100+ datasets found
  1. Z

    MIRA-KG: A Knowledge Graph of Hypotheses and Findings for Social Demography...

    • data.niaid.nih.gov
    • zenodo.org
    • +1more
    Updated May 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stork, Lise (2024). MIRA-KG: A Knowledge Graph of Hypotheses and Findings for Social Demography Research [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_10286845
    Explore at:
    Dataset updated
    May 26, 2024
    Dataset provided by
    Stork, Lise
    Zijdeman, Richard
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    A shift in scientific publishing from paper-based to knowledge-based practices promotes reproducibility, machine actionability and knowledge discovery. This is important for disciplines like social science, as study indicators are often social constructs such as race or education; hypothesis tests are challenging to compare in demographic research due to their limited temporal and spatial coverage; and natural language in research papers is often imprecise and ambiguous. Therefore, we present the MIRA-KG, consisting of: (1) an ontology for capturing social demography research, which links hypotheses and findings to evidence, (2) annotations of papers on health inequality in terms of the ontology, gathered by (i) prompting a Large Language Model to annotate paper abstracts using the ontology, (ii) mapping concepts to terms from NCBO BioPortal ontologies and GeoNames, and (iii) refining the final graph by a set of SHACL constraints, developed according to data quality criteria. The utility of the resource lies in its use for formally representing social demography research hypotheses, discovering research biases, discovery of knowledge, and the derivation of novel questions.This dataset was generated using the code available on Github at https://w3id.org/mira/ at version v1.0. It uses the following ontology: https://w3id.org/mira/ontology/.

  2. w

    Demographic and Health Survey 2002 - Viet Nam

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Oct 26, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    General Statistical Office (GSO) (2023). Demographic and Health Survey 2002 - Viet Nam [Dataset]. https://microdata.worldbank.org/index.php/catalog/1518
    Explore at:
    Dataset updated
    Oct 26, 2023
    Dataset authored and provided by
    General Statistical Office (GSO)
    Time period covered
    2002
    Area covered
    Vietnam
    Description

    Abstract

    The 2002 Vietnam Demographic and Health Survey (VNDHS 2002) is a nationally representative sample survey of 5,665 ever-married women age 15-49 selected from 205 sample points (clusters) throughout Vietnam. It provides information on levels of fertility, family planning knowledge and use, infant and child mortality, and indicators of maternal and child health. The survey included a Community/ Health Facility Questionnaire that was implemented in each of the sample clusters.

    The survey was designed to measure change in reproductive health indicators over the five years since the VNDHS 1997, especially in the 18 provinces that were targeted in the Population and Family Health Project of the Committee for Population, Family and Children. Consequently, all provinces were separated into “project” and “nonproject” groups to permit separate estimates for each. Data collection for the survey took place from 1 October to 21 December 2002.

    The Vietnam Demographic and Health Survey 2002 (VNDHS 2002) was the third DHS in Vietnam, with prior surveys implemented in 1988 and 1997. The VNDHS 2002 was carried out in the framework of the activities of the Population and Family Health Project of the Committee for Population, Family and Children (previously the National Committee for Population and Family Planning).

    The main objectives of the VNDHS 2002 were to collect up-to-date information on family planning, childhood mortality, and health issues such as breastfeeding practices, pregnancy care, vaccination of children, treatment of common childhood illnesses, and HIV/AIDS, as well as utilization of health and family planning services. The primary objectives of the survey were to estimate changes in family planning use in comparison with the results of the VNDHS 1997, especially on issues in the scope of the project of the Committee for Population, Family and Children.

    VNDHS 2002 data confirm the pattern of rapidly declining fertility that was observed in the VNDHS 1997. It also shows a sharp decline in child mortality, as well as a modest increase in contraceptive use. Differences between project and non-project provinces are generally small.

    Geographic coverage

    The 2002 Vietnam Demographic and Health Survey (VNDHS 2002) is a nationally representative sample survey. The VNDHS 1997 was designed to provide separate estimates for the whole country, urban and rural areas, for 18 project provinces and the remaining nonproject provinces as well. Project provinces refer to 18 focus provinces targeted for the strengthening of their primary health care systems by the Government's Population and Family Health Project to be implemented over a period of seven years, from 1996 to 2002 (At the outset of this project there were 15 focus provinces, which became 18 by the creation of 3 new provinces from the initial set of 15). These provinces were selected according to criteria based on relatively low health and family planning status, no substantial family planning donor presence, and regional spread. These criteria resulted in the selection of the country's poorer provinces. Nine of these provinces have significant proportions of ethnic minorities among their population.

    Analysis unit

    • Household
    • Women age 15-49

    Universe

    The population covered by the 2002 VNDHS is defined as the universe of all women age 15-49 in Vietnam.

    Kind of data

    Sample survey data

    Sampling procedure

    The sample for the VNDHS 2002 was based on that used in the VNDHS 1997, which in turn was a subsample of the 1996 Multi-Round Demographic Survey (MRS), a semi-annual survey of about 243,000 households undertaken regularly by GSO. The MRS sample consisted of 1,590 sample areas known as enumeration areas (EAs) spread throughout the 53 provinces/cities of Vietnam, with 30 EAs in each province. On average, an EA comprises about 150 households. For the VNDHS 1997, a subsample of 205 EAs was selected, with 26 households in each urban EA and 39 households for each rural EA. A total of 7,150 households was selected for the survey. The VNDHS 1997 was designed to provide separate estimates for the whole country, urban and rural areas, for 18 project provinces and the remaining nonproject provinces as well. Because the main objective of the VNDHS 2002 was to measure change in reproductive health indicators over the five years since the VNDHS 1997, the sample design for the VNDHS 2002 was as similar as possible to that of the VNDHS 1997.

    Although it would have been ideal to have returned to the same households or at least the same sample points as were selected for the VNDHS 1997, several factors made this undesirable. Revisiting the same households would have held the sample artificially rigid over time and would not allow for newly formed households. This would have conflicted with the other major survey objective, which was to provide up-to-date, representative data for the whole of Vietnam. Revisiting the same sample points that were covered in 1997 was complicated by the fact that the country had conducted a population census in 1999, which allowed for a more representative sample frame.

    In order to balance the two main objectives of measuring change and providing representative data, it was decided to select enumeration areas from the 1999 Population Census, but to cover the same communes that were sampled in the VNDHS 1997 and attempt to obtain a sample point as close as possible to that selected in 1997. Consequently, the VNDHS 2002 sample also consisted of 205 sample points and reflects the oversampling in the 20 provinces that fall in the World Bank-supported Population and Family Health Project. The sample was designed to produce about 7,000 completed household interviews and 5,600 completed interviews with ever-married women age 15-49.

    Mode of data collection

    Face-to-face

    Research instrument

    As in the VNDHS 1997, three types of questionnaires were used in the 2002 survey: the Household Questionnaire, the Individual Woman's Questionnaire, and the Community/Health Facility Questionnaire. The first two questionnaires were based on the DHS Model A Questionnaire, with additions and modifications made during an ORC Macro staff visit in July 2002. The questionnaires were pretested in two clusters in Hanoi (one in a rural area and another in an urban area). After the pretest and consultation with ORC Macro, the drafts were revised for use in the main survey.

    a) The Household Questionnaire was used to enumerate all usual members and visitors in selected households and to collect information on age, sex, education, marital status, and relationship to the head of household. The main purpose of the Household Questionnaire was to identify persons who were eligible for individual interview (i.e. ever-married women age 15-49). In addition, the Household Questionnaire collected information on characteristics of the household such as water source, type of toilet facilities, material used for the floor and roof, and ownership of various durable goods.

    b) The Individual Questionnaire was used to collect information on ever-married women aged 15-49 in surveyed households. These women were interviewed on the following topics:
    - Respondent's background characteristics (education, residential history, etc.); - Reproductive history; - Contraceptive knowledge and use;
    - Antenatal and delivery care; - Infant feeding practices; - Child immunization; - Fertility preferences and attitudes about family planning; - Husband's background characteristics; - Women's work information; and - Knowledge of AIDS.

    c) The Community/Health Facility Questionnaire was used to collect information on all communes in which the interviewed women lived and on services offered at the nearest health stations. The Community/Health Facility Questionnaire consisted of four sections. The first two sections collected information from community informants on some characteristics such as the major economic activities of residents, distance from people's residence to civic services and the location of the nearest sources of health care. The last two sections involved visiting the nearest commune health centers and intercommune health centers, if these centers were located within 30 kilometers from the surveyed cluster. For each visited health center, information was collected on the type of health services offered and the number of days services were offered per week; the number of assigned staff and their training; medical equipment and medicines available at the time of the visit.

