https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de452467https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de452467
Abstract (en): This study contains teaching materials developed over a period of years for a four-week workshop, Longitudinal Analysis of Historical Demographic Data (LAHDD), offered through the ICPSR Summer Program in 2006, 2007, 2009, 2011 and 2013, with one-day alumni workshops in 2010, 2012, and 2014. Instructors in the workshops are listed below. Funding was provided by The Eunice Kennedy Shriver National Institute of Child Health and Human Development, grants R25-HD040525 and R25-HD-049479, the ICPSR Summer Program and the ICPSR Director. The course was designed to teach students the theories, methods, and practices of historical demography and to give them first-hand experience working with historical data. This training is valuable not only to those interested in the analysis historical data. The techniques of historical demography rest on methodological insights that can be applied to many problems in population studies and other social sciences. While historical demography remains a flourishing research area with publications in key journals like Demography, Population Studies, and Population, practitioners were dispersed, and training was not available at any of the population research centers in the U.S. or elsewhere. One hundred and ten participants from around the globe took part in the workshops, and have gone on to establish courses of their own or teach in other workshops. We offer these materials here in the hopes that others will find them useful in developing courses on historical demography and/or longitudinal data analysis. The workshop was organized in three tracks: A brief tour of historical demography, event-history analysis, and data management for longitudinal data using Stata and Microsoft Access. The data management track includes 13 exercises designed for hands-on learning and reinforcement. Included in this project are the syllabii and reading lists for the three tracks, datasets used in the exercises, documents setting out each exercise, a file with the expected results, and for many of the exercises, an explanation. Video tutorials helpful with the Access exercises are accessible from ICPSR's YouTube channel https://www.youtube.com/playlist?list=PLqC9lrhW1Vvb9M1QpQH23z9UlPYxHbUMF. Users are encouraged to use these materials to develop their own courses and workshops in any of the topics covered. Please acknowledge NICHD R25-HD040525 and R25-HD-049479 whenever appropriate. Historical demography instructors: Myron P. Gutmann, University of Colorado Boulder Cameron Campbell, Hong Kong University of Science and Technology J. David Hacker, University of Minnesota Satomi Kurosu, Reitaku University Katherine A. Lynch, Carnegie Mellon University Event history instructors: Cameron Campbell, Hong Kong University of Science and Technology Glenn Deane, State University of New York at Albany Ken R. Smith, Huntsman Cancer Institute and University of Utah Database management instructors: George Alter, University of Michigan Susan Hautaniemi Leonard, University of Michigan Teaching Assistants: Mathew Creighton, University of Massachusetts Boston Emily Merchant, University of Michigan Luciana Quaranta, Lund University Kristine Witkowski, University of Michigan Project Manager: Susan Hautaniemi Leonard, University of Michigan Funding insitution(s): United States Department of Health and Human Services. National Institutes of Health. Eunice Kennedy Shriver National Institute of Child Health and Human Development (R25 HD040525).
