The 2022 Philippines National Demographic and Health Survey (NDHS) was implemented by the Philippine Statistics Authority (PSA). Data collection took place from May 2 to June 22, 2022.
The primary objective of the 2022 NDHS is to provide up-to-date estimates of basic demographic and health indicators. Specifically, the NDHS collected information on fertility, fertility preferences, family planning practices, childhood mortality, maternal and child health, nutrition, knowledge and attitudes regarding HIV/AIDS, violence against women, child discipline, early childhood development, and other health issues.
The information collected through the NDHS is intended to assist policymakers and program managers in designing and evaluating programs and strategies for improving the health of the country’s population. The 2022 NDHS also provides indicators anchored to the attainment of the Sustainable Development Goals (SDGs) and the new Philippine Development Plan for 2023 to 2028.
National coverage
The survey covered all de jure household members (usual residents), all women aged 15-49, and all children aged 0-4 resident in the household.
Sample survey data [ssd]
The sampling scheme provides data representative of the country as a whole, for urban and rural areas separately, and for each of the country’s administrative regions. The sample selection methodology for the 2022 NDHS was based on a two-stage stratified sample design using the Master Sample Frame (MSF) designed and compiled by the PSA. The MSF was constructed based on the listing of households from the 2010 Census of Population and Housing and updated based on the listing of households from the 2015 Census of Population. The first stage involved a systematic selection of 1,247 primary sampling units (PSUs) distributed by province or HUC. A PSU can be a barangay, a portion of a large barangay, or two or more adjacent small barangays.
In the second stage, an equal take of either 22 or 29 sample housing units were selected from each sampled PSU using systematic random sampling. In situations where a housing unit contained one to three households, all households were interviewed. In the rare situation where a housing unit contained more than three households, no more than three households were interviewed. The survey interviewers were instructed to interview only the preselected housing units. No replacements and no changes of the preselected housing units were allowed in the implementing stage in order to prevent bias. Survey weights were calculated, added to the data file, and applied so that weighted results are representative estimates of indicators at the regional and national levels.
All women age 15–49 who were either usual residents of the selected households or visitors who stayed in the households the night before the survey were eligible to be interviewed. Among women eligible for an individual interview, one woman per household was selected for a module on women’s safety.
For further details on sample design, see APPENDIX A of the final report.
Computer Assisted Personal Interview [capi]
Two questionnaires were used for the 2022 NDHS: the Household Questionnaire and the Woman’s Questionnaire. The questionnaires, based on The DHS Program’s model questionnaires, were adapted to reflect the population and health issues relevant to the Philippines. Input was solicited from various stakeholders representing government agencies, academe, and international agencies. The survey protocol was reviewed by the ICF Institutional Review Board.
After all questionnaires were finalized in English, they were translated into six major languages: Tagalog, Cebuano, Ilocano, Bikol, Hiligaynon, and Waray. The Household and Woman’s Questionnaires were programmed into tablet computers to allow for computer-assisted personal interviewing (CAPI) for data collection purposes, with the capability to choose any of the languages for each questionnaire.
Processing the 2022 NDHS data began almost as soon as fieldwork started, and data security procedures were in place in accordance with confidentiality of information as provided by Philippine laws. As data collection was completed in each PSU or cluster, all electronic data files were transferred securely via SyncCloud to a server maintained by the PSA Central Office in Quezon City. These data files were registered and checked for inconsistencies, incompleteness, and outliers. The field teams were alerted to any inconsistencies and errors while still in the area of assignment. Timely generation of field check tables allowed for effective monitoring of fieldwork, including tracking questionnaire completion rates. Only the field teams, project managers, and NDHS supervisors in the provincial, regional, and central offices were given access to the CAPI system and the SyncCloud server.
A team of secondary editors in the PSA Central Office carried out secondary editing, which involved resolving inconsistencies and recoding “other” responses; the former was conducted during data collection, and the latter was conducted following the completion of the fieldwork. Data editing was performed using the CSPro software package. The secondary editing of the data was completed in August 2022. The final cleaning of the data set was carried out by data processing specialists from The DHS Program in September 2022.
A total of 35,470 households were selected for the 2022 NDHS sample, of which 30,621 were found to be occupied. Of the occupied households, 30,372 were successfully interviewed, yielding a response rate of 99%. In the interviewed households, 28,379 women age 15–49 were identified as eligible for individual interviews. Interviews were completed with 27,821 women, yielding a response rate of 98%.
The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors and (2) sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and in data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2022 Philippines National Demographic and Health Survey (2022 NDHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2022 NDHS is only one of many samples that could have been selected from the same population, using the same design and identical size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2022 NDHS sample was the result of a multistage stratified design, and, consequently, it was necessary to use more complex formulas. Sampling errors are computed in SAS using programs developed by ICF. These programs use the Taylor linearization method to estimate variances for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
A more detailed description of estimates of sampling errors are presented in APPENDIX B of the survey report.
Data Quality Tables
See details of the data quality tables in Appendix C of the final report.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
To estimate county of residence of Filipinx healthcare workers who died of COVID-19, we retrieved data from the Kanlungan website during the month of December 2020.22 In deciding who to include on the website, the AF3IRM team that established the Kanlungan website set two standards in data collection. First, the team found at least one source explicitly stating that the fallen healthcare worker was of Philippine ancestry; this was mostly media articles or obituaries sharing the life stories of the deceased. In a few cases, the confirmation came directly from the deceased healthcare worker's family member who submitted a tribute. Second, the team required a minimum of two sources to identify and announce fallen healthcare workers. We retrieved 86 US tributes from Kanlungan, but only 81 of them had information on county of residence. In total, 45 US counties with at least one reported tribute to a Filipinx healthcare worker who died of COVID-19 were identified for analysis and will hereafter be referred to as “Kanlungan counties.” Mortality data by county, race, and ethnicity came from the National Center for Health Statistics (NCHS).24 Updated weekly, this dataset is based on vital statistics data for use in conducting public health surveillance in near real time to provide provisional mortality estimates based on data received and processed by a specified cutoff date, before data are finalized and publicly released.25 We used the data released on December 30, 2020, which included provisional COVID-19 death counts from February 1, 2020 to December 26, 2020—during the height of the pandemic and prior to COVID-19 vaccines being available—for counties with at least 100 total COVID-19 deaths. During this time period, 501 counties (15.9% of the total 3,142 counties in all 50 states and Washington DC)26 met this criterion. Data on COVID-19 deaths were available for six major racial/ethnic groups: Non-Hispanic White, Non-Hispanic Black, Non-Hispanic Native Hawaiian or Other Pacific Islander, Non-Hispanic American Indian or Alaska Native, Non-Hispanic Asian (hereafter referred to as Asian American), and Hispanic. People with more than one race, and those with unknown race were included in the “Other” category. NCHS suppressed county-level data by race and ethnicity if death counts are less than 10. In total, 133 US counties reported COVID-19 mortality data for Asian Americans. These data were used to calculate the percentage of all COVID-19 decedents in the county who were Asian American. We used data from the 2018 American Community Survey (ACS) five-year estimates, downloaded from the Integrated Public Use Microdata Series (IPUMS) to create county-level population demographic variables.27 IPUMS is publicly available, and the database integrates samples using ACS data from 2000 to the present using a high degree of precision.27 We applied survey weights to calculate the following variables at the county-level: median age among Asian Americans, average income to poverty ratio among Asian Americans, the percentage of the county population that is Filipinx, and the percentage of healthcare workers in the county who are Filipinx. Healthcare workers encompassed all healthcare practitioners, technical occupations, and healthcare service occupations, including nurse practitioners, physicians, surgeons, dentists, physical therapists, home health aides, personal care aides, and other medical technicians and healthcare support workers. County-level data were available for 107 out of the 133 counties (80.5%) that had NCHS data on the distribution of COVID-19 deaths among Asian Americans, and 96 counties (72.2%) with Asian American healthcare workforce data. The ACS 2018 five-year estimates were also the source of county-level percentage of the Asian American population (alone or in combination) who are Filipinx.8 In addition, the ACS provided county-level population counts26 to calculate population density (people per 1,000 people per square mile), estimated by dividing the total population by the county area, then dividing by 1,000 people. The county area was calculated in ArcGIS 10.7.1 using the county boundary shapefile and projected to Albers equal area conic (for counties in the US contiguous states), Hawai’i Albers Equal Area Conic (for Hawai’i counties), and Alaska Albers Equal Area Conic (for Alaska counties).20
https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement
Welcome to the Filipino General Conversation Speech Dataset — a rich, linguistically diverse corpus purpose-built to accelerate the development of Filipino speech technologies. This dataset is designed to train and fine-tune ASR systems, spoken language understanding models, and generative voice AI tailored to real-world Filipino communication.
