Industrial Density Map
The Automatic Identification System (AIS) is a global, satellite-based and terrestrial-based ship tracking system that uses shipborne equipment to remotely track vessel identification and positional information and is typically required on vessels of 300 gross tonnage or more on an international voyage, of 500 gross tonnage or more not on an international voyage, and passenger ships of all sizes. AIS tracking technologies are primarily used in support of real-time maritime domain awareness and for maritime security and safety of life at sea. This report describes a geographic information system (GIS) analysis of 2019 AIS data to produce yearly and monthly vessel density maps of all vessel classes combined and yearly density maps of each vessel class. The year 2019 was selected to portray shipping densities in a pre-COVID 19 pandemic depiction of the maritime transport sector in the Northwest Atlantic. Vessel density map applications include use in spatial analysis and decision support for marine spatial planning. In 2023 the process was applied to the years 2013 through to 2022 and were made available using the same processes that were applied to the original 2019 datasets. Subsequent years will be processed and added to this entry as an ongoing series.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This layer was created by Duncan Smith and based on work by the European Commission JRC and CIESIN. A description from his website follows:--------------------A brilliant new dataset produced by the European Commission JRC and CIESIN Columbia University was recently released- the Global Human Settlement Layer (GHSL). This is the first time that detailed and comprehensive population density and built-up area for the world has been available as open data. As usual, my first thought was to make an interactive map, now online at- http://luminocity3d.org/WorldPopDen/The World Population Density map is exploratory, as the dataset is very rich and new, and I am also testing out new methods for navigating statistics at both national and city scales on this site. There are clearly many applications of this data in understanding urban geographies at different scales, urban development, sustainability and change over time.
Population data for a selection of countries, allocated to 1 arcsecond blocks and provided in a combination of CSV and Cloud-optimized GeoTIFF files. This refines CIESIN’s Gridded Population of the World using machine learning models on high-resolution worldwide Maxar satellite imagery. CIESIN population counts aggregated from worldwide census data are allocated to blocks where imagery appears to contain buildings.
Project overview and instructions for use with AWS Athena
Quarterly
Meta and Center for International Earth Science Information Network - CIESIN - Columbia University. 2022. High Resolution Settlement Layer (HRSL). Source imagery for HRSL © 2016 Maxar. Accessed DAY MONTH YEAR.
Census data reveals that population density varies noticeably from area to area. Small area census data do a better job depicting where the crowded neighborhoods are. In this map, the yellow areas of highest density range from 30,000 to 150,000 persons per square kilometer. In those areas, if the people were spread out evenly across the area, there would be just 4 to 9 meters between them. Very high density areas exceed 7,000 persons per square kilometer. High density areas exceed 5,200 persons per square kilometer. The last categories break at 3,330 persons per square kilometer, and 1,500 persons per square kilometer.This dataset is comprised of multiple sources. All of the demographic data are from Michael Bauer Research with the exception of the following countries:Australia: Esri Australia and MapData ServicesCanada: Esri Canada and EnvironicsFrance: Esri FranceGermany: Esri Germany and NexigaIndia: Esri India and IndicusJapan: Esri JapanSouth Korea: Esri Korea and OPENmateSpain: Esri España and AISUnited States: Esri Demographics
These data were compiled to demonstrate new predictive mapping approaches and provide comprehensive gridded 30-meter resolution soil property maps for the Colorado River Basin above Hoover Dam. Random forest models related environmental raster layers representing soil forming factors with field samples to render predictive maps that interpolate between sample locations. Maps represented soil pH, texture fractions (sand, silt clay, fine sand, very fine sand), rock, electrical conductivity (ec), gypsum, CaCO3, sodium adsorption ratio (sar), available water capacity (awc), bulk density (dbovendry), erodibility (kwfact), and organic matter (om) at 7 depths (0, 5, 15, 30, 60, 100, and 200 cm) as well as depth to restrictive layer (resdept) and surface rock size and cover. Accuracy and error estimated using a 10-fold cross validation indicated a range of model performances with coefficient of variation (R2) for models ranging from 0.20 to 0.76 with mean of 0.52 and a standard deviation of 0.12. Models of pH, om and ec had the best accuracy (R2 > 0.6). Most texture fractions, CaCO3, and SAR models had R2 values from 0.5-0.6. Models of kwfact, dbovendry, resdept, rock models, gypsum and awc had R2 values from 0.4-0.5 excepting near surface models which tended to perform better. Very fine sands and 200 cm estimates for other models generally performed poorly (R2 from 0.2-0.4), and sample size for the 200 cm models was too low for reliable model building. More than 90% of the soils data used was sampled since 2000, but some older samples are included. Uncertainty estimates were also developed by creating relative prediction intervals, which allow end users to evaluate uncertainty easily.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The world's most accurate population datasets. Seven maps/datasets for the distribution of various populations in Georgia: (1) Overall population density (2) Women (3) Men (4) Children (ages 0-5) (5) Youth (ages 15-24) (6) Elderly (ages 60+) (7) Women of reproductive age (ages 15-49).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population density per pixel at 100 metre resolution. WorldPop provides estimates of numbers of people residing in each 100x100m grid cell for every low and middle income country. Through ingegrating cencus, survey, satellite and GIS datasets in a flexible machine-learning framework, high resolution maps of population counts and densities for 2000-2020 are produced, along with accompanying metadata.