    Cleaning operations

    The first stage of data editing was implemented by the field editors soon after each interview. Field editors and team leaders checked the completeness and consistency of all items in the questionnaires. The completed questionnaires were sent to the GSO headquarters in Hanoi by post for data processing. The editing staff of the GSO first checked the questionnaires for completeness. The data were then entered into microcomputers and edited using a software program specially developed for the DHS program, the Census and Survey Processing System, or CSPro. Data were verified on a 100 percent basis, i.e., the data were entered separately twice and the two results were compared and corrected. The data processing and editing staff of the GSO were trained and supervised for two weeks by a data processing specialist from ORC Macro. Office editing and processing activities were initiated immediately after the beginning of the fieldwork and were completed in late December 2002.

    Response rate

    The results of the household and individual

  3. i

    Demographic and Health Survey 1987 - Thailand

    • dev.ihsn.org
    • catalog.ihsn.org
    • +2more
    Updated Apr 25, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Institute of Population Studies (IPS) (2019). Demographic and Health Survey 1987 - Thailand [Dataset]. https://dev.ihsn.org/nada/catalog/73372
    Explore at:
    Dataset updated
    Apr 25, 2019
    Dataset authored and provided by
    Institute of Population Studies (IPS)
    Time period covered
    1987
    Area covered
    Thailand
    Description

    Abstract

    The Thai Demographic and Health Survey (TDHS) was a nationally representative sample survey conducted from March through June 1988 to collect data on fertility, family planning, and child and maternal health. A total of 9,045 households and 6,775 ever-married women aged 15 to 49 were interviewed. Thai Demographic and Health Survey (TDHS) is carried out by the Institute of Population Studies (IPS) of Chulalongkorn University with the financial support from USAID through the Institute for Resource Development (IRD) at Westinghouse. The Institute of Population Studies was responsible for the overall implementation of the survey including sample design, preparation of field work, data collection and processing, and analysis of data. IPS has made available its personnel and office facilities to the project throughout the project duration. It serves as the headquarters for the survey.

    The Thai Demographic and Health Survey (TDHS) was undertaken for the main purpose of providing data concerning fertility, family planning and maternal and child health to program managers and policy makers to facilitate their evaluation and planning of programs, and to population and health researchers to assist in their efforts to document and analyze the demographic and health situation. It is intended to provide information both on topics for which comparable data is not available from previous nationally representative surveys as well as to update trends with respect to a number of indicators available from previous surveys, in particular the Longitudinal Study of Social Economic and Demographic Change in 1969-73, the Survey of Fertility in Thailand in 1975, the National Survey of Family Planning Practices, Fertility and Mortality in 1979, and the three Contraceptive Prevalence Surveys in 1978/79, 1981 and 1984.

    Geographic coverage

    National

    Analysis unit

    • Household
    • Women age 15-49

    Universe

    The population covered by the 1987 THADHS is defined as the universe of all women Ever-married women in the reproductive ages (i.e., women 15-49). This covered women in private households on the basis of a de facto coverage definition. Visitors and usual residents who were in the household the night before the first visit or before any subsequent visit during the few days the interviewing team was in the area were eligible. Excluded were the small number of married women aged under 15 and women not present in private households.

    Kind of data

    Sample survey data

    Sampling procedure

    SAMPLE SIZE AND ALLOCATION

    The objective of the survey was to provide reliable estimates for major domains of the country. This consisted of two overlapping sets of reporting domains: (a) Five regions of the country namely Bangkok, north, northeast, central region (excluding Bangkok), and south; (b) Bangkok versus all provincial urban and all rural areas of the country. These requirements could be met by defining six non-overlapping sampling domains (Bangkok, provincial urban, and rural areas of each of the remaining 4 regions), and allocating approximately equal sample sizes to them. On the basis of past experience, available budget and overall reporting requirement, the target sample size was fixed at 7,000 interviews of ever-married women aged 15-49, expected to be found in around 9,000 households. Table A.I shows the actual number of households as well as eligible women selected and interviewed, by sampling domain (see Table i.I for reporting domains).

    THE FRAME AND SAMPLE SELECTION

    The frame for selecting the sample for urban areas, was provided by the National Statistical Office of Thailand and by the Ministry of the Interior for rural areas. It consisted of information on population size of various levels of administrative and census units, down to blocks in urban areas and villages in rural areas. The frame also included adequate maps and descriptions to identify these units. The extent to which the data were up-to-date as well as the quality of the data varied somewhat in different parts of the frame. Basically, the multi-stage stratified sampling design involved the following procedure. A specified number of sample areas were selected systematically from geographically/administratively ordered lists with probabilities proportional to the best available measure of size (PPS). Within selected areas (blocks or villages) new lists of households were prepared and systematic samples of households were selected. In principle, the sampling interval for the selection of households from lists was determined so as to yield a self weighting sample of households within each domain. However, in the absence of good measures of population size for all areas, these sampling intervals often required adjustments in the interest of controlling the size of the resulting sample. Variations in selection probabilities introduced due to such adjustment, where required, were compensated for by appropriate weighting of sample cases at the tabulation stage.

    SAMPLE OUTCOME

    The final sample of households was selected from lists prepared in the sample areas. The time interval between household listing and enumeration was generally very short, except to some extent in Bangkok where the listing itself took more time. In principle, the units of listing were the same as the ultimate units of sampling, namely households. However in a small proportion of cases, the former differed from the latter in several respects, identified at the stage of final enumeration: a) Some units listed actually contained more than one household each b) Some units were "blanks", that is, were demolished or not found to contain any eligible households at the time of enumeration. c) Some units were doubtful cases in as much as the household was reported as "not found" by the interviewer, but may in fact have existed.

    Mode of data collection

    Face-to-face

    Research instrument

    The DHS core questionnaires (Household, Eligible Women Respondent, and Community) were translated into Thai. A number of modifications were made largely to adapt them for use with an ever- married woman sample and to add a number of questions in areas that are of special interest to the Thai investigators but which were not covered in the standard core. Examples of such modifications included adding marital status and educational attainment to the household schedule, elaboration on questions in the individual questionnaire on educational attainment to take account of changes in the educational system during recent years, elaboration on questions on postnuptial residence, and adaptation of the questionnaire to take into account that only ever-married women are being interviewed rather than all women. More generally, attention was given to the wording of questions in Thai to ensure that the intent of the original English-language version was preserved.

    a) Household questionnaire

    The household questionnaire was used to list every member of the household who usually lives in the household and as well as visitors who slept in the household the night before the interviewer's visit. Information contained in the household questionnaire are age, sex, marital status, and education for each member (the last two items were asked only to members aged 13 and over). The head of the household or the spouse of the head of the household was the preferred respondent for the household questionnaire. However, if neither was available for interview, any adult member of the household was accepted as the respondent. Information from the household questionnaire was used to identify eligible women for the individual interview. To be eligible, a respondent had to be an ever-married woman aged 15-49 years old who had slept in the household 'the previous night'.

    Prior evidence has indicated that when asked about current age, Thais are as likely to report age at next birthday as age at last birthday (the usual demographic definition of age). Since the birth date of each household number was not asked in the household questionnaire, it was not possible to calculate age at last birthday from the birthdate. Therefore a special procedure was followed to ensure that eligible women just under the higher boundary for eligible ages (i.e. 49 years old) were not mistakenly excluded from the eligible woman sample because of an overstated age. Ever-married women whose reported age was between 50-52 years old and who slept in the household the night before birthdate of the woman, it was discovered that these women (or any others being interviewed) were not actually within the eligible age range of 15-49, the interview was terminated and the case disqualified. This attempt recovered 69 eligible women who otherwise would have been missed because their reported age was over 50 years old or over.

    b) Individual questionnaire

    The questionnaire administered to eligible women was based on the DHS Model A Questionnaire for high contraceptive prevalence countries. The individual questionnaire has 8 sections: - Respondent's background - Reproduction - Contraception - Health and breastfeeding - Marriage - Fertility preference - Husband's background and woman's work - Heights and weights of children and mothers

    The questionnaire was modified to suit the Thai context. As noted above, several questions were added to the standard DHS core questionnaire not only to meet the interest of IPS researchers hut also because of their relevance to the current demographic situation in Thailand. The supplemental questions are marked with an asterisk in the individual questionnaire. Questions concerning the following items were added in the individual questionnaire: - Did the respondent ever

