100+ datasets found
  1. Country Population and Growth Rate Analysis

    • kaggle.com
    Updated Mar 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gaurav Kumar (2025). Country Population and Growth Rate Analysis [Dataset]. https://www.kaggle.com/datasets/gauravkumar2525/country-population-and-growth-rate-analysis
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 6, 2025
    Dataset provided by
    Kaggle
    Authors
    Gaurav Kumar
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    ABOUT

    The Global Population Growth Dataset provides a comprehensive record of population trends across various countries over multiple decades. It includes detailed information such as the country name, ISO3 country code, year-wise population data, population growth, and growth rate. This dataset is valuable for researchers, demographers, policymakers, and data analysts interested in studying population dynamics, demographic trends, and economic development.

    Key features of the dataset:

    ✅ Covers multiple countries and regions worldwide
    ✅ Includes historical and recent population data
    ✅ Provides year-wise population growth and growth rate (%)
    ✅ Categorizes data by country and decade for better trend analysis

    This dataset serves as a crucial resource for analyzing global population trends, understanding demographic shifts, and supporting socio-economic research and policy-making.

    FILE INFORMATION

    The dataset consists of structured records related to country-wise population data, compiled from official sources. Each file contains information on yearly population figures, growth trends, and country-specific data. The structured format makes it useful for researchers, economists, and data scientists studying demographic patterns and changes. The file type is CSV.

    COLUMNS DESCRIPTION

    • Country – The name of the country.
    • ISO3 – The three-letter ISO code of the country.
    • Year – The year corresponding to the population data, useful for trend analysis.
    • Population – The total population of the country for the given year.
    • Population Growth – The absolute increase in population compared to the previous year.
    • Growth Rate (%) – The percentage change in population compared to the previous year.
    • Decade – The decade classification (e.g., 1990s, 2000s) for grouping long-term trends.
  2. g

    Data from: Longitudinal Analysis of Historical Demographic Data

    • search.gesis.org
    • openicpsr.org
    • +1more
    Updated May 1, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GESIS search (2021). Longitudinal Analysis of Historical Demographic Data [Dataset]. http://doi.org/10.3886/E34554V1
    Explore at:
    Dataset updated
    May 1, 2021
    Dataset provided by
    GESIS search
    ICPSR - Interuniversity Consortium for Political and Social Research
    License

    https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de452467https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de452467

    Description

    Abstract (en): This study contains teaching materials developed over a period of years for a four-week workshop, Longitudinal Analysis of Historical Demographic Data (LAHDD), offered through the ICPSR Summer Program in 2006, 2007, 2009, 2011 and 2013, with one-day alumni workshops in 2010, 2012, and 2014. Instructors in the workshops are listed below. Funding was provided by The Eunice Kennedy Shriver National Institute of Child Health and Human Development, grants R25-HD040525 and R25-HD-049479, the ICPSR Summer Program and the ICPSR Director. The course was designed to teach students the theories, methods, and practices of historical demography and to give them first-hand experience working with historical data. This training is valuable not only to those interested in the analysis historical data. The techniques of historical demography rest on methodological insights that can be applied to many problems in population studies and other social sciences. While historical demography remains a flourishing research area with publications in key journals like Demography, Population Studies, and Population, practitioners were dispersed, and training was not available at any of the population research centers in the U.S. or elsewhere. One hundred and ten participants from around the globe took part in the workshops, and have gone on to establish courses of their own or teach in other workshops. We offer these materials here in the hopes that others will find them useful in developing courses on historical demography and/or longitudinal data analysis. The workshop was organized in three tracks: A brief tour of historical demography, event-history analysis, and data management for longitudinal data using Stata and Microsoft Access. The data management track includes 13 exercises designed for hands-on learning and reinforcement. Included in this project are the syllabii and reading lists for the three tracks, datasets used in the exercises, documents setting out each exercise, a file with the expected results, and for many of the exercises, an explanation. Video tutorials helpful with the Access exercises are accessible from ICPSR's YouTube channel https://www.youtube.com/playlist?list=PLqC9lrhW1Vvb9M1QpQH23z9UlPYxHbUMF. Users are encouraged to use these materials to develop their own courses and workshops in any of the topics covered. Please acknowledge NICHD R25-HD040525 and R25-HD-049479 whenever appropriate. Historical demography instructors: Myron P. Gutmann, University of Colorado Boulder Cameron Campbell, Hong Kong University of Science and Technology J. David Hacker, University of Minnesota Satomi Kurosu, Reitaku University Katherine A. Lynch, Carnegie Mellon University Event history instructors: Cameron Campbell, Hong Kong University of Science and Technology Glenn Deane, State University of New York at Albany Ken R. Smith, Huntsman Cancer Institute and University of Utah Database management instructors: George Alter, University of Michigan Susan Hautaniemi Leonard, University of Michigan Teaching Assistants: Mathew Creighton, University of Massachusetts Boston Emily Merchant, University of Michigan Luciana Quaranta, Lund University Kristine Witkowski, University of Michigan Project Manager: Susan Hautaniemi Leonard, University of Michigan Funding insitution(s): United States Department of Health and Human Services. National Institutes of Health. Eunice Kennedy Shriver National Institute of Child Health and Human Development (R25 HD040525).