Financial overview and grant giving statistics of Population Research Institute Inc.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Professional organizations in STEM (science, technology, engineering, and mathematics) can use demographic data to quantify recruitment and retention (R&R) of underrepresented groups within their memberships. However, variation in the types of demographic data collected can influence the targeting and perceived impacts of R&R efforts - e.g., giving false signals of R&R for some groups. We obtained demographic surveys from 73 U.S.-affiliated STEM organizations, collectively representing 712,000 members and conference-attendees. We found large differences in the demographic categories surveyed (e.g., disability status, sexual orientation) and the available response options. These discrepancies indicate a lack of consensus regarding the demographic groups that should be recognized and, for groups that are omitted from surveys, an inability of organizations to prioritize and evaluate R&R initiatives. Aligning inclusive demographic surveys across organizations will provide baseline data that can be used to target and evaluate R&R initiatives to better serve underrepresented groups throughout STEM. Methods We surveyed 164 STEM organizations (73 responses, rate = 44.5%) between December 2020 and July 2021 with the goal of understanding what demographic data each organization collects from its constituents (i.e., members and conference-attendees) and how the data are used. Organizations were sourced from a list of professional societies affiliated with the American Association for the Advancement of Science, AAAS, (n = 156) or from social media (n = 8). The survey was sent to the elected leadership and management firms for each organization, and follow-up reminders were sent after one month. The responding organizations represented a wide range of fields: 31 life science organizations (157,000 constituents), 5 mathematics organizations (93,000 constituents), 16 physical science organizations (207,000 constituents), 7 technology organizations (124,000 constituents), and 14 multi-disciplinary organizations spanning multiple branches of STEM (131,000 constituents). A list of the responding organizations is available in the Supplementary Materials. Based on the AAAS-affiliated recruitment of the organizations and the similar distribution of constituencies across STEM fields, we conclude that the responding organizations are a representative cross-section of the most prominent STEM organizations in the U.S. Each organization was asked about the demographic information they collect from their constituents, the response rates to their surveys, and how the data were used. Survey description The following questions are written as presented to the participating organizations. Question 1: What is the name of your STEM organization? Question 2: Does your organization collect demographic data from your membership and/or meeting attendees? Question 3: When was your organization’s most recent demographic survey (approximate year)? Question 4: We would like to know the categories of demographic information collected by your organization. You may answer this question by either uploading a blank copy of your organization’s survey (linked provided in online version of this survey) OR by completing a short series of questions. Question 5: On the most recent demographic survey or questionnaire, what categories of information were collected? (Please select all that apply)
Disability status Gender identity (e.g., male, female, non-binary) Marital/Family status Racial and ethnic group Religion Sex Sexual orientation Veteran status Other (please provide)
Question 6: For each of the categories selected in Question 5, what options were provided for survey participants to select? Question 7: Did the most recent demographic survey provide a statement about data privacy and confidentiality? If yes, please provide the statement. Question 8: Did the most recent demographic survey provide a statement about intended data use? If yes, please provide the statement. Question 9: Who maintains the demographic data collected by your organization? (e.g., contracted third party, organization executives) Question 10: How has your organization used members’ demographic data in the last five years? Examples: monitoring temporal changes in demographic diversity, publishing diversity data products, planning conferences, contributing to third-party researchers. Question 11: What is the size of your organization (number of members or number of attendees at recent meetings)? Question 12: What was the response rate (%) for your organization’s most recent demographic survey? *Organizations were also able to upload a copy of their demographics survey instead of responding to Questions 5-8. If so, the uploaded survey was used (by the study authors) to evaluate Questions 5-8.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Vernon Center population by year. The dataset can be utilized to understand the population trend of Vernon Center.
The dataset constitues the following datasets
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
The Turkey Demographic and Health Survey (DHS) 2008 has been conducted by the Haccettepe University Institute of Population Studies in collaboration with the Ministry of health General Directorate of Mother and Child Health and Family Planning and Undersecretary of State Planning Organization. The Turkey Demographic and Health Survey 2008 has been financed the scientific and Technological research Council of Turkey (TUBITAK) under the support program for Research Projects of Public Institutions.
The primary objective of the Turkey DHS 2008 is to provide data on fertility, contraceptive methods, maternal and child health. Detailed information on these issues is obtained through questionnaires, filled by face-to face interviews with ever-married women in reproductive ages (15-49).
Another important objective of the survey, with aims to contribute to the knowledge on population and health as well, is to maintain the flow of information for the related organizations in Turkey on the Turkish demographic structure and change in the absence of reliable vital registration system and ascertain the continuity of data on demographic and health necessary for sustainable development in the absence of a reliable vital registration system. In terms of survey methodology and content, the Turkey DHS 2008 is comparable with the previous demographic surveys in Turkey (MEASURE DHS+).
National
Sample survey data
Face-to-face
Two main types of questionnaires were used to collect the TDHS-2008 data: a) The Household Questionnaire; b) The Individual Questionnaire for Ever-Married Women of Reproductive Ages.