Curated by FutureBeeAI, this 30 hours dataset offers unscripted, spontaneous two-speaker conversations across a wide array of real-life topics. It enables researchers, AI developers, and voice-first product teams to build robust, production-grade Filipino speech models that understand and respond to authentic Filipino accents and dialects.
The dataset comprises 30 hours of high-quality audio, featuring natural, free-flowing dialogue between native speakers of Filipino. These sessions range from informal daily talks to deeper, topic-specific discussions, ensuring variability and context richness for diverse use cases.
The dataset spans a wide variety of everyday and domain-relevant themes. This topic diversity ensures the resulting models are adaptable to broad speech contexts.
Each audio file is paired with a human-verified, verbatim transcription available in JSON format.
These transcriptions are production-ready, enabling seamless integration into ASR model pipelines or conversational AI workflows.
The dataset comes with granular metadata for both speakers and recordings:
Such metadata helps developers fine-tune model training and supports use-case-specific filtering or demographic analysis.
This dataset is a versatile resource for multiple Filipino speech and language AI applications:
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Note: For information on data collection, confidentiality protection, nonsampling error, and definitions, see the 2020 Island Areas Censuses Technical Documentation..Due to operational changes for military installation enumeration, the 2020 Census of Guam data tables reporting housing, social, and economic characteristics do not include housing units or populations living on Guam's U.S. military installations in the table universe. As a result, impacted 2020 data tables should not be compared to 2010 and other past census data tables reporting the same characteristics. The Census Bureau advises data users to verify table universes are the same before comparing data across census years. For more information about operational changes and the impacts on Guam's data products, see the 2020 Island Areas Censuses Technical Documentation..Due to COVID-19 restrictions impacting data collection for the 2020 Census of Guam, data users should consider the following when using Guam's data products: 1) Data tables reporting social and economic characteristics do not include the group quarters population in the table universe. As a result, impacted 2020 data tables should not be compared to 2010 and other past census data tables reporting the same characteristics. The Census Bureau advises data users to verify table universes are the same before comparing data across census years. For more information about data collection limitations and the impacts on Guam's data products, see the 2020 Island Areas Censuses Technical Documentation. 2) Cells in data tables will display the letter "N" when those data are not statistically reliable. A list of the geographic areas and data tables that will not have data displayed due to data quality concerns can be found in the 2020 Island Areas Censuses Technical Documentation. 3) The Census Bureau advises that data users consider high allocation rates while using the 2020 Census of Guam's available characteristics data. Allocation rates -- a measure of item nonresponse -- are higher than past censuses. Final counts can be adversely impacted when an item's allocation rate is high, and bias can be introduced if the characteristics of the nonrespondents differ from those reported by respondents. Allocation rates for Guam's key population and housing characteristics can be found in the 2020 Island Areas Censuses Technical Documentation. .[1] People who reported multiple responses may be counted in more than one of the race alone or in combination categories. For example, a respondent reporting Chamorro and Filipino is counted in the "Native Hawaiian and Other Pacific Islander alone or in combination" category, the "Chamorro alone or in any combination" category, the "Asian alone or in combination" category, and the "Filipino alone or in any combination" category. These categories may add to more than the total population..[2] "Native Hawaiian and Other Pacific Islander alone or in combination" includes respondents who reported a Native Hawaiian and Other Pacific Islander group alone (e.g., Chamorro), multiple Native Hawaiian and Other Pacific Islander groups (e.g., Chamorro and Chuukese), as well as respondents who reported one Native Hawaiian and Other Pacific Islander group and one or more other groups classified as another race (e.g., Chamorro and White)..[3] "Asian alone or in combination" includes respondents who reported an Asian group alone (e.g., Filipino), multiple Asian groups (e.g., Filipino and Korean), as well as respondents who reported an Asian group and one or more other groups classified as another race (e.g., Filipino and White)..[4] "Other races alone or in combination" includes respondents who reported one race group or multiple race groups that were not classified as Native Hawaiian and Other Pacific Islander or Asian (e.g., White and a Black or African American group such as Jamaican), as well as respondents who reported one group that was not classified as Native Hawaiian and Other Pacific Islander or Asian and another that was classified as Native Hawaiian and Other Pacific Islander or Asian (e.g., Jamaican and Chamorro)..[5] The most common reported Hispanic origin group in the 2010 Census of Guam..[6] This category includes people who reported Cuban, Spaniard, and other detailed Hispanic responses. It also includes people who reported "Hispanic" or "Latino" and other general terms..[7] "Spouse" represents spouse of the householder. It does not reflect all spouses in a household..[8] "Family households" consist of a householder and one or more other people related to the householder by birth, marriage, or adoption..Explanation of Symbols: 1.An "-" means the statistic could not be computed because there were an insufficient number of observations. 2. An "-" following a median estimate means the median falls in the lowest interval of an open-ended distribution.3. An "+" following a median estimate means the median falls in the upper interval of an open-ended di...
Census of Population and Housing refers to the entire process of collecting, compiling, evaluating, analyzing, and publishing data about the population and the living quarters in a country. It entails the listing and recording of the characteristics of each individual and each living quarter as of a specified time and within a specified territory.
Census 2000 is designed to take an inventory of the total population and housing units in the Philippines and to collect information about their characteristics. The census of population is the source of information on the size and distribution of the population as well as information about the demographic, social, economic and cultural characteristics. The census of housing, on the other hand, provides information on the supply of housing units, their structural characteristics and facilities which have bearing on the maintenance of privacy, health and the development of normal family living conditions. These information are vital for making rational plans and programs for national and local development.
The Census 2000 aims to provide government planners, policy makers and administrators with data on which to base their social and economic development plans and programs.