  3. d

    Demographic correction – a tool for inference from individuals to...

    • search.dataone.org
    Updated May 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Adam Klimeš; Jitka Klimešová; Zdeněk Janovský; Tomáš Herben (2025). Demographic correction – a tool for inference from individuals to populations [Dataset]. http://doi.org/10.5061/dryad.p8cz8w9s6
    Explore at:
    Dataset updated
    May 19, 2025
    Dataset provided by
    Dryad Digital Repository
    Authors
    Adam Klimeš; Jitka Klimešová; Zdeněk Janovský; Tomáš Herben
    Time period covered
    Jan 1, 2022
    Description

    Estimation of responses of organisms to their environment using experimental manipulations, and comparison of such responses across sets of species, is one of the primary tools in ecology research. The most common approach is to compare response of a single life stage of species to an environmental factor and use this information to draw conclusions about population dynamics of these species. Such approach ignores the fact that interspecific fitness differences measured at a single life stage are not directly comparable and cannot be extrapolated to lifetime fitness of individuals and thus species’ population dynamics. Comparison of one life stage only while omitting demographic information can strongly bias conclusions, both in experimental studies with a few species, and in large comparative studies. We illustrate the effect of this omission using both an exaggerated fictitious example, and biological data on congeneric species differing in their demography. We are showing, taking sim...

  4. i

    Demographic and Health Survey 1987 - Thailand

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    • +2more
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Institute of Population Studies (IPS) (2019). Demographic and Health Survey 1987 - Thailand [Dataset]. https://catalog.ihsn.org/catalog/2489
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    Institute of Population Studies (IPS)
    Time period covered
    1987
    Area covered
    Thailand
    Description

    Abstract

    The Thai Demographic and Health Survey (TDHS) was a nationally representative sample survey conducted from March through June 1988 to collect data on fertility, family planning, and child and maternal health. A total of 9,045 households and 6,775 ever-married women aged 15 to 49 were interviewed. Thai Demographic and Health Survey (TDHS) is carried out by the Institute of Population Studies (IPS) of Chulalongkorn University with the financial support from USAID through the Institute for Resource Development (IRD) at Westinghouse. The Institute of Population Studies was responsible for the overall implementation of the survey including sample design, preparation of field work, data collection and processing, and analysis of data. IPS has made available its personnel and office facilities to the project throughout the project duration. It serves as the headquarters for the survey.

    The Thai Demographic and Health Survey (TDHS) was undertaken for the main purpose of providing data concerning fertility, family planning and maternal and child health to program managers and policy makers to facilitate their evaluation and planning of programs, and to population and health researchers to assist in their efforts to document and analyze the demographic and health situation. It is intended to provide information both on topics for which comparable data is not available from previous nationally representative surveys as well as to update trends with respect to a number of indicators available from previous surveys, in particular the Longitudinal Study of Social Economic and Demographic Change in 1969-73, the Survey of Fertility in Thailand in 1975, the National Survey of Family Planning Practices, Fertility and Mortality in 1979, and the three Contraceptive Prevalence Surveys in 1978/79, 1981 and 1984.

    Geographic coverage

    National

    Analysis unit

    • Household
    • Women age 15-49

    Universe

    The population covered by the 1987 THADHS is defined as the universe of all women Ever-married women in the reproductive ages (i.e., women 15-49). This covered women in private households on the basis of a de facto coverage definition. Visitors and usual residents who were in the household the night before the first visit or before any subsequent visit during the few days the interviewing team was in the area were eligible. Excluded were the small number of married women aged under 15 and women not present in private households.

    Kind of data

    Sample survey data

    Sampling procedure

    SAMPLE SIZE AND ALLOCATION

    The objective of the survey was to provide reliable estimates for major domains of the country. This consisted of two overlapping sets of reporting domains: (a) Five regions of the country namely Bangkok, north, northeast, central region (excluding Bangkok), and south; (b) Bangkok versus all provincial urban and all rural areas of the country. These requirements could be met by defining six non-overlapping sampling domains (Bangkok, provincial urban, and rural areas of each of the remaining 4 regions), and allocating approximately equal sample sizes to them. On the basis of past experience, available budget and overall reporting requirement, the target sample size was fixed at 7,000 interviews of ever-married women aged 15-49, expected to be found in around 9,000 households. Table A.I shows the actual number of households as well as eligible women selected and interviewed, by sampling domain (see Table i.I for reporting domains).