The contents of these questionnaires were based on the DHS Model "A" Questionnaire, which was designed for the DHS program for use in countries with high contraceptive prevalence. Additions, deletions and modifications were made to the DHS model questionnaire in order to collect information particularly relevant to Turkey. Attention also was paid to ensuring the comparability of the DHS-2008 findings with previous demographic surveys carried out by the Hacettepe Institute of Population Studies. In the process of designing the TDHS-2003 questionnaires, national and international population and health agencies were consulted for their comments.
a) The Household Questionnaire was used to enumerate all usual members of and visitors to the selected households and to collect information relating to the socioeconomic position of the households. In the first part of the Household Questionnaire, basic information was collected on the age, sex, educational attainment, recent migration and residential mobility, employment, marital status, and relationship to the head of household of each person listed as a household member or visitor. The objective of the first part of the Household Questionnaire was to obtain the information needed to identify women who were eligible for the individual interview as well as to provide basic demographic data for Turkish households. The second part of the Household Questionnaire included questions on never married women age 15-49, with the objective of collecting information on basic background characteristics of women in this age group. The third section was used to collect information on the welfare of the elderly people. The final section of the Household Questionnaire was used to collect information on housing characteristics, such as the number of rooms, the flooring material, the source of water, and the type of toilet facilities, and on the household's ownership of a variety of consumer goods. This section also incorporated a module that was only administered in Istanbul metropolitan households, on house ownership, use of municipal facilities and the like, as well as a module that was used to collect information, from one-half of households, on salt iodization. In households where salt was present, test kits were used to test whether the salt used in the household was fortified with potassium iodine or potassium iodate, i.e. whether salt was iodized.
b) The Individual Questionnaire for ever-married women obtained information on the following subjects:
- Background characteristics
- Reproduction
- Marriage
- Knowledge and use of family planning
- Maternal care and breastfeeding
- Immunization and health
- Fertility preferences
- Husband's background
- Women's work and status
- Sexually transmitted diseases and AIDS
- Maternal and child anthropometry.
The questionnaires were returned to the Hacettepe Institute of Population Studies by the fieldwork teams for data processing as soon as interviews were completed in a province. The office editing staff checked that the questionnaires for all the selected households and eligible respondents were returned from the field.
The Human Mortality Database (HMD) was created to provide detailed mortality and population data to researchers, students, journalists, policy analysts, and others interested in the history of human longevity. The project began as an outgrowth of earlier projects in the Department of Demography at the University of California, Berkeley, USA, and at the Max Planck Institute for Demographic Research in Rostock, Germany (see history). It is the work of two teams of researchers in the USA and Germany (see research teams), with the help of financial backers and scientific collaborators from around the world (see acknowledgements).
The French Institute for Demographic Studies (INED) has also supported the further development of the database in recent years.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This database includes university-based research centers in the Arab region conducting reseach in the social sciences and humanities. For each research center, it presents the fields of research, thematic focus, types of publications, events organized, year of establishment, ...
It is one in a series of databases compiled by the Arab Social Science Monitor as part of its mission to document and analyze the infrastructures of social sciences and humanities knowledge production and dissemination in the Arab region.
The health and demography of the South African population has been undergoing substantial changes as a result of the rapidly progressing HIV epidemic. Researchers at the University of KwaZulu-Natal and the South African Medical Research Council established The Africa Health Research Studies in 1997 funded by a core grant from The Wellcome Trust, UK. Given the urgent need for high quality longitudinal data with which to monitor these changes, and with which to evaluate interventions to mitigate impact, a demographic surveillance system (DSS) was established in a rural South African population facing a rapid and severe HIV epidemic. The DSS, referred to as the Africa Health Research Institute Demographic Information System (ACDIS), started in 2000.
ACDIS was established to ‘describe the demographic, social and health impact of the HIV epidemic in a population going through the health transition’ and to monitor the impact of intervention strategies on the epidemic. South Africa’s political and economic history has resulted in highly mobile urban and rural populations, coupled with complex, fluid households. In order to successfully monitor the epidemic, it was necessary to collect longitudinal demographic data (e.g. mortality, fertility, migration) on the population and to mirror this complex social reality within the design of the demographic information system. To this end, three primary subjects are observed longitudinally in ACDIS: physical structures (e.g. homesteads, clinics and schools), households and individuals. The information about these subjects, and all related information, is stored in a single MSSQL Server database, in a truly longitudinal way—i.e. not as a series of cross-sections.