May 1, 2000 has been designated as Census Day for the 2000 Census of Population and Housing or Census 2000, on which date the enumeration of the population and the collection of all pertinent data on housing in the Philippines shall refer.
National Coverage Regions Provinces Cities and Municipalities Barangays
Individuals Households Housing units
The Census 2000 covered all persons who were alive as of 12:01 a.m. of May 1, 2000 and who are: - Filipino nationals permanently residing in the Philippines; - Filipino nationals who are temporarily at sea or are temporarily abroad as of census date; - Filipino overseas workers as of census date, even though expected to be away for more than a year; - Philippine government officials, both military and civilian, including Philippine diplomatic personnel and their families, assigned abroad; and - Civilian citizens of foreign countries having their usual residence in the Philippines or foreign visitors who have stayed or are expected to stay for at least a year from the time of their arrival in this country.
Census/enumeration data [cen]
In the Census 2000, there are basically two types of questionnaires to be used for the enumeration of hosueholds memmbers. These are CPH Form 2 or the Common Household Questionnaire and the CPH Form 3 or the Sample Household Questionnaire. There are procedures for selecting those households to whom CPH Form 3 will be administered. All enumerators are required to strictly follow these procedures.
The sampling rate, or the proportion of households to be selected as samples within each EA, varies from one EA to another. It can be either 100%, 20% or 10%. If the sampling rate applied to an EA is 100%, it means that all households in that EA will use CPH Form 3. IF it is 20% or 10%, it means that one-fifth or one-tenth, respectively, of all households will use CPH Form 3 while the rest will use CPH Form 2.
The scheme for the selection of sample households is known as systematic sampling with clusters as the sampling units. Under this scheme, the households in an EA are grouped in clusters of size 5. Clusters are formed by grouping together households that have been assigned consecutive serial numbers as they are listed in the Listing Page.
Face-to-face [f2f]
The questionnaires for 2000 Census of Population and Housing were basically patterned from previous censuses except that it should be in Intelligent Character Recognition (ICR) format. The basic questionnaires designed for this undertaking were as follows:
CPH Form 1 - Listing Page This is a sheet wherein all buildings, housing units, households and institutional living quarters within an enumeration area (EA) will be listed. Other information pertaining to the population of households and institutional living quarters will also be recorded in this form.
CPH Form 2 - Common Household Questionnaire This is the basic census questionnaire, which will be used for interview and for recording information about the common or non-sample households. This questionnaire gathers information on the following demographic and social characteristics of the population: relationship to household head, family nucleus, date of birth, age, birth registration, sex, marital status, religious affiliation, disability, ethnicity, residence five years ago and highest educational attainment. This also gathers information on building and housing unit characteristics.
CPH Form 3 - Sample Household Questionnaire This is the basic census questionnaire, which will be used for interview and for recording information about the sample households. This questionnaire contains the same question as in CPH Form 2 and additional questions, namely: citizenship, language, literacy, school attendance, type of school, place of school, usual activity/occupation, kind of business/industry, place of work and some items on fertility. It also asks additional questions on household characteristics and amenities and residence five years ago.
CPH Form 4 - Institutional Population Questionnaire This questionnaire records information about persons considered part of the institutional population. It contains questions on residence status, date of birth, age, sex, marital status, religious affiliation, disability, ethnicity and highest educational attainment.
CPH Form 5 - Barangay Schedule This questionnaire will gather indicators to update the characteristics of all barangays which will determine its urbanity.
CPH Form 6 - Notice of Listing/Enumeration This is the sticker that will be posted in a very conspicuous place, preferably in front of the house or gate of the building after listing and interviewing. This sticker indicates that the Building/Housing Unit/Household has already been enumerated.
CPH Form 7 - Common Household Questionnaire Self Administered Questionnaire (SAQ) Instructions This form contains the detailed instructions on how to fill up/answer CPH Form 2. It will accompany CPH Form 2 to be distributed to households who will answer the form themselves, such as those in designated SAQ areas or those where three callbacks or four visits have been made.
CPH Form 8 - Institutional Population Questionnaire SAQ Instructions This form describes the instructions on how to accomplish CPH Form 4 - Institutional Population Questionnaire. It will accompany CPH Form 4 to be distributed to head of institutions who will accomplish the form.
CPH Form 9 - Appointment Slip This form will be used to set an appointment with the household head or any responsible member of the household in case you were unable to interview any one during your first visit or second visit. You will indicate in this form the date and time of your next visit.
Blank Barangay Map This form will be used to enlarge map of each block of an enumeration area/barangay especially if congested areas are being enumerated.
The main questionnaires were developed in English and were translated to major dialects: Bicol, Cebuano, Hiligaynon, Ifugao, Ilocano, Kapampangan, Tagalog, and Waray.
In 2024, the total population of the Philippines was at approximately 114.17 million inhabitants. For the foreseeable future, the Filipino population is expected to increase slightly, despite a current overall downward trend in population growth. The dwindling Filipino population For now, the population figures in the Philippines still show a steady increase and the country is still one of the most densely populated countries in the Asia-Pacific region, however, all signs point to a decline in the number of inhabitants in the long run: Just like the population growth rate, the country’s fertility rate, for example, has also been decreasing for years now, while the death rate has been increasing simultaneously. Poor healthcare to blame One of the reasons for the downward trend is the aging population; fewer babies are born each year, while life expectancy at birth has been steady over the years. Another reason is poor healthcare in the country: The Philippines have a high tuberculosis incidence rate, a highly infectious disease, and are among the countries with a high probability of death from noncommunicable diseases as well.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Note: For information on data collection, confidentiality protection, nonsampling error, and definitions, see the 2020 Island Areas Censuses Technical Documentation..[1] People who reported multiple responses may be counted in more than one of the race alone or in combination categories. For example, a respondent reporting Chamorro and Filipino is counted in the "Asian alone or in combination" category, the "Filipino alone or in any combination" category, the "Native Hawaiian and Other Pacific Islander alone or in combination" category, and the "Chamorro alone or in any combination" category. These categories may add to more than the total population..[2] "Asian alone or in combination" includes respondents who reported an Asian group alone (e.g., Filipino), multiple Asian groups (e.g., Filipino and Chinese), as well as respondents who reported an Asian group and one or more other groups classified as another race (e.g., Filipino and White)..[3] "Native Hawaiian and Other Pacific Islander alone or in combination" includes respondents who reported a Native Hawaiian and Other Pacific Islander group alone (e.g., Chamorro), multiple Native Hawaiian and Other Pacific Islander groups (e.g., Chamorro and Carolinian), as well as respondents who reported one Native Hawaiian and Other Pacific Islander group and one or more other groups classified as another race (e.g., Chamorro and White)..[4] "Other races alone or in combination" includes respondents who reported one race group or multiple race groups that were not classified as Native Hawaiian and Other Pacific Islander or Asian (e.g., White and a Black or African American group such as Jamaican), as well as respondents who reported one group that was not classified as Native Hawaiian and Other Pacific Islander or Asian and another that was classified as Native Hawaiian and Other Pacific Islander or Asian (e.g., Jamaican and Chamorro)..[5] "Spouse" represents spouse of the householder. It does not reflect all spouses in a household..[6] "Family households" consist of a householder and one or more other people related to the householder by birth, marriage, or adoption..Explanation of Symbols: 1.An "-" means the statistic could not be computed because there were an insufficient number of observations. 2. An "-" following a median estimate means the median falls in the lowest interval of an open-ended distribution.3. An "+" following a median estimate means the median falls in the upper interval of an open-ended distribution.4. An "(X)" means not applicable..Source: U.S. Census Bureau, 2020 Census, Commonwealth of the Northern Mariana Islands.