    THE FRAME AND SAMPLE SELECTION

    The frame for selecting the sample for urban areas, was provided by the National Statistical Office of Thailand and by the Ministry of the Interior for rural areas. It consisted of information on population size of various levels of administrative and census units, down to blocks in urban areas and villages in rural areas. The frame also included adequate maps and descriptions to identify these units. The extent to which the data were up-to-date as well as the quality of the data varied somewhat in different parts of the frame. Basically, the multi-stage stratified sampling design involved the following procedure. A specified number of sample areas were selected systematically from geographically/administratively ordered lists with probabilities proportional to the best available measure of size (PPS). Within selected areas (blocks or villages) new lists of households were prepared and systematic samples of households were selected. In principle, the sampling interval for the selection of households from lists was determined so as to yield a self weighting sample of households within each domain. However, in the absence of good measures of population size for all areas, these sampling intervals often required adjustments in the interest of controlling the size of the resulting sample. Variations in selection probabilities introduced due to such adjustment, where required, were compensated for by appropriate weighting of sample cases at the tabulation stage.

    SAMPLE OUTCOME

    The final sample of households was selected from lists prepared in the sample areas. The time interval between household listing and enumeration was generally very short, except to some extent in Bangkok where the listing itself took more time. In principle, the units of listing were the same as the ultimate units of sampling, namely households. However in a small proportion of cases, the former differed from the latter in several respects, identified at the stage of final enumeration: a) Some units listed actually contained more than one household each b) Some units were "blanks", that is, were demolished or not found to contain any eligible households at the time of enumeration. c) Some units were doubtful cases in as much as the household was reported as "not found" by the interviewer, but may in fact have existed.

    Mode of data collection

    Face-to-face

    Research instrument

    The DHS core questionnaires (Household, Eligible Women Respondent, and Community) were translated into Thai. A number of modifications were made largely to adapt them for use with an ever- married woman sample and to add a number of questions in areas that are of special interest to the Thai investigators but which were not covered in the standard core. Examples of such modifications included adding marital status and educational attainment to the household schedule, elaboration on questions in the individual questionnaire on educational attainment to take account of changes in the educational system during recent years, elaboration on questions on postnuptial residence, and adaptation of the questionnaire to take into account that only ever-married women are being interviewed rather than all women. More generally, attention was given to the wording of questions in Thai to ensure that the intent of the original English-language version was preserved.

    a) Household questionnaire

    The household questionnaire was used to list every member of the household who usually lives in the household and as well as visitors who slept in the household the night before the interviewer's visit. Information contained in the household questionnaire are age, sex, marital status, and education for each member (the last two items were asked only to members aged 13 and over). The head of the household or the spouse of the head of the household was the preferred respondent for the household questionnaire. However, if neither was available for interview, any adult member of the household was accepted as the respondent. Information from the household questionnaire was used to identify eligible women for the individual interview. To be eligible, a respondent had to be an ever-married woman aged 15-49 years old who had slept in the household 'the previous night'.

    Prior evidence has indicated that when asked about current age, Thais are as likely to report age at next birthday as age at last birthday (the usual demographic definition of age). Since the birth date of each household number was not asked in the household questionnaire, it was not possible to calculate age at last birthday from the birthdate. Therefore a special procedure was followed to ensure that eligible women just under the higher boundary for eligible ages (i.e. 49 years old) were not mistakenly excluded from the eligible woman sample because of an overstated age. Ever-married women whose reported age was between 50-52 years old and who slept in the household the night before birthdate of the woman, it was discovered that these women (or any others being interviewed) were not actually within the eligible age range of 15-49, the interview was terminated and the case disqualified. This attempt recovered 69 eligible women who otherwise would have been missed because their reported age was over 50 years old or over.

    b) Individual questionnaire

    The questionnaire administered to eligible women was based on the DHS Model A Questionnaire for high contraceptive prevalence countries. The individual questionnaire has 8 sections: - Respondent's background - Reproduction - Contraception - Health and breastfeeding - Marriage - Fertility preference - Husband's background and woman's work - Heights and weights of children and mothers

    The questionnaire was modified to suit the Thai context. As noted above, several questions were added to the standard DHS core questionnaire not only to meet the interest of IPS researchers hut also because of their relevance to the current demographic situation in Thailand. The supplemental questions are marked with an asterisk in the individual questionnaire. Questions concerning the following items were added in the individual questionnaire: - Did the respondent ever

  5. Sample data for analysis of demographic potential of the 15-minute city in...

    • zenodo.org
    bin, txt
    Updated Aug 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joan Perez; Joan Perez; Giovanni Fusco; Giovanni Fusco (2024). Sample data for analysis of demographic potential of the 15-minute city in northern and southern France [Dataset]. http://doi.org/10.5281/zenodo.13456826
    Explore at:
    bin, txtAvailable download formats
    Dataset updated
    Aug 29, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Joan Perez; Joan Perez; Giovanni Fusco; Giovanni Fusco
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Area covered
    France, Southern France
    Description
    This upload contains two Geopackage files of raw data used for urban analysis in the outskirts of Lille and Nice, France. 
    The data include building footprints (layer "building"), roads (layer "road"), and administrative boundaries (layer "adm_boundaries")
    extracted from version 3.3 of the French dataset BD TOPO®3 (IGN, 2023) for the municipalities of Santes, Hallennes-lez-Haubourdin,
    Haubourdin, and Emmerin in northern France (Geopackage "DPC_59.gpkg") and Drap, Cantaron and La Trinité in southern France
    (Geopackage "DPC_06.gpkg").
     