DATASET: Alpha version 2010 and 2015 estimates of numbers of people per grid square, with national totals adjusted to match UN population division estimates (http://esa.un.org/wpp/) and remaining unadjusted.
REGION: Africa
SPATIAL RESOLUTION: 0.000833333 decimal degrees (approx 100m at the equator)
PROJECTION: Geographic, WGS84
UNITS: Estimated persons per grid square
MAPPING APPROACH: Land cover based, as described in: Linard, C., Gilbert, M., Snow, R.W., Noor, A.M. and Tatem, A.J., 2012, Population distribution, settlement patterns and accessibility across Africa in 2010, PLoS ONE, 7(2): e31743.
FORMAT: Geotiff (zipped using 7-zip (open access tool): www.7-zip.org)
FILENAMES: Example - AGO10adjv4.tif = Angola (AGO) population count map for 2010 (10) adjusted to match UN national estimates (adj), version 4 (v4). Population maps are updated to new versions when improved census or other input data become available.
Density map generated nightly from ECAI clearinghouse bounding boxes
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The population of the world, allocated to 1 arcsecond blocks. This refines CIESIN’s Gridded Population of the World project, using machine learning models on high-resolution worldwide Digital Globe satellite imagery. More information.
There is also a tiled version of this dataset that may be easier to use if you are interested in many countries.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The Automatic Identification System (AIS) is a global, satellite-based and terrestrial-based ship tracking system that uses shipborne equipment to remotely track vessel identification and positional information and is typically required on vessels of 300 gross tonnage or more on an international voyage, of 500 gross tonnage or more not on an international voyage, and passenger ships of all sizes. AIS tracking technologies are primarily used in support of real-time maritime domain awareness and for maritime security and safety of life at sea. This report describes a geographic information system (GIS) analysis of 2019 AIS data to produce yearly and monthly vessel density maps of all vessel classes combined and yearly density maps of each vessel class. The year 2019 was selected to portray shipping densities in a pre-COVID 19 pandemic depiction of the maritime transport sector in the Northwest Atlantic. Vessel density map applications include use in spatial analysis and decision support for marine spatial planning. In 2023 the process was applied to the years 2013 through to 2022 and were made available using the same processes that were applied to the original 2019 datasets.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The world's most accurate population datasets. Seven maps/datasets for the distribution of various populations in the Central African Republic: (1) Overall population density (2) Women (3) Men (4) Children (ages 0-5) (5) Youth (ages 15-24) (6) Elderly (ages 60+) (7) Women of reproductive age (ages 15-49).
There is also a tiled version of this dataset that may be easier to use if you are interested in many countries.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The population of the world, allocated to 1 arcsecond blocks. This refines CIESIN’s Gridded Population of the World project, using machine learning models on high-resolution worldwide Digital Globe satellite imagery. More information.
There is also a tiled version of this dataset that may be easier to use if you are interested in many countries.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This webmap is a subset of Global Urban Density Footprint in 2020 Tile Image Layer. This layer represents an estimate of the footprint of urban settings in 2020. It is intended as a fast-drawing cartographic layer to augment base maps and to focus a map reader's attention on the location of human population. This layer is not intended for analysis. This layer was derived from the 2020 slice of the WorldPop Population Density 2000-2020 100m and 1km layers.Also see the Populated Footprint layer, which like this layer, is intended to provide a fast-drawing cartographic context for the footprint of total population.The following processing steps were used to produce this layer in ArcGIS Pro:1. Int tool (Spatial Analyst) to truncate double precision values; all values less than 0.99 become 0.2. Reclassify tool (Spatial Analyst) to set values 0 through 1499 to NoData (Null) and all other values become 1.3. Copy Raster tool with Output Coordinate System environment set to Web Mercator, bit depth to 1 bit, and NoData Value to 0.Source:WorldPop Population Density 2000-2020 100m, which is created from WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation. The DOI for the original WorldPop.org total population population data is 10.5258/SOTON/WP00645.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The Automatic Identification System (AIS) is a global, satellite-based and terrestrial-based ship tracking system that uses shipborne equipment to remotely track vessel identification and positional information and is typically required on vessels of 300 gross tonnage or more on an international voyage, of 500 gross tonnage or more not on an international voyage, and passenger ships of all sizes. AIS tracking technologies are primarily used in support of real-time maritime domain awareness and for maritime security and safety of life at sea. This report describes a geographic information system (GIS) analysis of 2019 AIS data to produce yearly and monthly vessel density maps of all vessel classes combined and yearly density maps of each vessel class. The year 2019 was selected to portray shipping densities in a pre-COVID 19 pandemic depiction of the maritime transport sector in the Northwest Atlantic. Vessel density map applications include use in spatial analysis and decision support for marine spatial planning. In 2023 the process was applied to the years 2013 through to 2022 and were made available using the same processes that were applied to the original 2019 datasets.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The population of the world, allocated to 1 arcsecond blocks. This refines CIESIN’s Gridded Population of the World project, using machine learning models on high-resolution worldwide Digital Globe satellite imagery. More information.
