts and PDAs are from the decennial Census (1970-2020) and the American Community Survey (2011-2021 5-year rolling average). Population estimates for PDAs are allocated from tract-level Census population counts using an area ratio. For example, if a quarter of a Census tract lies with in a PDA, a quarter of its population will be allocated to that PDA. Estimates of population density for PDAs use gross acres as the denominator. Note that the population densities between PDAs reported in previous iterations of Vital Signs are mostly not comparable due to minor differences and an updated set of PDAs (previous iterations reported Plan Bay Area 2040 PDAs, whereas current iterations report Plan Bay Area 2050 PDAs).
The following is a list of cities and towns by geographical area:
Big Three: San Jose, San Francisco, Oakland
Bayside: Alameda, Albany, Atherton, Belmont, Belvedere, Berkeley, Brisbane, Burlingame, Campbell, Colma, Corte Madera, Cupertino, Daly City, East Palo Alto, El Cerrito, Emeryville, Fairfax, Foster City, Fremont, Hayward, Hercules, Hillsborough, Larkspur, Los Altos, Los Altos Hills, Los Gatos, Menlo Park, Mill Valley, Millbrae, Milpitas, Monte Sereno, Mountain View, Newark, Pacifica, Palo Alto, Piedmont, Pinole, Portola Valley, Redwood City, Richmond, Ross, San Anselmo, San Bruno, San Carlos, San Leandro, San Mateo, San Pablo, San Rafael, Santa Clara, Saratoga, Sausalito, South San Francisco, Sunnyvale, Tiburon, Union City, Vallejo, Woodside
Inland, Delta and Coastal: American Canyon, Antioch, Benicia, Brentwood, Calistoga, Clayton, Cloverdale, Concord, Cotati, Danville, Dixon, Dublin, Fairfield, Gilroy, Half Moon Bay, Healdsburg, Lafayette, Livermore, Martinez, Moraga, Morgan Hill, Napa, Novato, Oakley, Orinda, Petaluma, Pittsburg, Pleasant Hill, Pleasanton, Rio Vista, Rohnert Park, San Ramon, Santa Rosa, Sebastopol, Sonoma, St. Helena, Suisun City, Vacaville, Walnut Creek, Windsor, Yountville
Unincorporated: all unincorporated towns
Facebook
TwitterThis file contains demographic, social, economic, and housing information from the "100-percent" and unweighted sample counts from the 1980 census for locally defined neighborhoods. The Neighborhood Publication Area (NPA) is the total area within which neighborhoods were defined by each participant in the Neighborhood Statistics Program (NSP), which was developed by the Census Bureau. Population items include age, race, sex, marital status, Spanish origin, employment status, and language spoken at home. Housing items include occupancy/vacancy status, tenure, contract rent, value, condominium status, number of rooms, and plumbing facilities.
Facebook
TwitterFour tables of ACS demographic profiles for 2012 to 2016 at the NTA level. Four profiles include demographics, economic, housing and sociological. Column headers in this database are abbreviated. Please see the data dictionary (shown in worksheet entitled “Dictionary”) for an explanation of these abbreviated headers. All previously released versions of this data are available at BYTES of the BIG APPLE- Archive
Facebook
TwitterData from: American Community Survey, 5-year SeriesKing County, Washington census tracts with nonoverlapping vintages of the 5-year American Community Survey (ACS) estimates starting in 2010 from the U.S. Census Bureau's demographic and housing estimates (DP05). Also includes the most recent release annually with the vintage identified in the "ACS Vintage" field.The census tract boundaries match the vintage of the ACS data (currently 2010 and 2020) so please note the geographic changes between the decades. Tracts have been coded as being within the City of Seattle as well as assigned to neighborhood groups called "Community Reporting Areas". These areas were created after the 2000 census to provide geographically consistent neighborhoods through time for reporting U.S. Census Bureau data. This is not an attempt to identify neighborhood boundaries as defined by neighborhoods themselves.Vintages: 2010, 2015, 2020, 2021, 2022<span style='font-family:inherit
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset represents neighborhood level data derived from the American Community Survey; 5 year average, years 2011-2015. Data was aggregated at the census tract level, and then summarized into neighborhoods. This information was then joined with the Community Planning and Developments Neighborhoods layer. This data does not contain data for any enclaves administered by other jurisdictions that are located within the City and County of Denver's boundary. This data is a sample, not a census. Results should be considered estimates. See American Community Survey website for margin of error information.