    Metadata for these layers is available here: https://geoservices.ign.fr/sites/default/files/2023-01/DC_BDTOPO_3-3.pdf
     
    Additionally, this upload contains the results of the following algorithms available in GitHub (https://github.com/perezjoan/emc2-WP2?tab=readme-ov-file)
     
    1. The identification of main streets using the QGIS plugin Morpheo (layers "road_morpheo" and "buffer_morpheo") 
    https://plugins.qgis.org/plugins/morpheo/
    2. The identification of main streets in local contexts – connectivity locally weighted (layer "road_LocRelCon")
    3. Basic morphometry of buildings (layer "building_morpho")
    4. Evaluation of the number of dwellings within inhabited buildings (layer "building_dwellings")
    5. Projecting population potential accessible from main streets (layer "road_pop_results")
     
    Project website: http://emc2-dut.org/
     
    Publications using this sample data: 
    Perez, J. and Fusco, G., 2024. Potential of the 15-Minute Peripheral City: Identifying Main Streets and Population Within Walking Distance. In: O. Gervasi, B. Murgante, C. Garau, D. Taniar, A.M.A.C. Rocha and M.N. Faginas Lago, eds. Computational Science and Its Applications – ICCSA 2024 Workshops. ICCSA 2024. Lecture Notes in Computer Science, vol 14817. Cham: Springer, pp.50-60. https://doi.org/10.1007/978-3-031-65238-7_4.

    Acknowledgement. This work is part of the emc2 project, which received the grant ANR-23-DUTP-0003-01 from the French National Research Agency (ANR) within the DUT Partnership.

  6. d

    NYSERDA Low- to Moderate-Income New York State Census Population Analysis...

    • catalog.data.gov
    • datasets.ai
    • +3more
    Updated Jun 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ny.gov (2025). NYSERDA Low- to Moderate-Income New York State Census Population Analysis Dataset: Average for 2013-2015 [Dataset]. https://catalog.data.gov/dataset/nyserda-low-to-moderate-income-new-york-state-census-population-analysis-dataset-aver-2013
    Explore at:
    Dataset updated
    Jun 28, 2025
    Dataset provided by
    data.ny.gov
    Area covered
    New York
    Description

    How does your organization use this dataset? What other NYSERDA or energy-related datasets would you like to see on Open NY? Let us know by emailing OpenNY@nyserda.ny.gov. The Low- to Moderate-Income (LMI) New York State (NYS) Census Population Analysis dataset is resultant from the LMI market database designed by APPRISE as part of the NYSERDA LMI Market Characterization Study (https://www.nyserda.ny.gov/lmi-tool). All data are derived from the U.S. Census Bureau’s American Community Survey (ACS) 1-year Public Use Microdata Sample (PUMS) files for 2013, 2014, and 2015. Each row in the LMI dataset is an individual record for a household that responded to the survey and each column is a variable of interest for analyzing the low- to moderate-income population. The LMI dataset includes: county/county group, households with elderly, households with children, economic development region, income groups, percent of poverty level, low- to moderate-income groups, household type, non-elderly disabled indicator, race/ethnicity, linguistic isolation, housing unit type, owner-renter status, main heating fuel type, home energy payment method, housing vintage, LMI study region, LMI population segment, mortgage indicator, time in home, head of household education level, head of household age, and household weight. The LMI NYS Census Population Analysis dataset is intended for users who want to explore the underlying data that supports the LMI Analysis Tool. The majority of those interested in LMI statistics and generating custom charts should use the interactive LMI Analysis Tool at https://www.nyserda.ny.gov/lmi-tool. This underlying LMI dataset is intended for users with experience working with survey data files and producing weighted survey estimates using statistical software packages (such as SAS, SPSS, or Stata).

  7. Demography of American black bears (Ursus americanus) in a semiarid...

    • data.niaid.nih.gov
    • search.dataone.org
    • +1more
    zip
    Updated Jan 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Brenden M. Orocu; Cambria Armstrong; Janene Auger; Hal L. Black; Randy T. Larsen; Brock R. McMillan; Mark C. Belk (2025). Demography of American black bears (Ursus americanus) in a semiarid environment [Dataset]. http://doi.org/10.5061/dryad.98sf7m0t8
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 2, 2025
    Dataset provided by
    Brigham Young University
    Authors
    Brenden M. Orocu; Cambria Armstrong; Janene Auger; Hal L. Black; Randy T. Larsen; Brock R. McMillan; Mark C. Belk
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Area covered
    United States
    Description