  4. B

    Alberta Survey, 2012B

    • borealisdata.ca
    Updated Mar 2, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Population Research Laboratory (2018). Alberta Survey, 2012B [Dataset]. http://doi.org/10.7939/DVN/10004
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 2, 2018
    Dataset provided by
    Borealis
    Authors
    Population Research Laboratory
    License

    https://borealisdata.ca/api/datasets/:persistentId/versions/7.1/customlicense?persistentId=doi:10.7939/DVN/10004https://borealisdata.ca/api/datasets/:persistentId/versions/7.1/customlicense?persistentId=doi:10.7939/DVN/10004

    Time period covered
    Jul 2012
    Area covered
    Alberta, Canada
    Description

    The Population Research Laboratory (PRL), a member of the Association of Academic Survey Research Organizations (AASRO), seeks to advance the research, education and service goals of the University of Alberta by helping academic researchers and policy makers design and implement applied social science research projects. The PRL specializes in the gathering, analysis, and presentation of data about demographic, social and public issues. The PRL research team provides expert consultation and implementation of quantitative and qualitative research methods, project design, sample design, web-based, paper-based and telephone surveys, field site testing, data analysis and report writing. The PRL follows scientifically rigorous and transparent methods in each phase of a research project. Research Coordinators are members of the American Association for Public Opinion Research (AAPOR) and use best practices when conducting all types of research. The PRL has particular expertise in conducting computer-assisted telephone interviews (referred to as CATI surveys). When conducting telephone surveys, all calls are displayed as being from the "U of A PRL", a procedure that assures recipients that the call is not from a telemarketer, and thus helps increase response rates. The PRL maintains a complement of highly skilled telephone interviewers and supervisors who are thoroughly trained in FOIPP requirements, respondent selection procedures, questionnaire instructions, and neutral probing. A subset of interviewers are specially trained to convince otherwise reluctant respondents to participate in the study, a practice that increases response rates and lowers selection bias. PRL staff monitors data collection on a daily basis to allow any necessary adjustments to the volume and timing of calls and respondent selection criteria. The Population Research Laboratory (PRL) administered the 2012 Alberta Survey B. This survey of households across the province of Alberta continues to enable academic researchers, government departments, and non-profit organizations to explore a wide range of topics in a structured research framework and environment. Sponsors' research questions are asked together with demographic questions in a telephone interview of Alberta households. This data consists of the information from 1207 Alberta residence, interviewed between June 5, 2012 and June 27, 2012. The amount of responses indicates that the response rate, as calculated percentages representing the number of people who participated in the survey divided by the number selected in the eligible sample, was 27.6% for survey B. The subject ares included in the 2012 Alberta Survey B includes socio-demographic and background variables such as: household composition, age, gender, marital status, highest level of education, household income, religion, ethnic background, place of birth, employment status, home ownership, political party support and perceptions of financial status. In addition, the topics of public health and injury control, tobacco reduction, activity limitations and personal directives, unions, politics and health.

  5. r

    Data Sharing for Demographics Research (DSDR)

    • rrid.site
    Updated Jul 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Data Sharing for Demographics Research (DSDR) [Dataset]. http://identifiers.org/RRID:SCR_016310/resolver?q=&i=rrid
    Explore at:
    Dataset updated
    Jul 27, 2025
    Description

    DSDR disseminates, archives, and preserves data for population-based studies. By providing access to data on topics including mortality and health, fertility, family and household structure, and children and youth, DSDR aims to facilitate demographic research.

  6. E

    Demographic and Socio-economic statistics

    • healthinformationportal.eu
    html
    Updated Jan 17, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Demographic and Socio-economic statistics [Dataset]. https://www.healthinformationportal.eu/health-information-sources/demographic-and-socio-economic-statistics
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Jan 17, 2023
    Variables measured
    title, topics, country, language, description, contact_email, free_keywords, alternative_title, type_of_information, Data Collection Period, and 2 more
    Measurement technique
    Multiple sources
    Description
  7. E

    Health Statistic and Research Database

    • healthinformationportal.eu
    html
    Updated Feb 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Estonian National Institute for Health Development (2023). Health Statistic and Research Database [Dataset]. https://www.healthinformationportal.eu/health-information-sources/health-statistic-and-research-database
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Feb 23, 2023
    Dataset authored and provided by
    Estonian National Institute for Health Development
    Variables measured
    sex, title, topics, country, language, data_owners, description, contact_name, geo_coverage, contact_email, and 10 more
    Measurement technique
    Multiple sources
    Description

    The Health Statistics and Health Research Database is Estonian largest set of health-related statistics and survey results administrated by National Institute for Health Development. Use of the database is free of charge.

    The database consists of eight main areas divided into sub-areas. The data tables included in the sub-areas are assigned unique codes. The data tables presented in the database can be both viewed in the Internet environment, and downloaded using different file formats (.px, .xlsx, .csv, .json). You can download the detailed database user manual here (.pdf).

    The database is constantly updated with new data. Dates of updating the existing data tables and adding new data are provided in the release calendar. The date of the last update to each table is provided after the title of the table in the list of data tables.

    A contact person for each sub-area is provided under the "Definitions and Methodology" link of each sub-area, so you can ask additional information about the data published in the database. Contact this person for any further questions and data requests.

    Read more about publication of health statistics by National Institute for Health Development in Health Statistics Dissemination Principles.

  8. f

    Study subjects:clinical and demographic information.

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Sep 11, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    King, Elizabeth C.; Cliff, Jacqueline M.; Dockrell, Hazel M.; Hassan, Syeda S.; Akram, Muhammad (2015). Study subjects:clinical and demographic information. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001900162
    Explore at:
    Dataset updated
    Sep 11, 2015
    Authors
    King, Elizabeth C.; Cliff, Jacqueline M.; Dockrell, Hazel M.; Hassan, Syeda S.; Akram, Muhammad
    Description

    Study subjects:clinical and demographic information.

  9. Demographic and Health Survey 2008 - Turkiye

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    • +1more
    Updated Jun 14, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hacettepe University Institute of Population Studies (2022). Demographic and Health Survey 2008 - Turkiye [Dataset]. https://catalog.ihsn.org/catalog/5517
    Explore at:
    Dataset updated
    Jun 14, 2022
    Dataset authored and provided by
    Hacettepe University Institute of Population Studies
    Time period covered
    2008
    Area covered
    Türkiye
    Description

    Abstract

    The Turkey Demographic and Health Survey (DHS) 2008 has been conducted by the Haccettepe University Institute of Population Studies in collaboration with the Ministry of health General Directorate of Mother and Child Health and Family Planning and Undersecretary of State Planning Organization. The Turkey Demographic and Health Survey 2008 has been financed the scientific and Technological research Council of Turkey (TUBITAK) under the support program for Research Projects of Public Institutions.

    The primary objective of the Turkey DHS 2008 is to provide data on fertility, contraceptive methods, maternal and child health. Detailed information on these issues is obtained through questionnaires, filled by face-to face interviews with ever-married women in reproductive ages (15-49).

    Another important objective of the survey, with aims to contribute to the knowledge on population and health as well, is to maintain the flow of information for the related organizations in Turkey on the Turkish demographic structure and change in the absence of reliable vital registration system and ascertain the continuity of data on demographic and health necessary for sustainable development in the absence of a reliable vital registration system. In terms of survey methodology and content, the Turkey DHS 2008 is comparable with the previous demographic surveys in Turkey (MEASURE DHS+).

    Geographic coverage

    National

    Analysis unit

    • Household
    • Women age 15-49
    • Children under age of five

    Kind of data

    Sample survey data

    Mode of data collection

    Face-to-face

    Research instrument

    Two main types of questionnaires were used to collect the TDHS-2008 data: a) The Household Questionnaire; b) The Individual Questionnaire for Ever-Married Women of Reproductive Ages.