Census of Population and Housing (CPH) refers to the entire process of collecting, compiling, evaluating, analyzing, publishing, and disseminating data about the population and the living quarters in a country. It entails the listing and recording of the characteristics of each individual and each living quarter as of a specified time and within a specified territory. In other words, the CPH offers a “snapshot” of the entire population on a specific date, that is, how many people reside within the national borders, who they are, and where they live during such specified date. Also, included are the characteristics of the housing units where they reside.
The 2010 CPH is designed to take an inventory of the total population and housing units in the Philippines and collect information about their characteristics. The census of population is the source of information on the size and distribution of the population, as well as their demographic, social, economic, and cultural characteristics. The census of housing, on the other hand, provides information on the stock of housing units and their structural characteristics and facilities which have bearing on the maintenance of privacy and health, and the development of normal family living conditions. These information are vital for making rational plans and programs for local and national development.
Specifically, the 2010 CPH aims to: - obtain comprehensive data on the size, composition, and distribution of the population of the Philippines; - gather data on birth registration, literacy, school attendance, place of school, highest grade/year completed, residence 5 years ago, overseas worker, usual occupation, kind of business or industry, class of worker, place of work, fertility, religion, citizenship, ethnic group, disability, and functional difficulty, and determine their geographic distribution; - take stock of the housing units existing in the country and to get information about their geographic location, structural characteristics, and facilities, among others; - obtain information on the characteristics of the barangay, which will be used as basis for urban-rural classification; and - serve as sampling frame for use in household-based surveys.
Data collected in this census were compiled, evaluated, analyzed, published, and disseminated for the use of government, business, industry, social scientists, other research and academic institutions, and the general public. Among the important uses of census data are the following:
In government: - redistricting and apportionment of congressional seats; - allocation of resources and revenues; - creation of political and administrative units; - formulation of policies concerning population and housing; and - formulation of programs relative to the delivery of basic services for health, education, housing, and others
In business and industry: - determination of sites for establishing businesses; - determination of consumer demands for various goods and services; and - determination of supply of labor for the production of goods and services
In research and academic institutions: - conduct of researches on population and other disciplines; and - study of population growth and distribution as basis in preparing projections
National coverage Regions Provinces Cities and Municipalities Barangays
household questionnaire: individuals (household members), households, housing units institutional questionnaire: individuals (institutional population), institutional living quarters barangay questionnaire: barangay
Census-taking in the Philippines follows a de-jure concept wherein a person is counted in the usual place of residence or the place where the person usually resides. Information on the count of the population and living quarters were collected with 12:01 a.m. of May 1, 2010 as the census reference time and date.
The following individuals were enumerated:
Those who were present at the time of visit and whose usual place of residence is the housing unit where the household lives.
Those whose usual place of residence is the place where the household lives but are temporarily away at the time of the census.
Boarders/lodgers of the household or employees of household-operated businesses who do not usually return/go to their respective homes weekly.
Overseas workers and who have been away at the time of the census for not more than five years from the date of departure and are expected to be back within five years from the date of last departure.
Filipino "balikbayans" with usual place of residence in a foreign country but have resided or are expected to reside in the Philippines for at least a year from their arrival.
Citizens of foreign countries who have resided or are expected to reside in the Philippines for at least a year from their arrival, except members of diplomatic missions and non-Filipino members of international organizations.
Persons temporarily staying with the household who have no usual place of residence or who are not certain to be enumerated elsewhere.
Census/enumeration data [cen]
In the 2010 CPH, there are basically two types of questionnaires used for the enumeration of household members. These are CPH Form 2 or the Common Household Questionnaire and CPH Form 3 or the Sample Household Questionnaire. CPH Form 3 contains more questions than CPH Form 2.
The 2010 CPH was carried out through a combination of complete enumeration and sampling. For this census, systematic cluster sampling was adopted. This sampling method is designed in such a way that efficient and accurate estimates will be obtained at the city/municipality level.
The sampling rate or the proportion of households to be selected as samples depends on the size of the city/municipality where the Enumeration Area (EA) is located. For the cities/municipalities with estimated number of households of 500 and below, 100 percent sampling rate was used. While for those cities/municipalities with estimated number of households of 501 and above, a sampling rate of 20 percent was implemented.
In this sampling scheme, each city/municipality was treated as a domain. For city/municipality with 100 percent sampling rate, all households in all the EAs within this city/municipality were selected as samples. For those with a 20 percent sampling rate, systematic cluster sampling was adopted. That is, sample selection of one in five clusters with the first cluster selected at random. Thus in effect, the EAs belonging to the city/municipality with 20 percent sampling rate are divided into clusters of size 5. Random start is pre-determined for each EA.
If the sampling rate applied to a city/municipality is 100 percent, it means that all households in that municipality were administered with CPH Form 3. If it is 20 percent, it means that 20 percent of all households used CPH Form 3 while 80 percent used CPH Form 2.
The random start used by EA is a number from 1 to 5 which was used to select the cluster where the first sample households in an EA, and subsequently the other sample households, were included.
Clusters are formed by grouping together households that have been assigned consecutive serial numbers as they were listed in the Listing Booklet. For a 20 percent sampling rate, clusters were formed by grouping together five households.
Face-to-face [f2f]
CPH Form 1 - Listing Booklet This form is a booklet used to list the buildings, housing units, households, and the Institutional Living Quarters (ILQs) within an EA. This form also records other important information such as the name of household heads and name and type of institutions and their addresses, population totals, and counts of males and females.
CPH Form 2 - Common Household Questionnaire This is the basic census questionnaire, which was used to interview and record information about the common or nonsample households. This questionnaire gathered information on the following demographic and socio-economic characteristics of the population: relationship to household head, sex, date of birth, age, birth registration, marital status, religion, ethnicity, citizenship, disability, functional difficulty, highest grade/year completed, residence 5 years ago, and overseas worker. It also contains questions on the type of building/house, construction materials of the roof and outer walls, state of repair of the building/house, year the building/house was built, floor area of the housing unit, and tenure status of the lot.
CPH Form 3 - Sample Household Questionnaire This is the basic census questionnaire, which was used to interview and record information about the sample households. This questionnaire contains ALL questions asked in CPH Form 2 PLUS additional population questions: literacy, school attendance, place of school, usual occupation, kind of business or industry, class of worker, place of work, and some items on fertility. Moreover, there are additional questions on household characteristics: fuel for lighting and cooking, source of water supply for drinking and/or cooking and for laundry, and bathing, tenure status of the housing unit, acquisition of the housing unit, source of financing of the housing unit, monthly rental of the housing unit, tenure status of the lot, usual manner of garbage disposal, kind of toilet facility, and land ownership. It also asked questions on the language/dialect generally spoken at home, residence five years from now, and presence of household conveniences/devices, and access to internet.