    The American black bear (Ursus americanus) has one of the broadest geographic distributions of any mammalian carnivore in North America. Populations occur from high to low elevations and from mesic to arid environments, and their demographic traits have been documented in a wide variety of environments. However, the demography of American black bears in semiarid environments, which comprise a significant portion of the geographic range, is poorly documented. To fill this gap in understanding, we used data from a long-term mark-recapture study of black bears in the semiarid environment of eastern Utah, USA. Cub and yearling survival were low and adult survival was high relative to other populations. Adult life stages had the highest reproductive value, comprised the largest proportion of the population, and exhibited the highest elasticity contribution to the population growth rate (i.e., λ). Vital rates of black bears in this semiarid environment are skewed toward higher survival of adults, and lower survival of cubs compared to other populations. Methods Mark-Recapture study We estimated survival rates from long-term mark-recapture data gathered as part of a 27-year study on American black bears of the East Tavaputs Plateau. During the first 12 years of the study (June to August 1991-2003) female bears were captured and radio-collared, and all bears were tagged in the ear, except for cubs and yearlings. For the entire study (1992 – 2019), collared females were visited in their dens annually during their winter hibernation to count newborn cubs and surviving yearlings. Age of individual bears was determined by 2 methods: (1) direct observation of cubs or yearlings (i.e., year of birth was known) or (2) cementum annuli analysis of a cross-section of the root of an extracted premolar (Palochak, 2004; Willey, 1974). The data we used to derive survival and fecundity rates consisted of the ID_number, cohort (cub, yearling, subadult, prime-aged adult, and old adult), age in years, sex (female, male, unknown), number of cubs, number of yearlings, first observation of individual, last observation of individual, days from last observation, and survival status. We did not include subadult and adult male bears in the analysis. Survival rates To determine the average survival rates for each life stage, we used a Cox proportional hazards model in program R (Team, 2022). This model accommodates staggered entries, where individuals enter the study at different times, and censoring, where the event of interest (e.g., mortality) is not observed for all individuals due to the inability to follow-up or the study ending before the event occurs. These features allow for a more accurate representation of survival over time, even with incomplete data (Cox, 1972). The Cox model is a semi-parametric approach that examines how covariates, such as age and environmental factors, influence the risk of death at any given point in time. Unlike fully parametric models, which require defining the baseline hazard function (the risk of death when all covariates are at baseline levels), the Cox model does not require this step, making it highly flexible and suitable for diverse data and applications (Zhang, 2016). The hazard function in this context refers to the rate or likelihood of an event (e.g., death) occurring at a specific moment, given that the individual has survived up to that time. The Cox model is expressed as follows: h(t|X) = h0(t) exp(β1X1 + β2X2 +...+ βpXp) where h(t|X) is the hazard function at time t given covariates X, h0(t) is the baseline hazard function β1, β2, …, βp are the coefficients for the predictor variables X1, X2, …, Xp. The model assumes proportional hazards, meaning the relative risk of death (the hazard ratio) between two groups remains constant over time (Zhang, 2016). The advantage of the Cox model is its ability to handle censored data, common in survival analysis. Censoring occurs when some individuals have not experienced mortality by the end of the study, so we only know that they survived up to that point. Moreover, the Cox model can incorporate time-dependent covariates, enabling a dynamic analysis of how risk factors influence survival over time (Therneau & Grambsch, 2000). For our analysis, we formulated four Cox proportional hazards models as follows: 1) constant survival, 2) a model with the effect of maternal age, 3) a model with the effect of cohort, and 4) a model with the combined effect of age and cohort. We compared these models using Akaike’s Information Criterion (AIC) to identify the best fit and then evaluate the effect sizes of covariates based on the β coefficients from the top-performing model (Burnham et al., 2011; Symonds & Moussalli, 2011). When there was uncertainty in model selection, we used model averaging to estimate effect sizes and β coefficients. Each model was also checked for uninformative parameters (Arnold, 2010). We reviewed the model summaries to assess the estimated effects of covariates (constant survival, maternal age, cohort, and the combination of age and cohort) on survival outcomes. Fecundity rates To determine fecundity rates, we used females monitored through the use of radio-collars. All females that were ≥ four years old were counted in the breeding pool. We removed any female ≥ 25 years of age from the breeding pool (Noyce, 2010). We classified old adults as ≥ 15 years old and prime-aged adults as 4-14 years of age. We visited dens of females to observe whether they were alone or accompanied by cubs or yearlings as well as the sexes of their offspring. At the height of the study, we had 15 prime-aged adult females, along with a few old-adult females. There was variation in the number of adult females and old-adult females throughout the study period and we had at least two old-adult females in each year for 12 years during the study. Matrix Transition Model and Analysis We developed a transition matrix model based on adult females and their offspring to estimate population growth and additional demographic parameters. In the model, we assumed every cub was born on January 1st and survived through the full year if they were alive through the 15th of October. We assumed density of males does not affect breeding success (Lewis et al., 2014). We divided the population into five age-based stages: cub (0–1 year-old); yearling (1–2 years old), subadult (2–4 years old), prime-aged adult (4–14 years old), and old adult (15+). We used the term sm to indicate the probability of surviving and transitioning to a new stage (matrix sub diagonal), and the term ss indicated the probability of surviving and staying in the same stage (matrix diagonal). We used f to indicate fecundity or reproduction (matrix upper right corner; Fig. 1A, 1B). We used the software Unified Life Models (ULM; (Legendre & Clobert, 1995) to evaluate the matrix model and to calculate population growth rate, stable age distribution, reproductive value, and sensitivity and elasticity matrices. We summed elasticity values across all stages for the three demographic processes: fecundity (f), growth (sm, transition from one age stage to another), and stasis (ss, survival without transitioning). Our matrix transition model differed from the matrix transition model generated by Beston (2011), which used nine life stages. To ensure an accurate comparison between the two models, we combined the nine life stages from the matrix transition model in the meta-analysis (Beston, 2011) into five broader stages: cub, yearling, subadult, adult, and old adult. We selected five life stages due to the assumption that age might influence reproductive output, a pattern supported by research on other mammals (Hilderbrand et al., 2019; Nussey et al., 2008; Promislow & Harvey, 1990).