    The contents of these questionnaires were based on the DHS Model "A" Questionnaire, which was designed for the DHS program for use in countries with high contraceptive prevalence. Additions, deletions and modifications were made to the DHS model questionnaire in order to collect information particularly relevant to Turkey. Attention also was paid to ensuring the comparability of the DHS-2008 findings with previous demographic surveys carried out by the Hacettepe Institute of Population Studies. In the process of designing the TDHS-2003 questionnaires, national and international population and health agencies were consulted for their comments.

    a) The Household Questionnaire was used to enumerate all usual members of and visitors to the selected households and to collect information relating to the socioeconomic position of the households. In the first part of the Household Questionnaire, basic information was collected on the age, sex, educational attainment, recent migration and residential mobility, employment, marital status, and relationship to the head of household of each person listed as a household member or visitor. The objective of the first part of the Household Questionnaire was to obtain the information needed to identify women who were eligible for the individual interview as well as to provide basic demographic data for Turkish households. The second part of the Household Questionnaire included questions on never married women age 15-49, with the objective of collecting information on basic background characteristics of women in this age group. The third section was used to collect information on the welfare of the elderly people. The final section of the Household Questionnaire was used to collect information on housing characteristics, such as the number of rooms, the flooring material, the source of water, and the type of toilet facilities, and on the household's ownership of a variety of consumer goods. This section also incorporated a module that was only administered in Istanbul metropolitan households, on house ownership, use of municipal facilities and the like, as well as a module that was used to collect information, from one-half of households, on salt iodization. In households where salt was present, test kits were used to test whether the salt used in the household was fortified with potassium iodine or potassium iodate, i.e. whether salt was iodized.

    b) The Individual Questionnaire for ever-married women obtained information on the following subjects: - Background characteristics - Reproduction - Marriage - Knowledge and use of family planning - Maternal care and breastfeeding - Immunization and health - Fertility preferences - Husband's background
    - Women's work and status - Sexually transmitted diseases and AIDS - Maternal and child anthropometry.

    Cleaning operations

    The questionnaires were returned to the Hacettepe Institute of Population Studies by the fieldwork teams for data processing as soon as interviews were completed in a province. The office editing staff checked that the questionnaires for all the selected households and eligible respondents were returned from the field.

  10. o

    Data from: Longitudinal Analysis of Historical Demographic Data

    • openicpsr.org
    • search.gesis.org
    • +1more
    stata
    Updated Aug 27, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Myron P. Gutmann; George C. Alter (2015). Longitudinal Analysis of Historical Demographic Data [Dataset]. http://doi.org/10.3886/E100045V3
    Explore at:
    stataAvailable download formats
    Dataset updated
    Aug 27, 2015
    Dataset provided by
    University of Colorado-Boulder
    University of Michigan. Institute for Social Research
    Authors
    Myron P. Gutmann; George C. Alter
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    China, Belgium, United States, Japan, Germany, France, Utah
    Dataset funded by
    United States Department of Health and Human Services. National Institutes of Health. Eunice Kennedy Shriver National Institute of Child Health and Human Development
    Description
    This study contains teaching materials developed over a period of years for a four-week workshop, Longitudinal Analysis of Historical Demographic Data (LAHDD), offered through the ICPSR Summer Program in 2006, 2007, 2009, 2011 and 2013, with one-day alumni workshops in 2010, 2012, and 2014. Instructors in the workshops are listed below. Funding was provided by The Eunice Kennedy Shriver National Institute of Child Health and Human Development, grants R25-HD040525 and R25-HD-049479, the ICPSR Summer Program and the ICPSR Director. The course was designed to teach students the theories, methods, and practices of historical demography and to give them first-hand experience working with historical data. This training is valuable not only to those interested in the analysis historical data. The techniques of historical demography rest on methodological insights that can be applied to many problems in population studies and other social sciences. While historical demography remains a flourishing research area with publications in key journals like Demography, Population Studies, and Population, practitioners were dispersed, and training was not available at any of the population research centers in the U.S. or elsewhere. One hundred and ten participants from around the globe took part in the workshops, and have gone on to establish courses of their own or teach in other workshops. We offer these materials here in the hopes that others will find them useful in developing courses on historical demography and/or longitudinal data analysis.
    The workshop was organized in three tracks: A brief tour of historical demography, event-history analysis, and data management for longitudinal data using Stata and Microsoft Access. The data management track includes 13 exercises designed for hands-on learning and reinforcement. Included in this project are the syllabii and reading lists for the three tracks, datasets used in the exercises, documents setting out each exercise, a file with the expected results, and for many of the exercises, an explanation. Video tutorials helpful with the Access exercises are accessible from ICPSR's YouTube channel
    https://www.youtube.com/playlist?list=PLqC9lrhW1Vvb9M1QpQH23z9UlPYxHbUMF.

    Users are encouraged to use these materials to develop their own courses and workshops in any of the topics covered. Please acknowledge NICHD R25-HD040525 and R25-HD-049479 whenever appropriate.

    Historical demography instructors:
    Myron P. Gutmann, University of Colorado Boulder
    Cameron Campbell, Hong Kong University of Science and Technology
    J. David Hacker, University of Minnesota
    Satomi Kurosu, Reitaku University
    Katherine A. Lynch, Carnegie Mellon University

    Event history instructors:
    Cameron Campbell, Hong Kong University of Science and Technology
    Glenn Deane, State University of New York at Albany
    Ken R. Smith, Huntsman Cancer Institute and University of Utah

    Database management instructors:
    George Alter, University of Michigan
    Susan Hautaniemi Leonard, University of Michigan

    Teaching Assistants:
    Mathew Creighton, University of Massachusetts Boston
    Emily Merchant, University of Michigan
    Luciana Quaranta, Lund University
    Kristine Witkowski, University of Michigan

    Project Manager:
    Susan Hautaniemi Leonard, University of Michigan

  11. United Nations Population Division

    • kaggle.com
    Updated Sep 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bhanupratap Biswas☑️ (2023). United Nations Population Division [Dataset]. https://www.kaggle.com/datasets/bhanupratapbiswas/united-nations-population-division/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 12, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Bhanupratap Biswas☑️
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Area covered
    United Nations
    Description

    The United Nations Population Division is a part of the United Nations Department of Economic and Social Affairs (UNDESA). Its primary mission is to provide timely and accurate demographic information and analysis to assist countries in making informed policy decisions related to population and development. The division produces a wide range of demographic data, reports, and publications, and it serves as a key source of information on global population trends.

    Some of the main functions and activities of the United Nations Population Division include:

    1. Data Collection and Analysis: The division collects and compiles data on population, fertility, mortality, migration, and other demographic variables from member states and other international sources. It analyzes this data to track global demographic trends and provides population estimates and projections.

    2. World Population Prospects: The division publishes the "World Population Prospects," which is a comprehensive set of demographic data and projections for countries around the world. This report is regularly updated and is widely used by governments, researchers, and policymakers.

    3. Demographic Research: The division conducts research on a wide range of demographic issues, including aging populations, urbanization, family planning, and more. This research helps to inform policies and programs aimed at addressing demographic challenges.

    4. Technical Assistance: The division provides technical assistance to countries in areas related to population and development, including capacity building, data collection, and analysis.

    5. Reports and Publications: The division produces a variety of reports, publications, and working papers on demographic topics. These resources are made available to the public and serve as valuable references for researchers and policymakers.

    6. Population Conferences: The United Nations Population Division plays a role in organizing and supporting international conferences and events related to population and development issues. These conferences provide a platform for countries to discuss and coordinate actions to address demographic challenges.

    Overall, the United Nations Population Division plays a crucial role in monitoring and understanding global demographic trends and supporting countries in their efforts to develop policies and programs that promote sustainable development and address population-related challenges.

  12. f

    Demographic data for the subjects in this study.

    • figshare.com
    xls
    Updated May 30, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mohamed Elgendi; Ian Norton; Matt Brearley; Derek Abbott; Dale Schuurmans (2023). Demographic data for the subjects in this study. [Dataset]. http://doi.org/10.1371/journal.pone.0076585.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Mohamed Elgendi; Ian Norton; Matt Brearley; Derek Abbott; Dale Schuurmans
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Demographic data for the subjects in this study.

  13. w

    Dataset of book subjects that contain Demographic behavior in the past : a...

    • workwithdata.com
    Updated Nov 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2024). Dataset of book subjects that contain Demographic behavior in the past : a study of Fourteen German village populations in the eighteenth and nineteenth centuries [Dataset]. https://www.workwithdata.com/datasets/book-subjects?f=1&fcol0=j0-book&fop0=%3D&fval0=Demographic+behavior+in+the+past+%3A+a+study+of+Fourteen+German+village+populations+in+the+eighteenth+and+nineteenth+centuries&j=1&j0=books
    Explore at:
    Dataset updated
    Nov 7, 2024
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is about book subjects. It has 2 rows and is filtered where the books is Demographic behavior in the past : a study of Fourteen German village populations in the eighteenth and nineteenth centuries. It features 10 columns including number of authors, number of books, earliest publication date, and latest publication date.