Facebook
TwitterThis dataset was created primarily to map and track socioeconomic and demographic variables from the US Census Bureau from year 1940 to year 2010, by decade, within the City of Baltimore's Mayor's Office of Information Technology (MOIT) year 2010 neighborhood boundaries. The socioeconomic and demographic variables include the percent White, percent African American, percent owner occupied homes, percent vacant homes, the percentage of age 25 and older people with a high school education or greater, and the percentage of age 25 and older people with a college education or greater. Percent White and percent African American are also provided for year 1930. Each of the the year 2010 neighborhood boundaries were also attributed with the 1937 Home Owners' Loan Corporation (HOLC) definition of neighborhoods via spatial overlay. HOLC rated neighborhoods as A, B, C, D or Undefined. HOLC categorized the perceived safety and risk of mortgage refinance lending in metropolitan areas using a hierarchical grading scale of A, B, C, and D. A and B areas were considered the safest areas for federal investment due to their newer housing as well as higher earning and racially homogenous households. In contrast, C and D graded areas were viewed to be in a state of inevitable decline, depreciation, and decay, and thus risky for federal investment, due to their older housing stock and racial and ethnic composition. This policy was inherently a racist practice. Places were graded based on who lived there; poor areas with people of color were labeled as lower and less-than. HOLC's 1937 neighborhoods do not cover the entire extent of the year 2010 neighborhood boundaries. The neighborhood boundaries were also augmented to include which of the year 2017 Housing Market Typology (HMT) the 2010 neighborhoods fall within. Finally, the neighborhood boundaries were also augmented to include tree canopy and tree canopy change year 2007 to year 2015.
Facebook
TwitterBelow are the field aliases contained in the dataset. Data were extracted from ESRI's Enrich tool for the most current year (2024) NAME
GEOTYPE
TotalPop
MedianAge
MalePop
MalePopPct
Male_0_4
Male_0_4Pct
Male_5_9
Male_5_9Pct
Male_10_14
Male_10_14Pct
Male_15_19
Male_15_19Pct
Male_20_24
Male_20_24Pct
Male_25_29
Male_25_29Pct
Male_30_34
Male_30_34Pct
Male_35_39
Male_35_39Pct
Male_40_44
Male_40_44Pct
Male_45_49
Male_45_49Pct
Male_50_54
Male_50_54Pct
Male_55_59
Male_55_59Pct
Male_60_
Male_60_Pct
FemalePop
FemalePopPct
Female_0_4
Female_0_4Pct
Female_5_9
Female_5_9Pct
Female_10_14
Female_10_14Pct
Female_15_19
Female_15_19Pct
Female_20_24
Female_20_24Pct
Female_25_29
Female_25_29Pct
Female_30_34
Female_30_34Pct
Female_35_39
Female_35_39Pct
Female_40_44
Female_40_44Pct
Female_45_49
Female_45_49Pct
Female_50_54
Female_50_54Pct
Female_55_59
Female_55_59Pct
Female_60_
Female_60_Pct
TotalHH
OwnerOccupy
OwnerOccupyPct
RenterOccupy
RenterOccupyPct
TotalHU
VacantHU
VacantHUPct
WhitePop
WhitePopPct
BlackPop
BlackPopPct
AsianPop
AsianPopPct
IndianPop
IndianPopPct
PacificPop
PacificPopPct
OtherRace
OtherRactPct
HispanicPop
HispanicPopPct
Edu_HS_NoDiploma
Edu_HS_Diploma
Edu_GED
Edu_College_NoDegree
Edu_AssociateDegree
Edu_BachelorDegree
Edu_GraduateDegree
AverageHHSize
HHBelowPovery
MedianHHIncome
MedianHValue
MedianAge_1
HU_50_
HU_50_Pct
HU_20_49
HU_20_49Pct
HU_10_19
HU_10_19Pct
HU_5_9
HU_5_9Pct
HU_3_4
HU_3_4Pct
HU_2
HU_2Pct
HU_1_Attached
HU_1_AttachedPct
HU_1_Detached
HU_1_DetachedPct
WorkHome
OtherMeans
Walked
Bicycle
PublicTrans
DroveAlone
Carpooled
Shape_Length
Shape_Area
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau.For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.Naming conventions:Prefixes: None Countp Percentr Ratem Mediana Mean (average)t Aggregate (total)ch Change in absolute terms (value in t2 - value in t1)pch Percent change ((value in t2 - value in t1) / value in t1)chp Change in percent (percent in t2 - percent in t1)s Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed Suffixes: _e19 Estimate from 2014-19 ACS_m19 Margin of Error from 2014-19 ACS_00_v19 Decennial 2000, re-estimated to 2019 geography_00_19 Change, 2000-19_e10_v19 2006-10 ACS, re-estimated to 2019 geography_m10_v19 Margin of Error from 2006-10 ACS, re-estimated to 2019 geography_e10_19 Change, 2010-19The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2015-2019). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2015-2019Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the manifest: https://www.arcgis.com/sharing/rest/content/items/3d489c725bb24f52a987b302147c46ee/data
Facebook
TwitterFeature layer generated from running the Enrich layer solution. NYC_Neighborhood_Tabulation_Areas were enriched
Facebook