  8. e

    Literature review on the use of matrix population models for plants

    • knb.ecoinformatics.org
    • search.dataone.org
    • +1more
    Updated Jan 6, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NCEAS 12320: Crone: When are matrix models useful for management? An empirical test across plant populations; National Center for Ecological Analysis and Synthesis; Elizabeth Crone (2015). Literature review on the use of matrix population models for plants [Dataset]. http://doi.org/10.5063/AA/nceas.961.11
    Explore at:
    Dataset updated
    Jan 6, 2015
    Dataset provided by
    Knowledge Network for Biocomplexity
    Authors
    NCEAS 12320: Crone: When are matrix models useful for management? An empirical test across plant populations; National Center for Ecological Analysis and Synthesis; Elizabeth Crone
    Time period covered
    Jan 1, 1966 - Jan 1, 2009
    Area covered
    Earth
    Variables measured
    fire, ltre, year, Matrix, allobj, density, grazing, harvest, interp2, species, and 26 more
    Description

    In the past three decades, the role of matrix-based demographic models in plant conservation has steadily increased. However, the reliability of these methods remains hotly debated. Most tests of model performance have relied on strict conditions for either the data sets being tested or the criteria used to judge accuracy of the results. This leads to a potential disconnect between the variety of ways in which models are used in practice and the limited set of conditions where their performance has been evaluated. As part of our working group, we set out to introduce and apply the idea that relevant tests depend on how exactly matrix models are used for managing populations. To this end, we systematically assessed 397 matrix models for plant populations to determine which population metrics (e.g. population growth rate, sensitivity, extinction risk) are being most commonly used in the literature and how literally authors are interpreting these metrics as predictions. The data sets available here contain both the citation information for all of the plant studies that we identified and the results of our review (see Crone et al., In Review, Ecology Letters). We have attempted to provide a nearly complete census of the available literature from 1966 through April 2009.

  9. N

    Dade City, FL Annual Population and Growth Analysis Dataset: A Comprehensive...

    • neilsberg.com
    csv, json
    Updated Jul 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Dade City, FL Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in Dade City from 2000 to 2023 // 2024 Edition [Dataset]. https://www.neilsberg.com/insights/dade-city-fl-population-by-year/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jul 30, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Dade City, Florida
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2023, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2023. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2023. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Dade City population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Dade City across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2023, the population of Dade City was 8,646, a 12.65% increase year-by-year from 2022. Previously, in 2022, Dade City population was 7,675, an increase of 5.05% compared to a population of 7,306 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Dade City increased by 1,793. In this period, the peak population was 8,646 in the year 2023. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2023

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2023)
    • Population: The population for the specific year for the Dade City is shown in this column.
    • Year on Year Change: This column displays the change in Dade City population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Dade City Population by Year. You can refer the same here

  10. N

    Apple Valley, UT Annual Population and Growth Analysis Dataset: A...

    • neilsberg.com
    csv, json
    Updated Jul 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Apple Valley, UT Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in Apple Valley from 2000 to 2023 // 2024 Edition [Dataset]. https://www.neilsberg.com/insights/apple-valley-ut-population-by-year/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jul 30, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Apple Valley, Utah
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2023, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2023. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2023. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Apple Valley population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Apple Valley across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2023, the population of Apple Valley was 916, a 1.66% increase year-by-year from 2022. Previously, in 2022, Apple Valley population was 901, an increase of 1.12% compared to a population of 891 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Apple Valley increased by 469. In this period, the peak population was 916 in the year 2023. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2023

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2023)
    • Population: The population for the specific year for the Apple Valley is shown in this column.
    • Year on Year Change: This column displays the change in Apple Valley population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Apple Valley Population by Year. You can refer the same here

  11. d

    Data analysis from: Demographic consequences of changing body size in a...