CPH Form 4 -
In 2025, there were around 1.53 billion people worldwide who spoke English either natively or as a second language, slightly more than the 1.18 billion Mandarin Chinese speakers at the time of survey. Hindi and Spanish accounted for the third and fourth most widespread languages that year. Languages in the United States The United States does not have an official language, but the country uses English, specifically American English, for legislation, regulation, and other official pronouncements. The United States is a land of immigration, and the languages spoken in the United States vary as a result of the multicultural population. The second most common language spoken in the United States is Spanish or Spanish Creole, which over than 43 million people spoke at home in 2023. There were also 3.5 million Chinese speakers (including both Mandarin and Cantonese),1.8 million Tagalog speakers, and 1.57 million Vietnamese speakers counted in the United States that year. Different languages at home The percentage of people in the United States speaking a language other than English at home varies from state to state. The state with the highest percentage of population speaking a language other than English is California. About 45 percent of its population was speaking a language other than English at home in 2023.
https://borealisdata.ca/api/datasets/:persistentId/versions/1.4/customlicense?persistentId=doi:10.5683/SP2/QZABKZhttps://borealisdata.ca/api/datasets/:persistentId/versions/1.4/customlicense?persistentId=doi:10.5683/SP2/QZABKZ
This dataset includes six tables which were custom ordered from Statistics Canada. All tables include commuting characteristics (mode of commuting, duration/distance), labour characteristics (employment income groups in 2015, Industry by the North American Industry Classification System 2012), and visible minority groups. The dataset is in Beyond 20/20 (.ivt) format. The Beyond 20/20 browser is required in order to open it. This software can be freely downloaded from the Statistics Canada website: https://www.statcan.gc.ca/eng/public/beyond20-20 (Windows only). For information on how to use Beyond 20/20, please see: http://odesi2.scholarsportal.info/documentation/Beyond2020/beyond20-quickstart.pdf https://wiki.ubc.ca/Library:Beyond_20/20_Guide Custom order from Statistics Canada includes the following dimensions and variables: Geography: Place of Work (POW), Census Tract (CT) within CMA Vancouver. The global non-response rate (GNR) is an important measure of census data quality. It combines total non-response (households) and partial non-response (questions). A lower GNR indicates a lower risk of non-response bias and, as a result, a lower risk of inaccuracy. The counts and estimates for geographic areas with a GNR equal to or greater than 50% are not published in the standard products. The counts and estimates for these areas have a high risk of non-response bias, and in most cases, should not be released. However, it will be provided upon request. GNR values for POR and POW are different for each geography. Universe: The Employed Labour Force having a usual place of work for the population aged 15 years and over in private households that are rented (Tenure rented), full year-full time workers (40-52weeks) Variables: Visible minority (15) 1. Total - Visible minority 2. Total visible minority population 3. South Asian 4. Chinese 5. Black 6. Filipino 7. Latin American 8. Arab 9. Southeast Asian 10. West Asian 11. Korean 12. Japanese 13. Visible minority, n.i.e. 14. Multiple visible minorities 15. Not a visible minority Commuting duration and distance (18) 1. Total - Commuting duration 2. Less than 15 minutes 3. 15 to 29 minutes 4. 30 to 44 minutes 5. 45 to 59 minutes 6. 60 minutes and over 7. Total - Commuting distance 8. Less than 1 km 9. 1 to 2.9 km 10. 3 to 4.9 km 11. 5 to 6.9 km 12. 7 to 9.9 km 13. 10 to 14.9 km 14. 15 to 19.9 km 15. 20 to 24.9 Km 16. 25 to 29.9 km 17. 30 to 34.9 km 18. 35 km or more Main mode of commuting (7) 1. Total - Main mode of commuting 2. Driver, alone 3. 2 or more persons shared the ride to work 4. Public transit 5. Walked 6. Bicycle 7. Other method Employment income groups in 2015 (39) 1. Total – Total Employment income groups in 2015 2. Without employment income 3. With employment income 4. Less than $30,000 (including loss) 5. $30,000 to $79,999 6. $30,000 to $39,999 7. $40,000 to $49,999 8. $50,000 to $59,999 9. $60,000 to $69,999 10. $70,000 to $79,999 11. $80,000 and above 12. Median employment income ($) 13. Average employment income ($) 14. Total – Male Employment income groups in 2015 15. Without employment income 16. With employment income 17. Less than $30,000 (including loss) 18. $30,000 to $79,999 19. $30,000 to $39,999 20. $40,000 to $49,999 21. $50,000 to $59,999 22. $60,000 to $69,999 23. $70,000 to $79,999 24. $80,000 and above 25. Median employment income ($) 26. Average employment income ($) 27. Total – Female Employment income groups in 2015 28. Without employment income 29. With employment income 30. Less than $30,000 (including loss) 31. $30,000 to $79,999 32. $30,000 to $39,999 33. $40,000 to $49,999 34. $50,000 to $59,999 35. $60,000 to $69,999 36. $70,000 to $79,999 37. $80,000 and above 38. Median employment income ($) 39. Average employment income ($) Industry - North American Industry Classification System (NAICS) 2012 (54) 1. Total - Industry - North American Industry Classification System (NAICS) 2012 2. 11 Agriculture, forestry, fishing and hunting 3. 21 Mining, quarrying, and oil and gas extraction 4. 22 Utilities 5. 23 Construction 6. 236 Construction of buildings 7. 237 Heavy and civil engineering construction 8. 238 Specialty trade contractors 9. 31-33 Manufacturing 10. 311 Food manufacturing 11. 41 Wholesale trade 12. 44-45 Retail trade 13. 441 Motor vehicle and parts dealers 14. 442 Furniture and home furnishings stores 15. 443 Electronics and appliance stores 16. 444 Building material and garden equipment and supplies dealers 17. 445 Food and beverage stores 18. 446 Health and personal care stores 19. 447 Gasoline stations 20. 448 Clothing and clothing accessories stores 21. 451 Sporting goods, hobby, book and music stores 22. 452 General merchandise stores 23. 453 Miscellaneous store retailers 24. 454 Non-store retailers 25. 48-49 Transportation and warehousing 26. 481 Air transportation 27. 482 Rail transportation 28. 483 Water...
The 2013 NDHS is designed to provide information on fertility, family planning, and health in the country for use by the government in monitoring the progress of its programs on population, family planning and health.
In particular, the 2013 NDHS has the following specific objectives: • Collect data which will allow the estimation of demographic rates, particularly fertility rates and under-five mortality rates by urban-rural residence and region. • Analyze the direct and indirect factors which determine the level and patterns of fertility. • Measure the level of contraceptive knowledge and practice by method, urban-rural residence, and region. • Collect data on health, immunizations, prenatal and postnatal check-ups, assistance at delivery, breastfeeding, and prevalence and treatment of diarrhea, fever and acute respiratory infections among children below five years old. • Collect data on environmental health, utilization of health facilities, health care financing, prevalence of common non-communicable and infectious diseases, and membership in the National Health Insurance Program (PhilHealth). • Collect data on awareness of cancer, heart disease, diabetes, dengue fever and tuberculosis. • Determine the knowledge of women about AIDS, and the extent of misconception on HIV transmission and access to HIV testing. • Determine the extent of violence against women.
