Census data reveals that population density varies noticeably from area to area. Small area census data do a better job depicting where the crowded neighborhoods are. In this map, the yellow areas of highest density range from 30,000 to 150,000 persons per square kilometer. In those areas, if the people were spread out evenly across the area, there would be just 4 to 9 meters between them. Very high density areas exceed 7,000 persons per square kilometer. High density areas exceed 5,200 persons per square kilometer. The last categories break at 3,330 persons per square kilometer, and 1,500 persons per square kilometer.This dataset is comprised of multiple sources. All of the demographic data are from Michael Bauer Research with the exception of the following countries:Australia: Esri Australia and MapData ServicesCanada: Esri Canada and EnvironicsFrance: Esri FranceGermany: Esri Germany and NexigaIndia: Esri India and IndicusJapan: Esri JapanSouth Korea: Esri Korea and OPENmateSpain: Esri España and AISUnited States: Esri Demographics
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population density per pixel at 100 metre resolution. WorldPop provides estimates of numbers of people residing in each 100x100m grid cell for every low and middle income country. Through ingegrating cencus, survey, satellite and GIS datasets in a flexible machine-learning framework, high resolution maps of population counts and densities for 2000-2020 are produced, along with accompanying metadata.
DATASET: Alpha version 2010 and 2015 estimates of numbers of people per grid square, with national totals adjusted to match UN population division estimates (http://esa.un.org/wpp/) and remaining unadjusted.
REGION: Africa
SPATIAL RESOLUTION: 0.000833333 decimal degrees (approx 100m at the equator)
PROJECTION: Geographic, WGS84
UNITS: Estimated persons per grid square
MAPPING APPROACH: Land cover based, as described in: Linard, C., Gilbert, M., Snow, R.W., Noor, A.M. and Tatem, A.J., 2012, Population distribution, settlement patterns and accessibility across Africa in 2010, PLoS ONE, 7(2): e31743.
FORMAT: Geotiff (zipped using 7-zip (open access tool): www.7-zip.org)
FILENAMES: Example - AGO10adjv4.tif = Angola (AGO) population count map for 2010 (10) adjusted to match UN national estimates (adj), version 4 (v4). Population maps are updated to new versions when improved census or other input data become available.
Population density in the Middle Krishna (K2) sub-basin area. The dataset, calculated as number of people per hectare, is derived from the WorldPop datasets (https://www.worldpop.org/)
Monaco led the ranking for countries with the highest population density in 2024, with nearly 26,000 residents per square kilometer. The Special Administrative Region of Macao came in second, followed by Singapore. The world’s second smallest country Monaco is the world’s second-smallest country, with an area of about two square kilometers and a population of only around 40,000. It is a constitutional monarchy located by the Mediterranean Sea, and while Monaco is not part of the European Union, it does participate in some EU policies. The country is perhaps most famous for the Monte Carlo casino and for hosting the Monaco Grand Prix, the world's most prestigious Formula One race. The global population Globally, the population density per square kilometer is about 60 inhabitants, and Asia is the most densely populated region in the world. The global population is increasing rapidly, so population density is only expected to increase. In 1950, for example, the global population stood at about 2.54 billion people, and it reached over eight billion during 2023.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Additional file 1: Basic Information of India. Table S1. List of Indian States and Union Territories. Figure S1. Map of Indian States and Union Territories. Figure S2. Map of Indian population density. Figure S3. Averaged annual rainfall map of India (2013-2016). The red arrows are monsoon move directions during summer.