  14. Z

    Data from: Survey: Open Science in Higher Education

    • data.niaid.nih.gov
    • zenodo.org
    Updated Aug 3, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Peters, Isabella (2024). Survey: Open Science in Higher Education [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_400518
    Explore at:
    Dataset updated
    Aug 3, 2024
    Dataset provided by
    Weisel, Luzian
    Heller, Lambert
    Heck, Tamara
    Mazarakis, Athanasios
    Scherp, Ansgar
    Blümel, Ina
    Peters, Isabella
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Open Science in (Higher) Education – data of the February 2017 survey

    This data set contains:

    Full raw (anonymised) data set (completed responses) of Open Science in (Higher) Education February 2017 survey. Data are in xlsx and sav format.

    Survey questionnaires with variables and settings (German original and English translation) in pdf. The English questionnaire was not used in the February 2017 survey, but only serves as translation.

    Readme file (txt)

    Survey structure

    The survey includes 24 questions and its structure can be separated in five major themes: material used in courses (5), OER awareness, usage and development (6), collaborative tools used in courses (2), assessment and participation options (5), demographics (4). The last two questions include an open text questions about general issues on the topics and singular open education experiences, and a request on forwarding the respondent's e-mail address for further questionings. The online survey was created with Limesurvey[1]. Several questions include filters, i.e. these questions were only shown if a participants did choose a specific answer beforehand ([n/a] in Excel file, [.] In SPSS).

    Demographic questions

    Demographic questions asked about the current position, the discipline, birth year and gender. The classification of research disciplines was adapted to general disciplines at German higher education institutions. As we wanted to have a broad classification, we summarised several disciplines and came up with the following list, including the option "other" for respondents who do not feel confident with the proposed classification:

    Natural Sciences

    Arts and Humanities or Social Sciences

    Economics

    Law

    Medicine

    Computer Sciences, Engineering, Technics

    Other

    The current job position classification was also chosen according to common positions in Germany, including positions with a teaching responsibility at higher education institutions. Here, we also included the option "other" for respondents who do not feel confident with the proposed classification:

    Professor

    Special education teacher

    Academic/scientific assistant or research fellow (research and teaching)

    Academic staff (teaching)

    Student assistant

    Other

    We chose to have a free text (numerical) for asking about a respondent's year of birth because we did not want to pre-classify respondents' age intervals. It leaves us options to have different analysis on answers and possible correlations to the respondents' age. Asking about the country was left out as the survey was designed for academics in Germany.

    Remark on OER question

    Data from earlier surveys revealed that academics suffer confusion about the proper definition of OER[2]. Some seem to understand OER as free resources, or only refer to open source software (Allen & Seaman, 2016, p. 11). Allen and Seaman (2016) decided to give a broad explanation of OER, avoiding details to not tempt the participant to claim "aware". Thus, there is a danger of having a bias when giving an explanation. We decided not to give an explanation, but keep this question simple. We assume that either someone knows about OER or not. If they had not heard of the term before, they do not probably use OER (at least not consciously) or create them.

    Data collection

    The target group of the survey was academics at German institutions of higher education, mainly universities and universities of applied sciences. To reach them we sent the survey to diverse institutional-intern and extern mailing lists and via personal contacts. Included lists were discipline-based lists, lists deriving from higher education and higher education didactic communities as well as lists from open science and OER communities. Additionally, personal e-mails were sent to presidents and contact persons from those communities, and Twitter was used to spread the survey.

    The survey was online from Feb 6th to March 3rd 2017, e-mails were mainly sent at the beginning and around mid-term.

    Data clearance

    We got 360 responses, whereof Limesurvey counted 208 completes and 152 incompletes. Two responses were marked as incomplete, but after checking them turned out to be complete, and we added them to the complete responses dataset. Thus, this data set includes 210 complete responses. From those 150 incomplete responses, 58 respondents did not answer 1st question, 40 respondents discontinued after 1st question. Data shows a constant decline in response answers, we did not detect any striking survey question with a high dropout rate. We deleted incomplete responses and they are not in this data set.

    Due to data privacy reasons, we deleted seven variables automatically assigned by Limesurvey: submitdate, lastpage, startlanguage, startdate, datestamp, ipaddr, refurl. We also deleted answers to question No 24 (email address).

    References

    Allen, E., & Seaman, J. (2016). Opening the Textbook: Educational Resources in U.S. Higher Education, 2015-16.

    First results of the survey are presented in the poster:

    Heck, Tamara, Blümel, Ina, Heller, Lambert, Mazarakis, Athanasios, Peters, Isabella, Scherp, Ansgar, & Weisel, Luzian. (2017). Survey: Open Science in Higher Education. Zenodo. http://doi.org/10.5281/zenodo.400561

    Contact:

    Open Science in (Higher) Education working group, see http://www.leibniz-science20.de/forschung/projekte/laufende-projekte/open-science-in-higher-education/.

    [1] https://www.limesurvey.org

    [2] The survey question about the awareness of OER gave a broad explanation, avoiding details to not tempt the participant to claim "aware".

  15. w

    Demographic and Health Survey 2015-2016 - Armenia

    • microdata.worldbank.org
    • microdata.armstat.am
    • +1more
    Updated Jan 9, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Statistical Service (NSSS) (2019). Demographic and Health Survey 2015-2016 - Armenia [Dataset]. https://microdata.worldbank.org/index.php/catalog/2893
    Explore at:
    Dataset updated
    Jan 9, 2019
    Dataset provided by
    National Statistical Service (NSSS)
    Ministry of Health (MOH)
    Time period covered
    2015 - 2016
    Area covered
    Armenia
    Description

    Abstract

    The 2015-16 Armenia Demographic and Health Survey (2015-16 ADHS) is the fourth in a series of nationally representative sample surveys designed to provide information on population and health issues. It is conducted in Armenia under the worldwide Demographic and Health Surveys program. Specifically, the objective of the 2015-16 ADHS is to provide current and reliable information on fertility and abortion levels, marriage, sexual activity, fertility preferences, awareness and use of family planning methods, breastfeeding practices, nutritional status of young children, childhood mortality, maternal and child health, domestic violence against women, child discipline, awareness and behavior regarding AIDS and other sexually transmitted infections (STIs), and other health-related issues such as smoking, tuberculosis, and anemia. The survey obtained detailed information on these issues from women of reproductive age and, for certain topics, from men as well.

    The 2015-16 ADHS results are intended to provide information needed to evaluate existing social programs and to design new strategies to improve the health of and health services for the people of Armenia. Data are presented by region (marz) wherever sample size permits. The information collected in the 2015-16 ADHS will provide updated estimates of basic demographic and health indicators covered in the 2000, 2005, and 2010 surveys.

    The long-term objective of the survey includes strengthening the technical capacity of major government institutions, including the NSS. The 2015-16 ADHS also provides comparable data for longterm trend analysis because the 2000, 2005, 2010, and 2015-16 surveys were implemented by the same organization and used similar data collection procedures. It also adds to the international database of demographic and health–related information for research purposes.

    Geographic coverage

    National coverage

    Analysis unit

    • Household
    • Individual
    • Children age 0-5
    • Woman age 15-49
    • Man age 15-49

    Universe

    The survey covered all de jure household members (usual residents), children age 0-4 years, women age 15-49 years and men age 15-49 years resident in the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sample was designed to produce representative estimates of key indicators at the national level, for Yerevan, and for total urban and total rural areas separately. Many indicators can also be estimated at the regional (marz) level.

    The sampling frame used for the 2015-16 ADHS is the Armenia Population and Housing Census, which was conducted in Armenia in 2011 (APHC 2011). The sampling frame is a complete list of enumeration areas (EAs) covering the whole country, a total number of 11,571 EAs, provided by the National Statistical Service (NSS) of Armenia, the implementing agency for the 2015-16 ADHS. This EA frame was created from the census data base by summarizing the households down to EA level. A representative probability sample of 8,749 households was selected for the 2015-16 ADHS sample. The sample was selected in two stages. In the first stage, 313 clusters (192 in urban areas and 121 in rural areas) were selected from a list of EAs in the sampling frame. In the second stage, a complete listing of households was carried out in each selected cluster. Households were then systematically selected for participation in the survey. Appendix A provides additional information on the sample design of the 2015-16 Armenia DHS. Because of the approximately equal sample size in each marz, the sample is not self-weighting at the national level, and weighting factors have been calculated, added to the data file, and applied so that results are representative at the national level.