The surveillance area is located near the market town of Mtubatuba in the Umkanyakude district of KwaZulu-Natal. The area is 438 square kilometers in size and includes a population of approximately 85 000 people who are members of approximately 11 000 households. The population is almost exclusively Zulu-speaking. The area is typical of many rural areas of South Africa in that while predominantly rural, it contains an urban township and informal peri-urban settlements. The area is characterized by large variations in population densities (20–3000 people/km2). In the rural areas, homesteads are scattered rather than grouped. Most households are multi-generational and range with an average size of 7.9 (SD:4.7) members. Despite being a predominantly rural area, the principle source of income for most households is waged employment and state pensions rather than agriculture. In 2006, approximately 77% of households in the surveillance area had access to piped water and toilet facilities.
To fulfil the eligibility criteria for the ACDIS cohort, individuals must be a member of a household within the surveillance area but not necessarily resident within it. Crucially, this means that ACDIS collects information on resident and non-resident members of households and makes a distinction between membership (self-defined on the basis of links to other household members) and residency (residing at a physical structure within the surveillance area at a particular point in time). Individuals can be members of more than one household at any point in time (e.g. polygamously married men whose wives maintain separate households). As of June 2006, there were 85 855 people under surveillance of whom 33% were not resident within the surveillance area. Obtaining information on non-resident members is vital for a number of reasons. Most importantly, understanding patterns of HIV transmission within rural areas requires knowledge about patterns of circulation and about sexual contacts between residents and their non-resident partners. To be consistent with similar datasets from other INDEPTH Member centres, this data set contains data from resident members only.
During data collection, households are visited by fieldworkers and information supplied by a single key informant. All births, deaths and migrations of household members are recorded. If household members have moved internally within the surveillance area, such moves are reconciled and the internal migrant retains the original identfier associated with him/her.
Demographic surveillance area situated in the south-east portion of the uMkhanyakude district of KwaZulu-Natal province near the town of Mtubatuba. It is bounded on the west by the Umfolozi-Hluhluwe nature reserve, on the South by the Umfolozi river, on the East by the N2 highway (except form portions where the Kwamsane township strandles the highway) and in the North by the Inyalazi river for portions of the boundary. The area is 438 square kilometers.
Individual
Resident household members of households resident within the demographic surveillance area. Inmigrants are defined by intention to become resident, but actual residence episodes of less than 180 days are censored. Outmigrants are defined by intention to become resident elsewhere, but actual periods of non-residence less than 180 days are censored. Children born to resident women are considered resident by default, irrespective of actual place of birth. The dataset contains the events of all individuals ever resident during the study period (1 Jan 2000 to 31 Dec 2015).
Event history data
This dataset contains rounds 1 to 37 of demographic surveillance data covering the period from 1 Jan 2000 to 31 December 2015. Two rounds of data collection took place annually except in 2002 when three surveillance rounds were conducted. From 1 Jan 2015 onwards there are three surveillance rounds per annum.
This dataset is not based on a sample but contains information from the complete demographic surveillance area.
Reponse units (households) by year:
Year Households
2000 11856
2001 12321
2002 12981
2003 12165
2004 11841
2005 11312
2006 12065
2007 12165
2008 11790
2009 12145
2010 12485
2011 12455
2012 12087
2013 11988
2014 11778
2015 11938
In 2006 the number of response units increased due to the addition of a new village into the demographic surveillance area.
None
Proxy Respondent [proxy]
Bounded structure registration (BSR) or update (BSU) form: - Used to register characteristics of the BS - Updates characteristics of the BS - Information as at previous round is preprinted
Household registration (HHR) or update (HHU) form: - Used to register characteristics of the HH - Used to update information about the composition of the household - Information preprinted of composition and all registered households as at previous
Household Membership Registration (HMR) or update (HMU): - Used to link individuals to households - Used to update information about the household memberships and member status observations - Information preprinted of member status observations as at previous
Individual registration form (IDR): - Used to uniquely identify each individual - Mainly to ensure members with multiple household memberships are appropriately captured
Migration notification form (MGN): - Used to record change in the BS of residency of individuals or households _ Migrants are tracked and updated in the database
Pregnancy history form (PGH) & pregnancy outcome notification form (PON): - Records details of pregnancies and their outcomes - Only if woman is a new member - Only if woman has never completed WHL or WGH
Death notification form (DTN): - Records all deaths that have recently occurred - Iincludes information about time, place, circumstances and possible cause of death
On data entry data consistency and plausibility were checked by 455 data validation rules at database level. If data validaton failure was due to a data collection error, the questionnaire was referred back to the field for revisit and correction. If the error was due to data inconsistencies that could not be directly traced to a data collection error, the record was referred to the data quality team under the supervision of the senior database scientist. This could request further field level investigation by a team of trackers or could correct the inconsistency directly at database level.