TwitterThe percentage of the working population that does not commute to work. Source: U.S. Census Bureau, American Community Survey Years Available: 2018-2022, 2019-2023
Facebook
Twitterhttps://resources.data.gov/open-licenses/https://resources.data.gov/open-licenses/
The 2019-2020 School Neighborhood Poverty Estimates are based on school locations from the 2019-2020 Common Core of Data (CCD) school file and income data from families with children ages 5 to 17 in the U.S. Census Bureau’s 2016-2020 American Community Survey (ACS) 5-year collection. The ACS is a continuous household survey that collects social, demographic, economic, and housing information from the population in the United States each month. The Census Bureau calculates the income-to-poverty ratio (IPR) based on money income reported for families relative to the poverty thresholds, which are determined based on the family size and structure. Noncash benefits (such as food stamps and housing subsidies) are excluded, as are capital gains and losses. The IPR is the percentage of family income that is above or below the federal poverty level. The IPR indicator ranges from 0 to a top-coded value of 999. A family with income at the poverty threshold has an IPR value of 100. The estimates in this file reflect the IPR for the neighborhoods around schools which may be different from the neighborhood conditions of students enrolled in schools.All information contained in this file is in the public domain. Data users are advised to review NCES program documentation and feature class metadata to understand the limitations and appropriate use of these data.
Facebook
TwitterComprehensive demographic dataset for Swanson, Richmond, VA, US including population statistics, household income, housing units, education levels, employment data, and transportation with year-over-year changes.
Facebook
TwitterThis data collection contains 132 Public Use Microdata Samples (PUMS) files from the 1970 Census of Population and Housing. Information is provided in these files on the housing unit, such as occupancy and vacancy status of house, tenure, value of property, commercial use, year structure was built, number of rooms, availability of plumbing facilities, sewage disposal, bathtub or shower, complete kitchen facilities, flush toilet, water, telephone, and air conditioning. Data are also provided on household characteristics such as the number of persons aged 18 years and younger in the household, the presence of roomers, boarders, or lodgers, the presence of other nonrelative and of relative other than wife or child of head of household, the number of persons per room, the rent paid for unit, and the number of persons with Spanish surnames. Other demographic variables provide information on age, race, marital status, place of birth, state of birth, Puerto Rican heritage, citizenship, education, occupation, employment status, size of family, farm earnings, and family income. This hierarchical data collection contains approximately 214 variables for the 15-percent sample, 227 variables for the 5-percent sample, and 117 variables for the neighborhood characteristics sample. (Source: downloaded from ICPSR 7/13/10)
Please Note: This dataset is part of the historical CISER Data Archive Collection and is also available at ICPSR at https://doi.org/10.3886/ICPSR00018.v1. We highly recommend using the ICPSR version as they may make this dataset available in multiple data formats in the future.
Facebook
TwitterODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
Please note this page provides neighborhood demographic data using 2010 Census tracts. For updated Neighborhood Demographics using 2020 Census tracts consistently across historical years, please refer to the Planning Department Research Division's Exploring Neighborhood Change Tool. The tool visualizes demographic, economic, and housing data for Boston's tracts and neighborhoods from 1950 to 2025 (with projections to 2035) using the most up-to-date 2020 Census tract-based Neighborhood boundaries.
Boston is a city defined by the unique character of its many neighborhoods. The historical tables created by the BPDA Research Division from U.S. Census Decennial data describe demographic changes in Boston’s neighborhoods from 1950 through 2010 using consistent tract-based geographies. For more analysis of these data, please see Historical Trends in Boston's Neighborhoods. The most recent available neighborhood demographic data come from the 5-year American Community Survey (ACS). The ACS tables also present demographic data for Census-tract approximations of Boston’s neighborhoods. For pdf versions of the data presented here plus earlier versions of the analysis, please see Boston in Context.