    For further details on sample design, see Appendix A of the final report.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Five questionnaires were used for the 2015-16 ADHS: the Household Questionnaire, the Woman’s Questionnaire, the Man’s Questionnaire, the Biomarker Questionnaire, and the Fieldworker Questionnaire. These questionnaires, based on The DHS Program’s standard Demographic and Health Survey questionnaires, were adapted to reflect the population and health issues relevant to Armenia. Input was solicited from various stakeholders representing government ministries and agencies, nongovernmental organizations, and international donors. After all questionnaires were finalized in English, they were translated into Armenian. They were pretested in September-October 2015.

    Cleaning operations

    The processing of the 2015-16 ADHS data began shortly after fieldwork commenced. All completed questionnaires were edited immediately by field editors while still in the field and checked by the supervisors before being dispatched to the data processing center at the NSS central office in Yerevan. These completed questionnaires were edited and entered by 15 data processing personnel specially trained for this task. All data were entered twice for 100 percent verification. Data were entered using the CSPro computer package. The concurrent processing of the data was an advantage because the senior ADHS technical staff were able to advise field teams of problems detected during the data entry. In particular, tables were generated to check various data quality parameters. Moreover, the double entry of data enabled easy comparison and identification of errors and inconsistencies. As a result, specific feedback was given to the teams to improve performance. The data entry and editing phase of the survey was completed in June 2016.

    Response rate

    A total of 8,749 households were selected in the sample, of which 8,205 were occupied at the time of the fieldwork. The main reason for the difference is that some of the dwelling units that were occupied during the household listing operation were either vacant or the household was away for an extended period at the time of interviewing. The number of occupied households successfully interviewed was 7,893, yielding a household response rate of 96 percent. The household response rate in urban areas (96 percent) was nearly the same as in rural areas (97 percent).

    In these households, a total of 6,251 eligible women were identified; interviews were completed with 6,116 of these women, yielding a response rate of 98 percent. In one-half of the households, a total of 2,856 eligible men were identified, and interviews were completed with 2,755 of these men, yielding a response rate of 97 percent. Among men, response rates are slightly lower in urban areas (96 percent) than in rural areas (97 percent), whereas rates for women are the same in urban and in rural areas (98 percent).

    The 2015-16 ADHS achieved a slightly higher response rate for households than the 2010 ADHS (NSS 2012). The increase is only notable for urban households (96 percent in 2015-16 compared with 94 percent in 2010). Response rates in all other categories are very close to what they were in 2010.

    Sampling error estimates

    SAS computer software were used to calculate sampling errors for the 2015-16 ADHS. The programs used the Taylor linearization method of variance estimation for means or proportions and the Jackknife repeated replication method for variance estimation of more complex statistics such as fertility and mortality rates.

    A more detailed description of estimates of sampling errors are presented in Appendix B of the survey final report.

    Data appraisal

    Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months - Nutritional status of children based on the NCHS/CDC/WHO International Reference Population - Vaccinations by background characteristics for children age 18-29 months

    See details of the data quality tables in Appendix C of the survey final report.

  16. f

    Number of countries or areas and percentage of population covered in the...

    • plos.figshare.com
    xls
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cheryl Chriss Sawyer (2023). Number of countries or areas and percentage of population covered in the study. [Dataset]. http://doi.org/10.1371/journal.pmed.1001287.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOS Medicine
    Authors
    Cheryl Chriss Sawyer
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Number of countries or areas and percentage of population covered in the study.

  17. Demographic and Health Survey 2013 - Turkiye

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Jun 13, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hacettepe University Institute of Population Studies (HUIPS) (2022). Demographic and Health Survey 2013 - Turkiye [Dataset]. https://microdata.worldbank.org/index.php/catalog/3453
    Explore at:
    Dataset updated
    Jun 13, 2022
    Dataset provided by
    Hacettepe University Institute of Population Studies
    Authors
    Hacettepe University Institute of Population Studies (HUIPS)
    Time period covered
    2013 - 2014
    Area covered
    Türkiye
    Description

    Abstract

    The 2013 Turkey Demographic and Health Survey (TDHS-2013) is a nationally representative sample survey. The primary objective of the TDHS-2013 is to provide data on socioeconomic characteristics of households and women between ages 15-49, fertility, childhood mortality, marriage patterns, family planning, maternal and child health, nutritional status of women and children, and reproductive health. The survey obtained detailed information on these issues from a sample of women of reproductive age (15-49). The TDHS-2013 was designed to produce information in the field of demography and health that to a large extent cannot be obtained from other sources.

    Specifically, the objectives of the TDHS-2013 included: - Collecting data at the national level that allows the calculation of some demographic and health indicators, particularly fertility rates and childhood mortality rates, - Obtaining information on direct and indirect factors that determine levels and trends in fertility and childhood mortality, - Measuring the level of contraceptive knowledge and practice by contraceptive method and some background characteristics, i.e., region and urban-rural residence, - Collecting data relative to maternal and child health, including immunizations, antenatal care, and postnatal care, assistance at delivery, and breastfeeding, - Measuring the nutritional status of children under five and women in the reproductive ages, - Collecting data on reproductive-age women about marriage, employment status, and social status

    The TDHS-2013 information is intended to provide data to assist policy makers and administrators to evaluate existing programs and to design new strategies for improving demographic, social and health policies in Turkey. Another important purpose of the TDHS-2013 is to sustain the flow of information for the interested organizations in Turkey and abroad on the Turkish population structure in the absence of a reliable and sufficient vital registration system. Additionally, like the TDHS-2008, TDHS-2013 is accepted as a part of the Official Statistic Program.

    Geographic coverage

    National coverage

    Analysis unit

    • Household
    • Women age 15-49
    • Children under age of five

    Universe

    The survey covered all de jure household members (usual residents), children age 0-5 years and women age 15-49 years resident in the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sample design and sample size for the TDHS-2013 makes it possible to perform analyses for Turkey as a whole, for urban and rural areas, and for the five demographic regions of the country (West, South, Central, North, and East). The TDHS-2013 sample is of sufficient size to allow for analysis on some of the survey topics at the level of the 12 geographical regions (NUTS 1) which were adopted at the second half of the year 2002 within the context of Turkey’s move to join the European Union.

    In the selection of the TDHS-2013 sample, a weighted, multi-stage, stratified cluster sampling approach was used. Sample selection for the TDHS-2013 was undertaken in two stages. The first stage of selection included the selection of blocks as primary sampling units from each strata and this task was requested from the TURKSTAT. The frame for the block selection was prepared using information on the population sizes of settlements obtained from the 2012 Address Based Population Registration System. Settlements with a population of 10,000 and more were defined as “urban”, while settlements with populations less than 10,000 were considered “rural” for purposes of the TDHS-2013 sample design. Systematic selection was used for selecting the blocks; thus settlements were given selection probabilities proportional to their sizes. Therefore more blocks were sampled from larger settlements.

    The second stage of sample selection involved the systematic selection of a fixed number of households from each block, after block lists were obtained from TURKSTAT and were updated through a field operation; namely the listing and mapping fieldwork. Twentyfive households were selected as a cluster from urban blocks, and 18 were selected as a cluster from rural blocks. The total number of households selected in TDHS-2013 is 14,490.

    The total number of clusters in the TDHS-2013 was set at 642. Block level household lists, each including approximately 100 households, were provided by TURKSTAT, using the National Address Database prepared for municipalities. The block lists provided by TURKSTAT were updated during the listing and mapping activities.

    All women at ages 15-49 who usually live in the selected households and/or were present in the household the night before the interview were regarded as eligible for the Women’s Questionnaire and were interviewed. All analysis in this report is based on de facto women.

    Note: A more technical and detailed description of the TDHS-2013 sample design, selection and implementation is presented in Appendix B of the final report of the survey.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Two main types of questionnaires were used to collect the TDHS-2013 data: the Household Questionnaire and the Individual Questionnaire for all women of reproductive age. The contents of these questionnaires were based on the DHS core questionnaire. Additions, deletions and modifications were made to the DHS model questionnaire in order to collect information particularly relevant to Turkey. Attention also was paid to ensuring the comparability of the TDHS-2013 findings with previous demographic surveys carried out by the Hacettepe Institute of Population Studies. In the process of designing the TDHS-2013 questionnaires, national and international population and health agencies were consulted for their comments.

    The questionnaires were developed in Turkish and translated into English.

    Cleaning operations

    TDHS-2013 questionnaires were returned to the Hacettepe University Institute of Population Studies by the fieldwork teams for data processing as soon as interviews were completed in a province. The office editing staff checked that the questionnaires for all selected households and eligible respondents were returned from the field. A total of 29 data entry staff were trained for data entry activities of the TDHS-2013. The data entry of the TDHS-2013 began in late September 2013 and was completed at the end of January 2014.