No imputations were done on the resulting micro data set, except for:
a. If an out-migration (OMG) event is followed by a homestead entry event (ENT) and the gap between OMG event and ENT event is greater than 180 days, the ENT event was changed to an in-migration event (IMG). b. If an out-migration (OMG) event is followed by a homestead entry event (ENT) and the gap between OMG event and ENT event is less than 180 days, the OMG event was changed to an homestead exit event (EXT) and the ENT event date changed to the day following the original OMG event. c. If a homestead exit event (EXT) is followed by an in-migration event (IMG) and the gap between the EXT event and the IMG event is greater than 180 days, the EXT event was changed to an out-migration event (OMG). d. If a homestead exit event (EXT) is followed by an in-migration event (IMG) and the gap between the EXT event and the IMG event is less than 180 days, the IMG event was changed to an homestead entry event (ENT) with a date equal to the day following the EXT event. e. If the last recorded event for an individual is homestead exit (EXT) and this event is more than 180 days prior to the end of the surveillance period, then the EXT event is changed to an
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Union Center population by year. The dataset can be utilized to understand the population trend of Union Center.
The dataset constitues the following datasets
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
The Health Statistics and Health Research Database is Estonian largest set of health-related statistics and survey results administrated by National Institute for Health Development. Use of the database is free of charge.
The database consists of eight main areas divided into sub-areas. The data tables included in the sub-areas are assigned unique codes. The data tables presented in the database can be both viewed in the Internet environment, and downloaded using different file formats (.px, .xlsx, .csv, .json). You can download the detailed database user manual here (.pdf).
The database is constantly updated with new data. Dates of updating the existing data tables and adding new data are provided in the release calendar. The date of the last update to each table is provided after the title of the table in the list of data tables.
A contact person for each sub-area is provided under the "Definitions and Methodology" link of each sub-area, so you can ask additional information about the data published in the database. Contact this person for any further questions and data requests.
Read more about publication of health statistics by National Institute for Health Development in Health Statistics Dissemination Principles.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Milton Center population by age cohorts (Children: Under 18 years; Working population: 18-64 years; Senior population: 65 years or more). It lists the population in each age cohort group along with its percentage relative to the total population of Milton Center. The dataset can be utilized to understand the population distribution across children, working population and senior population for dependency ratio, housing requirements, ageing, migration patterns etc.
Key observations
The largest age group was 18 to 64 years with a poulation of 143 (59.58% of the total population). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age cohorts:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Milton Center Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Center population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Center across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2022, the population of Center was 579, a 1.36% decrease year-by-year from 2021. Previously, in 2021, Center population was 587, an increase of 0.17% compared to a population of 586 in 2020. Over the last 20 plus years, between 2000 and 2022, population of Center decreased by 87. In this period, the peak population was 666 in the year 2000. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Center Population by Year. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Center Point population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Center Point across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Center Point was 2,549, a 0.27% decrease year-by-year from 2022. Previously, in 2022, Center Point population was 2,556, a decline of 0.54% compared to a population of 2,570 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Center Point increased by 535. In this period, the peak population was 2,584 in the year 2020. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Center Point Population by Year. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Center Point population by year. The dataset can be utilized to understand the population trend of Center Point.
The dataset constitues the following datasets
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the data for the Milton Center, OH population pyramid, which represents the Milton Center population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Milton Center Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Le Center by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Le Center. The dataset can be utilized to understand the population distribution of Le Center by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Le Center. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Le Center.