There is also a tiled version of this dataset that may be easier to use if you are interested in many countries.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The world's most accurate population datasets. Seven maps/datasets for the distribution of various populations in Armenia: (1) Overall population density (2) Women (3) Men (4) Children (ages 0-5) (5) Youth (ages 15-24) (6) Elderly (ages 60+) (7) Women of reproductive age (ages 15-49).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population density per pixel at 100 metre resolution. WorldPop provides estimates of numbers of people residing in each 100x100m grid cell for every low and middle income country. Through ingegrating cencus, survey, satellite and GIS datasets in a flexible machine-learning framework, high resolution maps of population counts and densities for 2000-2020 are produced, along with accompanying metadata. DATASET: Alpha version 2010 and 2015 estimates of numbers of people per grid square, with national totals adjusted to match UN population division estimates (http://esa.un.org/wpp/) and remaining unadjusted. REGION: East Asia and Pacific SPATIAL RESOLUTION: 0.000833333 decimal degrees (approx 100m at the equator) PROJECTION: Geographic, WGS84 UNITS: Estimated persons per grid square MAPPING APPROACH: Land cover based, as described in: Linard, C., Gilbert, M., Snow, R.W., Noor, A.M. and Tatem, A.J., 2012, Population distribution, settlement patterns and accessibility across Africa in 2010, PLoS ONE, 7(2): e31743. FORMAT: Geotiff (zipped using 7-zip (open access tool): www.7-zip.org) FILENAMES: Example - AGO10adjv4.tif = Angola (AGO) population count map for 2010 (10) adjusted to match UN national estimates (adj), version 4 (v4). Population maps are updated to new versions when improved census or other input data become available. Republic of Korea data available from WorldPop here. Data and Resources TIFF Republic of Korea - Population density (2015) DATASET: Alpha version 2010 and 2015 estimates of numbers of people per grid...
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
These datasets provide global maps of carbon density (aboveground, belowground biomass carbon and soil organic carbon stocks) for the year 2010 and 2018 at ~300-m spatial resolution in Mg ha-1 (Coordinate System: WGS 1984, float format). Input maps were collected from published literature, and where necessary, updated to cover the focal time period. These updates were applied to the manageable carbon, vulnerable carbon and irrecoverable carbon maps. Manageable carbon is carbon in terrestrial and coastal ecosystems that could experience an anthropogenic land-use conversion event . Vulnerable carbon is the carbon that would be that would be released in a typical land-use conversion. Irrecoverable carbon is the carbon that, if lost, would not recover by mid-century. Datasets are disaggregated for carbon density in biomass or soils. To view these datasets, go to: https://irrecoverable.resilienceatlas.org/map.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
VERSION 1.5. The world's most accurate population datasets. Seven maps/datasets for the distribution of various populations in Ghana: (1) Overall population density (2) Women (3) Men (4) Children (ages 0-5) (5) Youth (ages 15-24) (6) Elderly (ages 60+) (7) Women of reproductive age (ages 15-49). Methodology These high-resolution maps are created using machine learning techniques to identify buildings from commercially available satellite images. This is then overlayed with general population estimates based on publicly available census data and other population statistics at Columbia University. The resulting maps are the most detailed and actionable tools available for aid and research organizations. For more information about the methodology used to create our high resolution population density maps and the demographic distributions, click here. For information about how to use HDX to access these datasets, please visit: https://dataforgood.fb.com/docs/high-resolution-population-density-maps-demographic-estimates-documentation/ Adjustments to match the census population with the UN estimates are applied at the national level. The UN estimate for a given country (or state/territory) is divided by the total census estimate of population for the given country. The resulting adjustment factor is multiplied by each administrative unit census value for the target year. This preserves the relative population totals across administrative units while matching the UN total. More information can be found here
Industrial Density Map