    • datadryad.org
    • search.dataone.org
    zip
    Updated Oct 20, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Raisa Hernández-Pacheco; Floriane Plard; Kristine L. Grayson; Ulrich K. Steiner (2021). Data analysis from: Demographic consequences of changing body size in a terrestrial salamander [Dataset]. http://doi.org/10.5061/dryad.r7sqv9s9r
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 20, 2021
    Dataset provided by
    Dryad
    Authors
    Raisa Hernández-Pacheco; Floriane Plard; Kristine L. Grayson; Ulrich K. Steiner
    Time period covered
    2020
    Description

    Changes in climate can alter individual body size, and the resulting shifts in reproduction and survival are expected to impact population dynamics and viability. However, appropriate methods to account for size-dependent demographic changes are needed, especially in understudied yet threatened groups such as amphibians. We investigated individual and population-level demographic effects of changes in body size for a terrestrial salamander using capture-mark-recapture data. For our analysis, we implemented an integral projection model parameterized with capture-recapture likelihood estimates from a Bayesian framework. Our study combines survival and growth data from a single dataset to quantify the influence of size on survival while including different sources of uncertainty around these parameters, demonstrating how selective forces can be studied in populations with limited data and incomplete recaptures. We found a strong dependency of the population growth rate on changes in indivi...

  12. f

    Data from: Demographic and life history traits explain patterns in species...

    • figshare.com
    txt
    Updated Jan 27, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Judy Che-Castaldo (2022). Demographic and life history traits explain patterns in species vulnerability to extinction [Dataset]. http://doi.org/10.6084/m9.figshare.14543994.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jan 27, 2022
    Dataset provided by
    figshare
    Authors
    Judy Che-Castaldo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data and R code to accompany the manuscript "Demographic and life history traits explain patterns in species vulnerability to extinction" by Haydée Hernández-Yáñez, Su Yeon Kim, & Judy P. Che-Castaldo

  13. Calculation File Uploaded-AAJ_JS-14741.xlsx

    • figshare.com
    xlsx
    Updated Jun 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jayachandran A A (2023). Calculation File Uploaded-AAJ_JS-14741.xlsx [Dataset]. http://doi.org/10.6084/m9.figshare.23577831.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 26, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Jayachandran A A
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data contains 2022 world population data publised by the UN DESA for six most populous countries of the world. File also contains the analysis of decomposition of demographic indicators on population growth.

  14. N

    Cambridge, ID Annual Population and Growth Analysis Dataset: A Comprehensive...

    • neilsberg.com
    csv, json
    Updated Jul 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Cambridge, ID Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in Cambridge from 2000 to 2023 // 2024 Edition [Dataset]. https://www.neilsberg.com/insights/cambridge-id-population-by-year/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jul 30, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Idaho, Cambridge
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2023, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2023. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2023. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Cambridge population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Cambridge across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2023, the population of Cambridge was 353, a 1.15% increase year-by-year from 2022. Previously, in 2022, Cambridge population was 349, an increase of 0.87% compared to a population of 346 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Cambridge decreased by 18. In this period, the peak population was 377 in the year 2008. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2023

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2023)
    • Population: The population for the specific year for the Cambridge is shown in this column.
    • Year on Year Change: This column displays the change in Cambridge population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Cambridge Population by Year. You can refer the same here

  15. N

    Portage, IN Annual Population and Growth Analysis Dataset: A Comprehensive...

    • neilsberg.com
    csv, json
    Updated Jul 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Portage, IN Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in Portage from 2000 to 2023 // 2024 Edition [Dataset]. https://www.neilsberg.com/insights/portage-in-population-by-year/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jul 30, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Portage, Indiana
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2023, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2023. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2023. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Portage population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Portage across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2023, the population of Portage was 38,513, a 0.45% increase year-by-year from 2022. Previously, in 2022, Portage population was 38,340, an increase of 0.22% compared to a population of 38,256 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Portage increased by 4,946. In this period, the peak population was 38,513 in the year 2023. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2023

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2023)
    • Population: The population for the specific year for the Portage is shown in this column.
    • Year on Year Change: This column displays the change in Portage population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Portage Population by Year. You can refer the same here

  16. N

    Forest Grove, OR Annual Population and Growth Analysis Dataset: A...

    • neilsberg.com
    csv, json
    Updated Jul 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Forest Grove, OR Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in Forest Grove from 2000 to 2023 // 2024 Edition [Dataset]. https://www.neilsberg.com/insights/forest-grove-or-population-by-year/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jul 30, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Forest Grove, Oregon
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2023, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2023. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2023. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Forest Grove population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Forest Grove across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2023, the population of Forest Grove was 26,799, a 0.09% increase year-by-year from 2022. Previously, in 2022, Forest Grove population was 26,775, an increase of 2.07% compared to a population of 26,233 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Forest Grove increased by 8,642. In this period, the peak population was 26,799 in the year 2023. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2023

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2023)
    • Population: The population for the specific year for the Forest Grove is shown in this column.
    • Year on Year Change: This column displays the change in Forest Grove population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Forest Grove Population by Year. You can refer the same here

  17. N

    Malvern, AL Annual Population and Growth Analysis Dataset: A Comprehensive...

    • neilsberg.com
    csv, json
    Updated Jul 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Malvern, AL Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in Malvern from 2000 to 2023 // 2024 Edition [Dataset]. https://www.neilsberg.com/insights/malvern-al-population-by-year/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jul 30, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Malvern, Alabama
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2023, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2023. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2023. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Malvern population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Malvern across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2023, the population of Malvern was 1,567, a 1.03% increase year-by-year from 2022. Previously, in 2022, Malvern population was 1,551, an increase of 1.11% compared to a population of 1,534 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Malvern increased by 363. In this period, the peak population was 1,567 in the year 2023. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2023

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2023)
    • Population: The population for the specific year for the Malvern is shown in this column.
    • Year on Year Change: This column displays the change in Malvern population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Malvern Population by Year. You can refer the same here

  18. N

    Lakewood Club, MI Annual Population and Growth Analysis Dataset: A...