    The data were entered and edited on microcomputers using the Census and Survey Processing System (CSPro) software. CSPro is designed to fulfill the census and survey data processing needs of data-producing organizations worldwide. CSPro is developed by MEASURE partners, the U.S. Bureau of the Census, ICF International’s DHS Program, and SerPro S.A. CSPro allows range, skip, and consistency errors to be detected and corrected at the data entry stage. During the data entry process, 100% verification was performed by entering each questionnaire twice using different data entry operators and comparing the entered data.

    Response rate

    In all, 14,490 households were selected for the TDHS-2013. At the time of the listing phase of the survey, 12,640 households were considered occupied and, thus, eligible for interview. Of the eligible households, 93 percent (11,794) households were successfully interviewed. The main reasons the field teams were unable to interview some households were because some dwelling units that had been listed were found to be vacant at the time of the interview or the household was away for an extended period.

    In the interviewed 11,794 households, 10,840 women were identified as eligible for the individual interview, aged 15-49 and were present in the household on the night before the interview. Interviews were successfully completed with 9,746 of these women (90 percent). Among the eligible women not interviewed in the survey, the principal reason for nonresponse was the failure to find the women at home after repeated visits to the household.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors, and (2) sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the TDHS-2013 to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the TDHS-2013 is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall

  18. i

    Demographic and Health Survey 1998 - Ghana

    • datacatalog.ihsn.org
    • catalog.ihsn.org
    • +2more
    Updated Jul 6, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ghana Statistical Service (GSS) (2017). Demographic and Health Survey 1998 - Ghana [Dataset]. https://datacatalog.ihsn.org/catalog/50
    Explore at:
    Dataset updated
    Jul 6, 2017
    Dataset authored and provided by
    Ghana Statistical Service (GSS)
    Time period covered
    1998 - 1999
    Area covered
    Ghana
    Description

    Abstract

    The 1998 Ghana Demographic and Health Survey (GDHS) is the latest in a series of national-level population and health surveys conducted in Ghana and it is part of the worldwide MEASURE DHS+ Project, designed to collect data on fertility, family planning, and maternal and child health.

    The primary objective of the 1998 GDHS is to provide current and reliable data on fertility and family planning behaviour, child mortality, children’s nutritional status, and the utilisation of maternal and child health services in Ghana. Additional data on knowledge of HIV/AIDS are also provided. This information is essential for informed policy decisions, planning and monitoring and evaluation of programmes at both the national and local government levels.

    The long-term objectives of the survey include strengthening the technical capacity of the Ghana Statistical Service (GSS) to plan, conduct, process, and analyse the results of complex national sample surveys. Moreover, the 1998 GDHS provides comparable data for long-term trend analyses within Ghana, since it is the third in a series of demographic and health surveys implemented by the same organisation, using similar data collection procedures. The GDHS also contributes to the ever-growing international database on demographic and health-related variables.

    Geographic coverage

    National

    Analysis unit

    • Household
    • Children under five years
    • Women age 15-49
    • Men age 15-59

    Kind of data

    Sample survey data

    Sampling procedure

    The major focus of the 1998 GDHS was to provide updated estimates of important population and health indicators including fertility and mortality rates for the country as a whole and for urban and rural areas separately. In addition, the sample was designed to provide estimates of key variables for the ten regions in the country.

    The list of Enumeration Areas (EAs) with population and household information from the 1984 Population Census was used as the sampling frame for the survey. The 1998 GDHS is based on a two-stage stratified nationally representative sample of households. At the first stage of sampling, 400 EAs were selected using systematic sampling with probability proportional to size (PPS-Method). The selected EAs comprised 138 in the urban areas and 262 in the rural areas. A complete household listing operation was then carried out in all the selected EAs to provide a sampling frame for the second stage selection of households. At the second stage of sampling, a systematic sample of 15 households per EA was selected in all regions, except in the Northern, Upper West and Upper East Regions. In order to obtain adequate numbers of households to provide reliable estimates of key demographic and health variables in these three regions, the number of households in each selected EA in the Northern, Upper West and Upper East regions was increased to 20. The sample was weighted to adjust for over sampling in the three northern regions (Northern, Upper East and Upper West), in relation to the other regions. Sample weights were used to compensate for the unequal probability of selection between geographically defined strata.

    The survey was designed to obtain completed interviews of 4,500 women age 15-49. In addition, all males age 15-59 in every third selected household were interviewed, to obtain a target of 1,500 men. In order to take cognisance of non-response, a total of 6,375 households nation-wide were selected.

    Note: See detailed description of sample design in APPENDIX A of the survey report.

    Mode of data collection

    Face-to-face

    Research instrument

    Three types of questionnaires were used in the GDHS: the Household Questionnaire, the Women’s Questionnaire, and the Men’s Questionnaire. These questionnaires were based on model survey instruments developed for the international MEASURE DHS+ programme and were designed to provide information needed by health and family planning programme managers and policy makers. The questionnaires were adapted to the situation in Ghana and a number of questions pertaining to on-going health and family planning programmes were added. These questionnaires were developed in English and translated into five major local languages (Akan, Ga, Ewe, Hausa, and Dagbani).

    The Household Questionnaire was used to enumerate all usual members and visitors in a selected household and to collect information on the socio-economic status of the household. The first part of the Household Questionnaire collected information on the relationship to the household head, residence, sex, age, marital status, and education of each usual resident or visitor. This information was used to identify women and men who were eligible for the individual interview. For this purpose, all women age 15-49, and all men age 15-59 in every third household, whether usual residents of a selected household or visitors who slept in a selected household the night before the interview, were deemed eligible and interviewed. The Household Questionnaire also provides basic demographic data for Ghanaian households. The second part of the Household Questionnaire contained questions on the dwelling unit, such as the number of rooms, the flooring material, the source of water and the type of toilet facilities, and on the ownership of a variety of consumer goods.

    The Women’s Questionnaire was used to collect information on the following topics: respondent’s background characteristics, reproductive history, contraceptive knowledge and use, antenatal, delivery and postnatal care, infant feeding practices, child immunisation and health, marriage, fertility preferences and attitudes about family planning, husband’s background characteristics, women’s work, knowledge of HIV/AIDS and STDs, as well as anthropometric measurements of children and mothers.

    The Men’s Questionnaire collected information on respondent’s background characteristics, reproduction, contraceptive knowledge and use, marriage, fertility preferences and attitudes about family planning, as well as knowledge of HIV/AIDS and STDs.

    Response rate

    A total of 6,375 households were selected for the GDHS sample. Of these, 6,055 were occupied. Interviews were completed for 6,003 households, which represent 99 percent of the occupied households. A total of 4,970 eligible women from these households and 1,596 eligible men from every third household were identified for the individual interviews. Interviews were successfully completed for 4,843 women or 97 percent and 1,546 men or 97 percent. The principal reason for nonresponse among individual women and men was the failure of interviewers to find them at home despite repeated callbacks.

    Note: See summarized response rates by place of residence in Table 1.1 of the survey report.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors, and (2) sampling errors. Nonsampling errors are the results of shortfalls made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 1998 GDHS to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 1998 GDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 1998 GDHS sample is the result of a two-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the 1998 GDHS is the ISSA Sampling Error Module. This module uses the Taylor linearization method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.

    Data appraisal

    Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months

    Note: See detailed tables in APPENDIX C of the survey report.

  19. Demographic and Health Survey 2017 - 2018 - Albania

    • catalog.ihsn.org
    • microdata.worldbank.org
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Statistics (INSTAT) (2019). Demographic and Health Survey 2017 - 2018 - Albania [Dataset]. https://catalog.ihsn.org/catalog/7962
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset provided by
    Institute of Statisticshttps://www.instat.gov.al/
    Institute of Public Health (IPH)
    Time period covered
    2017 - 2018
    Area covered
    Albania
    Description

    Abstract

    The 2017-18 Albania Demographic and Health Survey (2017-18 ADHS) is a nationwide survey with a nationally representative sample of approximately 17,160 households. All women age 15-49 who are usual residents of the selected households or who slept in the households the night before the survey were eligible for the survey. Women 50-59 years old were interviewed with an abbreviated questionnaire that only covered background characteristics and questions related to noncommunicable diseases.

    The primary objective of the 2017-2018 ADHS was to provide estimates of basic sociodemographic and health indicators for the country as a whole and the twelve prefectures. Specifically, the survey collected information on basic characteristics of the respondents, fertility, family planning, nutrition, maternal and child health, knowledge of HIV behaviors, health-related lifestyle, and noncommunicable diseases (NCDs). The information collected in the ADHS will assist policymakers and program managers in evaluating and designing programs and in developing strategies for improving the health of the country’s population.