National coverage
Sample survey data [ssd]
The sample selection methodology for the 2013 NDHS is based on a stratified two-stage sample design, using the 2010 Census of Population and Housing (CPH) as a frame. The first stage involved a systematic selection of 800 sample enumeration areas (EAs) distributed by stratum (region, urban/rural). In the second stage, 20 sample housing units were selected from each sample EA, using systematic random sampling.
All households in the sampled housing units were interviewed. An EA is defined as an area with discern able boundaries consisting of contiguous households. The sample was designed to provide data representative of the country and its 17 administrative regions.
Further details on the sample design and implementation are given in Appendix A of the final report.
Face-to-face [f2f]
The 2013 NDHS used three questionnaires: Household Questionnaire, Individual Woman’s Questionnaire, and Women’s Safety Module. The development of these questionnaires resulted from the solicited comments and suggestions during the deliberation in the consultative meetings and separate meetings conducted with the various agencies/organizations namely: PSA-NSO, POPCOM, DOH, FNRI, ICF International, NEDA, PCW, PhilHealth, PIDS, PLCPD, UNFPA, USAID, UPPI, UPSE, and WHO. The three questionnaires were translated from English into six major languages - Tagalog, Cebuano, Ilocano, Bicol, Hiligaynon, and Waray.
The main purpose of the Household Questionnaire was to identify female members of the sample household who were eligible for interview with the Individual Woman’s Questionnaire and the Women’s Safety Module.
The Individual Woman’s Questionnaire was used to collect information from all women aged 15-49 years.
The Women’s Safety Module was used to collect information on domestic violence in the country, its prevalence, severity and frequency from only one selected respondent from among all the eligible women who were identified from the Household Questionnaire.
All completed questionnaires and the control forms were returned to the PSA-NSO central office in Manila for data processing, which consisted of manual editing, data entry and verification, and editing of computer-identified errors. An ad-hoc group of thirteen regular employees from the DSSD, the Information Resources Department (IRD), and the Information Technology Operations Division (ITOD) of the NSO was created to work fulltime and oversee data processing operation in the NDHS Data Processing Center that was carried out at the NSO-CVEA Building in Quezon City, Philippines. This group was responsible for the different aspects of NDHS data processing. There were 19 data encoders hired to process the data who underwent training on September 12-13, 2013.
Data entry started on September 16, 2013. The computer package program called Census and Survey Processing System (CSPro) was used for data entry, editing, and verification. Mr. Alexander Izmukhambetov, a data processing specialist from ICF International, spent two weeks at NSO in September 2013 to finalize the data entry program. Data processing was completed on December 6, 2013.
For the 2013 NDHS sample, 16,732 households were selected, of which 14,893 were occupied. Of these households, 14,804 were successfully interviewed, yielding a household response rate of 99.4 percent. The household response rates in urban and rural areas are almost identical.
Among the households interviewed, 16,437 women were identified as eligible respondents, and the interviews were completed for 16,155 women, yielding a response rate of 98.3 percent. On the other hand, for the women’s safety module, from a total of 11,373 eligible women, 10,963 were interviewed with privacy, translating to a 96.4 percent response rate. At the individual level, urban and rural response rates showed no difference. The principal reason for non-response among women was the failure to find individuals at home, despite interviewers’ repeated visits to the household.
The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors and (2) sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2013 National Demographic and Health Survey (NDHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2013 NDHS is only one of many samples that could have been selected from the same population, using the same design and identical size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling error is a measure of the variability between the results of all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey data.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2013 NDHS sample is the result of a multistage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the 2013 NDHS is a SAS program. This program used the Taylor linearization method for variance estimation for survey estimates that are means or proportions. The Jackknife repeated replications method is used for variance estimation of more complex statistics such as fertility and mortality rates.
The Taylor linearization method treats any percentage or average as a ratio estimate, r = y/x, where y represents the total sample value for variable y, and x represents the total number of weighted cases in the group or subgroup under consideration.
Further details on sampling errors calculation are given in Appendix B of the final report.
Data quality tables were produced to review the quality of the data: - Household age distribution - Age distribution of eligible and interviewed women - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months
Note: The tables are presented in APPENDIX C of the final report.
description: This workbook provides data and data dictionaries for the SFMTA 2017 Travel Decision Survey. On behalf of San Francisco Municipal Transportation Agency (SFMTA), Corey, Canapary & Galanis (CC&G) undertook a Mode Share Survey within the City and County of San Francisco as well as the eight surrounding Bay Area counties of Alameda, Contra Costa, San Mateo, Marin, Santa Clara, Napa, Sonoma and Solano. The primary goals of this study were to: Assess percent mode share for travel in San Francisco for evaluation of the SFMTA Strategic Objective 2.3: Mode Share target of 50% non-private auto travel by FY2018 with a 95% confidence level and MOE +/- 5% or less. Evaluate the above statement based on the following parameters: number of trips to, from, and within San Francisco by Bay Area residents. Trips by visitors to the Bay Area and for commercial purposes are not included. Provide additional trip details, including trip purpose for each trip in the mode share question series. Collect demographic data on the population of Bay Area residents who travel to, from, and within San Francisco. Collect data on travel behavior and opinions that support other SFMTA strategy and project evaluation needs. The survey was conducted as a telephone study among 804 Bay Area residents aged 18 and older. Interviewing was conducted in English, Spanish, Mandarin, Cantonese, and Tagalog. Surveying was conducted via random digit dial (RDD) and cell phone sample. All survey datasets incorporate respondent weighting based on age and home location; utilize the weight field when appropriate in your analysis. The survey period for this survey is as follows: 2017: February - April 2017 The margin of error is related to sample size (n). For the total sample, the margin of error is 3.4% for a confidence level of 95%. When looking at subsets of the data, such as just the SF population, just the female population, or just the population of people who bicycle, the sample size decreases and the margin of error increases. Below is a guide of the margin of error for different samples sizes. Be cautious in making conclusions based off of small sample sizes. At the 95% confidence level is: n = 804(Total Sample). Margin of error = +/- 3.4% n = 400. Margin of error = +/- 4.85% n = 100. Margin of error = +/- 9.80%; abstract: This workbook provides data and data dictionaries for the SFMTA 2017 Travel Decision Survey. On behalf of San Francisco Municipal Transportation Agency (SFMTA), Corey, Canapary & Galanis (CC&G) undertook a Mode Share Survey within the City and County of San Francisco as well as the eight surrounding Bay Area counties of Alameda, Contra Costa, San Mateo, Marin, Santa Clara, Napa, Sonoma and Solano. The primary goals of this study were to: Assess percent mode share for travel in San Francisco for evaluation of the SFMTA Strategic Objective 2.3: Mode Share target of 50% non-private auto travel by FY2018 with a 95% confidence level and MOE +/- 5% or less. Evaluate the above statement based on the following parameters: number of trips to, from, and within San Francisco by Bay Area residents. Trips by visitors to the Bay Area and for commercial purposes are not included. Provide additional trip details, including trip purpose for each trip in the mode share question series. Collect demographic data on the population of Bay Area residents who travel to, from, and within San Francisco. Collect data on travel behavior and opinions that support other SFMTA strategy and project evaluation needs. The survey was conducted as a telephone study among 804 Bay Area residents aged 18 and older. Interviewing was conducted in English, Spanish, Mandarin, Cantonese, and Tagalog. Surveying was conducted via random digit dial (RDD) and cell phone sample. All survey datasets incorporate respondent weighting based on age and home location; utilize the weight field when appropriate in your analysis. The survey period for this survey is as follows: 2017: February - April 2017 The margin of error is related to sample size (n). For the total sample, the margin of error is 3.4% for a confidence level of 95%. When looking at subsets of the data, such as just the SF population, just the female population, or just the population of people who bicycle, the sample size decreases and the margin of error increases. Below is a guide of the margin of error for different samples sizes. Be cautious in making conclusions based off of small sample sizes. At the 95% confidence level is: n = 804(Total Sample). Margin of error = +/- 3.4% n = 400. Margin of error = +/- 4.85% n = 100. Margin of error = +/- 9.80%
Preliminary figures between January to September 2024 indicated that ischaemic heart disease was the leading cause of death in the Philippines. The number of people who died from this illness was estimated at 75,500. Following this, cancer resulted in the deaths of about 43,000 people. Eating habits Heart diseases have been linked to high meat consumption, among others. In the Philippines, pork has been the most consumed meat type, followed closely by chicken. While pork meat is typically produced domestically, the country also imports pork to supplement its supply. However, plant-based food has started gaining popularity among Filipinos. In fact, a 2024 survey revealed that 69 percent of surveyed Filipinos consumed plant-based products, including meat alternatives. Common diseases in the Philippines Aside from heart and cerebrovascular diseases, the Filipino population is also exposed to infections, diabetes, skin diseases, and illnesses resulting from high meat consumption. In 2020, over 700,000 Filipinos contracted acute respiratory tract infections, followed by over 400,000 diagnosed with hypertension. In areas with high exposure to rain, dengue infections and leptospirosis have also become prevalent.