    • neilsberg.com
    csv, json
    Updated Jul 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Lakewood Club, MI Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in Lakewood Club from 2000 to 2023 // 2024 Edition [Dataset]. https://www.neilsberg.com/insights/lakewood-club-mi-population-by-year/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jul 30, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Michigan, Lakewood Club
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2023, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2023. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2023. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Lakewood Club population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Lakewood Club across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2023, the population of Lakewood Club was 1,324, a 0.15% decrease year-by-year from 2022. Previously, in 2022, Lakewood Club population was 1,326, a decline of 0.45% compared to a population of 1,332 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Lakewood Club increased by 340. In this period, the peak population was 1,332 in the year 2020. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2023

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2023)
    • Population: The population for the specific year for the Lakewood Club is shown in this column.
    • Year on Year Change: This column displays the change in Lakewood Club population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Lakewood Club Population by Year. You can refer the same here

  19. N

    Queens County, NY Annual Population and Growth Analysis Dataset: A...

    • neilsberg.com
    csv, json
    Updated Jul 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Queens County, NY Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in Queens County from 2000 to 2023 // 2024 Edition [Dataset]. https://www.neilsberg.com/insights/queens-county-ny-population-by-year/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jul 30, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Queens, New York, New York
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2023, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2023. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2023. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Queens County population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Queens County across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2023, the population of Queens County was 2.25 million, a 1.16% decrease year-by-year from 2022. Previously, in 2022, Queens County population was 2.28 million, a decline of 2.17% compared to a population of 2.33 million in 2021. Over the last 20 plus years, between 2000 and 2023, population of Queens County increased by 22,518. In this period, the peak population was 2.39 million in the year 2020. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2023

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2023)
    • Population: The population for the specific year for the Queens County is shown in this column.
    • Year on Year Change: This column displays the change in Queens County population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Queens County Population by Year. You can refer the same here

  20. N

    Table Grove, IL Annual Population and Growth Analysis Dataset: A...

    • neilsberg.com
    csv, json
    Updated Jul 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Table Grove, IL Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in Table Grove from 2000 to 2023 // 2024 Edition [Dataset]. https://www.neilsberg.com/insights/table-grove-il-population-by-year/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jul 30, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Table Grove, Illinois
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2023, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2023. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2023. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Table Grove population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Table Grove across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2023, the population of Table Grove was 335, a 2.05% decrease year-by-year from 2022. Previously, in 2022, Table Grove population was 342, a decline of 1.16% compared to a population of 346 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Table Grove decreased by 54. In this period, the peak population was 418 in the year 2010. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2023

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2023)
    • Population: The population for the specific year for the Table Grove is shown in this column.
    • Year on Year Change: This column displays the change in Table Grove population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Table Grove Population by Year. You can refer the same here

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Gaurav Kumar (2025). Country Population and Growth Rate Analysis [Dataset]. https://www.kaggle.com/datasets/gauravkumar2525/country-population-and-growth-rate-analysis
Organization logo

Country Population and Growth Rate Analysis

Analyzing Global Population Growth Trends with Country-wise Yearly Data

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Mar 6, 2025
Dataset provided by
Kaggle
Authors
Gaurav Kumar
License

Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically

Description

ABOUT

The Global Population Growth Dataset provides a comprehensive record of population trends across various countries over multiple decades. It includes detailed information such as the country name, ISO3 country code, year-wise population data, population growth, and growth rate. This dataset is valuable for researchers, demographers, policymakers, and data analysts interested in studying population dynamics, demographic trends, and economic development.

Key features of the dataset:

✅ Covers multiple countries and regions worldwide
✅ Includes historical and recent population data
✅ Provides year-wise population growth and growth rate (%)
✅ Categorizes data by country and decade for better trend analysis

This dataset serves as a crucial resource for analyzing global population trends, understanding demographic shifts, and supporting socio-economic research and policy-making.

FILE INFORMATION

The dataset consists of structured records related to country-wise population data, compiled from official sources. Each file contains information on yearly population figures, growth trends, and country-specific data. The structured format makes it useful for researchers, economists, and data scientists studying demographic patterns and changes. The file type is CSV.

COLUMNS DESCRIPTION

  • Country – The name of the country.
  • ISO3 – The three-letter ISO code of the country.
  • Year – The year corresponding to the population data, useful for trend analysis.
  • Population – The total population of the country for the given year.
  • Population Growth – The absolute increase in population compared to the previous year.
  • Growth Rate (%) – The percentage change in population compared to the previous year.
  • Decade – The decade classification (e.g., 1990s, 2000s) for grouping long-term trends.
Search
Clear search
Close search
Google apps
Main menu