Key observations
Largest age group (population): Male # 20-24 years (136) | Female # 20-24 years (134). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Le Center Population by Gender. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Rush Center population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Rush Center across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Rush Center was 136, a 3.55% decrease year-by-year from 2022. Previously, in 2022, Rush Center population was 141, an increase of 0.71% compared to a population of 140 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Rush Center decreased by 38. In this period, the peak population was 174 in the year 2000. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Rush Center Population by Year. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Milton Center population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Milton Center across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Milton Center was 134, a 0% decrease year-by-year from 2022. Previously, in 2022, Milton Center population was 134, a decline of 0% compared to a population of 134 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Milton Center decreased by 54. In this period, the peak population was 191 in the year 2005. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Milton Center Population by Year. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Richland Center by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Richland Center. The dataset can be utilized to understand the population distribution of Richland Center by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Richland Center. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Richland Center.
Key observations
Largest age group (population): Male # 60-64 years (255) | Female # 15-19 years (291). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Richland Center Population by Gender. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Dallas Center population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Dallas Center across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Dallas Center was 1,966, a 0.61% increase year-by-year from 2022. Previously, in 2022, Dallas Center population was 1,954, an increase of 1.51% compared to a population of 1,925 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Dallas Center increased by 375. In this period, the peak population was 1,966 in the year 2023. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Dallas Center Population by Year. You can refer the same here
https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de452467https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de452467
Abstract (en): This study contains teaching materials developed over a period of years for a four-week workshop, Longitudinal Analysis of Historical Demographic Data (LAHDD), offered through the ICPSR Summer Program in 2006, 2007, 2009, 2011 and 2013, with one-day alumni workshops in 2010, 2012, and 2014. Instructors in the workshops are listed below. Funding was provided by The Eunice Kennedy Shriver National Institute of Child Health and Human Development, grants R25-HD040525 and R25-HD-049479, the ICPSR Summer Program and the ICPSR Director. The course was designed to teach students the theories, methods, and practices of historical demography and to give them first-hand experience working with historical data. This training is valuable not only to those interested in the analysis historical data. The techniques of historical demography rest on methodological insights that can be applied to many problems in population studies and other social sciences. While historical demography remains a flourishing research area with publications in key journals like Demography, Population Studies, and Population, practitioners were dispersed, and training was not available at any of the population research centers in the U.S. or elsewhere. One hundred and ten participants from around the globe took part in the workshops, and have gone on to establish courses of their own or teach in other workshops. We offer these materials here in the hopes that others will find them useful in developing courses on historical demography and/or longitudinal data analysis. The workshop was organized in three tracks: A brief tour of historical demography, event-history analysis, and data management for longitudinal data using Stata and Microsoft Access. The data management track includes 13 exercises designed for hands-on learning and reinforcement. Included in this project are the syllabii and reading lists for the three tracks, datasets used in the exercises, documents setting out each exercise, a file with the expected results, and for many of the exercises, an explanation. Video tutorials helpful with the Access exercises are accessible from ICPSR's YouTube channel https://www.youtube.com/playlist?list=PLqC9lrhW1Vvb9M1QpQH23z9UlPYxHbUMF. Users are encouraged to use these materials to develop their own courses and workshops in any of the topics covered. Please acknowledge NICHD R25-HD040525 and R25-HD-049479 whenever appropriate. Historical demography instructors: Myron P. Gutmann, University of Colorado Boulder Cameron Campbell, Hong Kong University of Science and Technology J. David Hacker, University of Minnesota Satomi Kurosu, Reitaku University Katherine A. Lynch, Carnegie Mellon University Event history instructors: Cameron Campbell, Hong Kong University of Science and Technology Glenn Deane, State University of New York at Albany Ken R. Smith, Huntsman Cancer Institute and University of Utah Database management instructors: George Alter, University of Michigan Susan Hautaniemi Leonard, University of Michigan Teaching Assistants: Mathew Creighton, University of Massachusetts Boston Emily Merchant, University of Michigan Luciana Quaranta, Lund University Kristine Witkowski, University of Michigan Project Manager: Susan Hautaniemi Leonard, University of Michigan Funding insitution(s): United States Department of Health and Human Services. National Institutes of Health. Eunice Kennedy Shriver National Institute of Child Health and Human Development (R25 HD040525).