The Survey on Overseas Filipinos (SOF) was conducted as a rider to the October 2008 Labor Force Survey (LFS).
The survey was designed to gather national estimates on the number of overseas workers, their socio economic characteristics and other information pertaining to the overseas workers who worked or have worked abroad from April to September 2008. The remittances of the Overseas Filipino Workers (OFWs) in cash or in kind were also accounted for the specified reference period. The SOF data are useful inputs to government planners, migrant advocates, researchers, academes, concerned citizens, and other data users to the formulation of policies and programs for the welfare of the overseas Filipino.
The geographic coverage consists of the country's 17 administrative regions defined in Executive Order (EO) 36 and 131. The 17 regions are:
National Capital Region (NCR) Cordillera Administrative Region (CAR) Region I - Ilocos Region Region II - Cagayan Valley Region III - Central Luzon Region IV-A - CALABARZON Region IV-B - MIMAROPA Region V - Bicol Region Region VI - Western Visayas Region VII - Central Visayas Region VIII - Eastern Visayas Region IX - Zamboanga Peninsula Region X - Northern Mindanao Region XI - Davao Region Region XII - SOCCSKSARGEN Caraga Autonomous Region in Muslim Mindanao (ARMM)
Individuals
Overseas Filipinos whose departure occured within the last five years and who are working or had worked abroad during the past six months (April to September) of the survey period.
For purposes of this survey, overseas workers are the following:
Filipino overseas contract workers (OCW) who are presently and temporarily out of the country to fulfill an overseas work contract for a specific length of time or who are presently at home on vacation but still has an existing contract to work abroad. They may be landbased or seabased.
Landbased workers ? these are overseas contract workers who are hired either by direct hiring of an employer abroad; or through the assistance of Philippine Overseas Employment Administration (POEA); or through a private and licensed recruitment agency. They may have returned to the Philippines for a vacation (annual or emergency leave), or have transferred to other employers, or were rehired by their former employer.
Seabased workers ? these are overseas contract workers who worked or are working in any kind of international fishing/passenger/cargo vessels. Included also are OCWs who worked or are working for a shipping company abroad.
Other Filipino workers abroad with a valid working visa or work permits. Included also are crew members of airplanes such as pilots, stewards, stewardesses, etc. example: Filipinos working in countries such as U.S., Taiwan, Saipan, etc. with a working visa.
Filipinos abroad who are holders of other types of non-immigrant visa such as tourist/visitor, student, medical and others but are presently employed and working full time.
Persons not considered as overseas workers are:
Filipinos whose place of employment is outside the Philippines but whose employer is the Philippine government. Examples are Filipinos who worked or are working in Philippine embassies, missions and consulates abroad.
Filipinos who are sent abroad by the Philippine government or by private institutes for training, scholarship or any other similar purpose, even if they are known to be working abroad. Note that students who are sent abroad by private individual who are working or had worked there are excluded in this category.
Filipinos working in other countries who are hired as consultants/advisers of International organization such as the United Nations International Monetary Fund, etc.
Immigrants to other countries even though they are working abroad.
Sample survey data [ssd]
The Survey on Overseas Filipinos, as a rider to the Labor Force Survey (LFS), used the sampling design of the 2003 Master Sample (MS) for Household Surveys starting July 2003. The design of the Master Sample is described below:
Domain The 2003 MS considers the country's 17 administrative regions as its sampling domain. A domain is referred to as a subdivision of the country in which estimates with adequate level of precision is generated. It must be noted that while there is demand for data at the provincial level (and to some extent municipal and barangay levels), these were not treated as domain because of its large number (more than 80) and the large resource requirement it would entail.
Sampling Frame As in most household surveys, the 2003 MS made use of an area sample design. For this purpose, the Enumeration Area Reference File (EARF) of the 2000 Census of Population and Housing (CPH) was utilized as sampling frame. The EARF contains the number of households by enumeration area (EA) in each barangay.
This frame was used to form the primary sampling units (PSUs). With consideration of the period for which the 2003 MS will be in use, the PSUs were formed/defined as a barangay or a combination of barangays with at least 500 households.
Sample Size The 2003 MS consists of a sample of 2,835 PSUs of which 330 were certainty PSUs and 2,505 were non-certainty PSUs. The entire MS was divided into four sub-samples or independent replicates, such as a quarter sample contains one fourth of the PSUs found in one replicate; a half sample contains one-half of the PSUs in two replicates. The SOF as a rider to the LFS utilizes the full sample.
Stratification The 2003 MS considers the 17 regions of the country as the primary strata. Within each region, further stratification was performed using geographic groupings such as provinces, highly urbanized cities (HUCs), and independent component cities (ICCs). Within each of these substrata formed within regions, the PSUs were further stratified, to the extent possible, using the proportion of strong houses (PSTRONG), indicator of engagement in agriculture of the area (AGRI), and a measure of per capita income as stratification factors (PERCAPITA).
PSTRONG is defined to be the percentage of occupied housing units that are classified as made of strong materials in terms of both the roof and outer walls, based on the data from the 2000 CPH. A roof is considered made of strong material if it is made of either galvanized iron, aluminum, concrete/clay tile, half galvanized-half concrete, or asbestos. The outer wall is considered made of strong material if it is made of concrete, brick, stone, wood, half concrete-half wood, galvanized iron, asbestos or glass.