    The sample for the 2017-18 ADHS was designed to produce representative results for the country as a whole, for urban and rural areas separately, and for each of the twelve prefectures known as Berat, Diber, Durres, Elbasan, Fier, Gjirokaster, Korce, Kukes, Lezhe, Shkoder, Tirana, and Vlore.

    Geographic coverage

    National coverage

    Analysis unit

    • Household
    • Individual
    • Children age 0-5
    • Woman age 15-49
    • Man age 15-59

    Universe

    The survey covered all de jure household members (usual residents), children age 0-4 years, women age 15-49 years and men age 15-59 years resident in the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The ADHS surveys were done on a nationally representative sample that was representative at the prefecture level as well by rural and urban areas. A total of 715 enumeration areas (EAs) were selected as sample clusters, with probability proportional to each prefecture's population size. The sample design called for 24 households to be randomly selected in every sampling cluster, regardless of its size, but some of the EAs contained fewer than 24 households. In these EAs, all households were included in the survey. The EAs are considered the sample's primary sampling unit (PSU). The team of interviewers updated and listed the households in the selected EAs. Upon arriving in the selected clusters, interviewers spent the first day of fieldwork carrying out an exhaustive enumeration of households, recording the name of each head of household and the location of the dwelling. The listing was done with tablet PCs, using a digital listing application. When interviewers completed their respective sections of the EA, they transferred their files into the supervisor's tablet PC, where the information was automatically compiled into a single file in which all households in the EA were entered. The software and field procedures were designed to ensure there were no duplications or omissions during the household listing process. The supervisor used the software in his tablet to randomly select 24 households for the survey from the complete list of households.

    All women age 15-49 who were usual residents of the selected households or who slept in the households the night before the survey were eligible for individual interviews with the full Woman's Questionnaire. Women age 50-59 were also interviewed, but with an abbreviated questionnaire that left out all questions related to reproductive health and mother and child health. A 50% subsample was selected for the survey of men. Every man age 15-59 who was a usual resident of or had slept in the household the night before the survey was eligible for an individual interview in these households.

    For further details on sample design, see Appendix A of the final report.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Four questionnaires were used in the ADHS, one for the household and others for women age 15-49, for women age 50-59, and for men age 15-59. In addition to these four questionnaires, a form was used to record the vaccination information for children born in the 5 years preceding the survey whose mothers had been successfully interviewed.

    Cleaning operations

    Supervisors sent the accumulated fieldwork data to INSTAT’s central office via internet every day, unless for some reason the teams did not have access to the internet at the time. The data received from the various teams were combined into a single file, which was used to produce quality control tables, known as field check tables. These tables reveal systematic errors in the data such as omission of potential respondents, age displacement, inaccurate recording of date of birth and age at death, inaccurate measurement of height and weight, and other key indicators of data quality. These tables were reviewed and evaluated by ADHS senior staff, which in turn provided feedback and advice to the teams in the field.

    Response rate

    A total of 16,955 households were selected for the sample, of which 16,634 were occupied. Of the occupied households, 15,823 were successfully interviewed, which represents a response rate of 95%. In the interviewed households, 11,680 women age 15-49 were identified for individual interviews. Interviews were completed for 10,860 of these women, yielding a response rate of 93%. In the same households, 4,289 women age 50-59 were identified, of which 4,140 were successfully interviewed, yielding a 97% response rate. In the 50% subsample of households selected for the male survey, 7,103 eligible men age 15-59 were identified, of which 6,142 were successfully interviewed, yielding a response rate of 87%.

    Response rates were higher in rural than in urban areas, which is a pattern commonly found in household surveys because in urban areas more people work and carry out activities outside the home.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2017-18 Albania Demographic and Health Survey (ADHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2017-18 ADHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2017-18 ADHS sample is the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulas. Sampling errors are computed in SAS, using programs developed by ICF. These programs use the Taylor linearization method to estimate variances for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.

    A more detailed description of estimates of sampling errors are presented in Appendix B of the survey final report.

    Data appraisal

    Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months

    See details of the data quality tables in Appendix C of the survey final report.

  20. u

    Dissertation | Upscaling Tree Demography to Heterogenous Landscapes Using...

    • verso.uidaho.edu
    Updated Jun 21, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cristina Barber; Alvarez Buylla (2021). Dissertation | Upscaling Tree Demography to Heterogenous Landscapes Using Models and Remote Sensing [Dataset]. https://verso.uidaho.edu/esploro/outputs/dataset/Dissertation--Upscaling-Tree-Demography-to/996762910601851
    Explore at:
    Dataset updated
    Jun 21, 2021
    Dataset provided by
    Boise State University, Idaho EPSCoR, EPSCoR GEM3
    Authors
    Cristina Barber; Alvarez Buylla
    Time period covered
    Jul 7, 2022
    Area covered
    Azuero Peninsula of southwestern Panama
    Description

    Tree demography is foundational to ecology and conservation, from mass tree die-offs to forest recovery. Plot-level studies of tree demography, including field measurements of tagged individuals, have been fundamental for developing ecological theory and forest management strategies. However, the limited spatial extent of field plots impedes generalizing plot-level models for spatial predictions across heterogeneous landscapes. Novel high-spatial resolution remote sensing imagery has opened the possibility for measuring tree demographic rates with continuous spatial coverage at landscape to regional extents. Remote sensing derived measurements could address pressing research questions, including disentangling causes of high variation in natural regeneration across secondary forest landscapes. Despite the promise of high-spatial resolution imagery for ecology, applying these data to ecological questions will require novel modeling approaches that can account for large amounts of spatial data that often include hierarchical structure. In this thesis, I apply high-resolution remote sensing to upscale tree demography at landscape scales, and provide guidelines for ecologists seeking to parametrize spatially explicit models for neighbor interactions by combining field data, high-resolution remote sensing, and Bayesian quantitative methods. Chapter 1 demonstrates how high-spatial resolution remote sensing can help improve predictions of tree recruitment at the landscape scale. This chapter is the first step towards new support tools that inform restoration projects about where and which species will regenerate naturally in agricultural landscapes. Chapter 2 addresses how to optimize neighbor interaction models using the Hamiltonian Monte Carlo algorithm. I demonstrate how ragged matrices could solve data storage inefficiencies associated with the neighbor interaction models' pairwise structure. I also provide code for a model parametrization that solves a sampling pathology associated with high correlation in hierarchical structures and an overview of metrics to assess when this hierarchical structure pathology is present. Chapter 3 explores the influence of biophysical and anthropogenic drivers on tree mortality in agricultural landscapes using high-resolution remote sensing data. The results suggest that accessibility and land management are core factors that could be managed to prevent the mortality of agricultural trees. Educational initiatives and new policies that address anthropogenic factors could be the answer to reduce agricultural tree loss. Overall, this thesis brings together Bayesian statistical methods with novel high-resolution remote sensing to overcome the spatial limitation of field measurements and produce spatial predictions and inference on drivers of tree demography across heterogeneous landscapes.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Stork, Lise (2024). MIRA-KG: A Knowledge Graph of Hypotheses and Findings for Social Demography Research [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_10286845

MIRA-KG: A Knowledge Graph of Hypotheses and Findings for Social Demography Research

Explore at:
Dataset updated
May 26, 2024
Dataset provided by
Stork, Lise
Zijdeman, Richard
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

A shift in scientific publishing from paper-based to knowledge-based practices promotes reproducibility, machine actionability and knowledge discovery. This is important for disciplines like social science, as study indicators are often social constructs such as race or education; hypothesis tests are challenging to compare in demographic research due to their limited temporal and spatial coverage; and natural language in research papers is often imprecise and ambiguous. Therefore, we present the MIRA-KG, consisting of: (1) an ontology for capturing social demography research, which links hypotheses and findings to evidence, (2) annotations of papers on health inequality in terms of the ontology, gathered by (i) prompting a Large Language Model to annotate paper abstracts using the ontology, (ii) mapping concepts to terms from NCBO BioPortal ontologies and GeoNames, and (iii) refining the final graph by a set of SHACL constraints, developed according to data quality criteria. The utility of the resource lies in its use for formally representing social demography research hypotheses, discovering research biases, discovery of knowledge, and the derivation of novel questions.This dataset was generated using the code available on Github at https://w3id.org/mira/ at version v1.0. It uses the following ontology: https://w3id.org/mira/ontology/.

Search
Clear search
Close search
Google apps
Main menu