AGRI was determined in the following way: initially, an indicator variable was computed at the barangay level. That variable has the value 1 if more than 50 percent of the households in the barangay were engaged in agriculture or fisheries and 0 otherwise, based on the 2000 CPH Barangay Schedule. To obtain a measure at the PSU level, a weighted average of the barangay indicator variable was computed for all the barangays within the PSU, weighted by the total number of households in the barangay. Thus, the value of AGRI at the PSU level lies between 0 and 1.
PERCAPITA is defined as the total income of the municipality divided by the total population in that municipality. Note that the PERCAPITA value of the PSUs is the same if the PSUs are in the same municipality. The data on municipal income refer to year 2000 and were taken from the Department of Finance. However, if the 2000 municipal income was not reported to the Bureau of Local Government Finance (BLGF), 2001 income was used. If no 2000 or 2001 municipal income was reported, the income classification from the BLGF for this municipality was obtained. Using the data on income, which are presented in income intervals, the average of the lower and the upper values of the income interval for the municipal class to which this municipality belongs were determined.
The 2003 MS consists of a sample of 2,835 PSUs. The entire MS was divided into four sub-samples or independent replicates, such as a quarter sample contains one fourth of the total PSUs; a half sample contains one-half of the four subsamples or equivalent to all PSUs in two replicates.
The final number of sample PSUs for each domain was determined by first classifying PSUs as either self-representing (SR) or non-self-representing (NSR). In addition, to facilitate the selection of subsamples, the total number of NSR PSUs in each region was adjusted to make it a multiple of 4.
SR PSUs refers to a very large PSU in the region/domain with a selection probability of approximately 1 or higher and is outright included in the MS; it is properly treated as a stratum; also known as certainty PSU. NSR PSUs refers to a regular too small sized PSU in a region/domain; also known as non certainty PSU. The 2003 MS consists of 330 certainty PSUs and 2,505 non-certainty PSUs.
To have some control over the sub-sample size, the PSUs were selected with probability proportional to some estimated measure of size. The size measure refers to the total number of households from the 2000 CPH. Because of the wide variation in PSU sizes, PSUs with selection probabilities greater than 1 were identified and were included in the sample as certainty selections.
At the second stage, enumeration areas (EAs) were selected within sampled PSUs, and at the third stage, housing units were selected within sampled EAs. Generally, all households in sampled housing units were enumerated, except for few cases when the number of households in a housing unit exceeds three. In which case, a sample of three households in a sampled housing unit was selected at random with equal
Not seeing a result you expected?
Learn how you can add new datasets to our index.
The 2022 Philippines National Demographic and Health Survey (NDHS) was implemented by the Philippine Statistics Authority (PSA). Data collection took place from May 2 to June 22, 2022.
The primary objective of the 2022 NDHS is to provide up-to-date estimates of basic demographic and health indicators. Specifically, the NDHS collected information on fertility, fertility preferences, family planning practices, childhood mortality, maternal and child health, nutrition, knowledge and attitudes regarding HIV/AIDS, violence against women, child discipline, early childhood development, and other health issues.
The information collected through the NDHS is intended to assist policymakers and program managers in designing and evaluating programs and strategies for improving the health of the country’s population. The 2022 NDHS also provides indicators anchored to the attainment of the Sustainable Development Goals (SDGs) and the new Philippine Development Plan for 2023 to 2028.
National coverage
The survey covered all de jure household members (usual residents), all women aged 15-49, and all children aged 0-4 resident in the household.
Sample survey data [ssd]
The sampling scheme provides data representative of the country as a whole, for urban and rural areas separately, and for each of the country’s administrative regions. The sample selection methodology for the 2022 NDHS was based on a two-stage stratified sample design using the Master Sample Frame (MSF) designed and compiled by the PSA. The MSF was constructed based on the listing of households from the 2010 Census of Population and Housing and updated based on the listing of households from the 2015 Census of Population. The first stage involved a systematic selection of 1,247 primary sampling units (PSUs) distributed by province or HUC. A PSU can be a barangay, a portion of a large barangay, or two or more adjacent small barangays.
In the second stage, an equal take of either 22 or 29 sample housing units were selected from each sampled PSU using systematic random sampling. In situations where a housing unit contained one to three households, all households were interviewed. In the rare situation where a housing unit contained more than three households, no more than three households were interviewed. The survey interviewers were instructed to interview only the preselected housing units. No replacements and no changes of the preselected housing units were allowed in the implementing stage in order to prevent bias. Survey weights were calculated, added to the data file, and applied so that weighted results are representative estimates of indicators at the regional and national levels.
All women age 15–49 who were either usual residents of the selected households or visitors who stayed in the households the night before the survey were eligible to be interviewed. Among women eligible for an individual interview, one woman per household was selected for a module on women’s safety.
For further details on sample design, see APPENDIX A of the final report.
Computer Assisted Personal Interview [capi]
Two questionnaires were used for the 2022 NDHS: the Household Questionnaire and the Woman’s Questionnaire. The questionnaires, based on The DHS Program’s model questionnaires, were adapted to reflect the population and health issues relevant to the Philippines. Input was solicited from various stakeholders representing government agencies, academe, and international agencies. The survey protocol was reviewed by the ICF Institutional Review Board.
After all questionnaires were finalized in English, they were translated into six major languages: Tagalog, Cebuano, Ilocano, Bikol, Hiligaynon, and Waray. The Household and Woman’s Questionnaires were programmed into tablet computers to allow for computer-assisted personal interviewing (CAPI) for data collection purposes, with the capability to choose any of the languages for each questionnaire.
Processing the 2022 NDHS data began almost as soon as fieldwork started, and data security procedures were in place in accordance with confidentiality of information as provided by Philippine laws. As data collection was completed in each PSU or cluster, all electronic data files were transferred securely via SyncCloud to a server maintained by the PSA Central Office in Quezon City. These data files were registered and checked for inconsistencies, incompleteness, and outliers. The field teams were alerted to any inconsistencies and errors while still in the area of assignment. Timely generation of field check tables allowed for effective monitoring of fieldwork, including tracking questionnaire completion rates. Only the field teams, project managers, and NDHS supervisors in the provincial, regional, and central offices were given access to the CAPI system and the SyncCloud server.
A team of secondary editors in the PSA Central Office carried out secondary editing, which involved resolving inconsistencies and recoding “other” responses; the former was conducted during data collection, and the latter was conducted following the completion of the fieldwork. Data editing was performed using the CSPro software package. The secondary editing of the data was completed in August 2022. The final cleaning of the data set was carried out by data processing specialists from The DHS Program in September 2022.
A total of 35,470 households were selected for the 2022 NDHS sample, of which 30,621 were found to be occupied. Of the occupied households, 30,372 were successfully interviewed, yielding a response rate of 99%. In the interviewed households, 28,379 women age 15–49 were identified as eligible for individual interviews. Interviews were completed with 27,821 women, yielding a response rate of 98%.
The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors and (2) sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and in data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2022 Philippines National Demographic and Health Survey (2022 NDHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2022 NDHS is only one of many samples that could have been selected from the same population, using the same design and identical size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2022 NDHS sample was the result of a multistage stratified design, and, consequently, it was necessary to use more complex formulas. Sampling errors are computed in SAS using programs developed by ICF. These programs use the Taylor linearization method to estimate variances for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
A more detailed description of estimates of sampling errors are presented in APPENDIX B of the survey report.
Data Quality Tables
See details of the data quality tables in Appendix C of the final report.