This map is part of an interactive Story Map series about global change in the US.With the global human population expected to exceed 8 billion people by 2030, our species is already irreversibly changing the future of our planet. The US itself is expected to grow by 16.5% to over 360 million people, making it the third largest country in the world, behind India and China. This population increase isn’t distributed evenly - 81% of people will live in cities, urban, and suburban areas, which will continue to shape how resources are produced, transported, and consumed. The percent of foreign-born and second-generation immigrants in the US is also expected to rise in the future, contributing to an increasingly diverse population. Across the globe, immigration will likely account for significant population changes in the near future, as climate change fuels drought, crop failures, and political instability, creating climate refugees particularly among countries who do not have the infrastructure to mitigate or adapt to global change. Numbers aren’t the only thing that matter: people of different socioeconomic backgrounds use resources differently, both within and between countries.If the rest of the world used energy as intensely as the United States does, the world population would need more than 4 entire Earths to provide us with the resources to feed this rate consumption. This unfortunately means that even regions of the US that contribute less towards the problems of global change will still feel their impacts. To ensure a high quality of life for all citizens, we must address not only population growth, but also excess consumption of and reliance on resources across different regions. Geographic, population, and economic differences among regions can provide opportunities for success in the face of global change. Renewable energy sources have created entrepreneurial economic ventures, and communities have found environmental solutions through forming sustainable local food systems. Environmental justice movements are working now to ensure that all citizens have access to nature, recreational areas, and a healthy future for all.
In the middle of 2023, about 60 percent of the global population was living in Asia.The total world population amounted to 8.1 billion people on the planet. In other words 4.7 billion people were living in Asia as of 2023. Global populationDue to medical advances, better living conditions and the increase of agricultural productivity, the world population increased rapidly over the past century, and is expected to continue to grow. After reaching eight billion in 2023, the global population is estimated to pass 10 billion by 2060. Africa expected to drive population increase Most of the future population increase is expected to happen in Africa. The countries with the highest population growth rate in 2024 were mostly African countries. While around 1.47 billion people live on the continent as of 2024, this is forecast to grow to 3.9 billion by 2100. This is underlined by the fact that most of the countries wit the highest population growth rate are found in Africa. The growing population, in combination with climate change, puts increasing pressure on the world's resources.
Nigeria has the largest population in Africa. As of 2025, the country counted over 237.5 million individuals, whereas Ethiopia, which ranked second, has around 135.5 million inhabitants. Egypt registered the largest population in North Africa, reaching nearly 118.4 million people. In terms of inhabitants per square kilometer, Nigeria only ranked seventh, while Mauritius had the highest population density on the whole African continent in 2023. The fastest-growing world region Africa is the second most populous continent in the world, after Asia. Nevertheless, Africa records the highest growth rate worldwide, with figures rising by over two percent every year. In some countries, such as Niger, the Democratic Republic of Congo, and Chad, the population increase peaks at over three percent. With so many births, Africa is also the youngest continent in the world. However, this coincides with a low life expectancy. African cities on the rise The last decades have seen high urbanization rates in Asia, mainly in China and India. However, African cities are currently growing at larger rates. Indeed, most of the fastest-growing cities in the world are located in Sub-Saharan Africa. Gwagwalada, in Nigeria, and Kabinda, in the Democratic Republic of the Congo, ranked first worldwide. By 2035, instead, Africa's fastest-growing cities are forecast to be Bujumbura, in Burundi, and Zinder, Nigeria.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
This data package includes spatial environmental and social layers for Shivamogga District, Karnataka, India that were considered as potential predictors of patterns in human cases of Kyasanur Forest Disease (KFD). KFD is a fatal tick-borne viral haemorrhagic disease of humans, that is spreading across degraded forest ecosystems in India. The layers encompass a range of fifteen metrics of topography, land use and land use change, livestock and human population density and public health resources for Shivamogga District across 1km and 2km study grids. These spatial proxies for risk factors for KFD that had been jointly identified between cross-sectoral stakeholders and researchers through a co-production approach. Shivamogga District is the District longest affected by KFD in south India. The layers are distributed as 1km and 2km GeoTiffs in Albers equal area conic projection. For KFD, spatial models incorporating these layers identified characteristics of forest-plantation landscapes at higher risk for human KFD. These layers will be useful for modelling spatial patterns in other environmentally sensitive infectious diseases and biodiversity within the district.
Methods Processing of environmental predictors of Kyasanur Forest Disease distribution
This file details the sources and processing of environmental predictors offered to the statistical analysis in the paper. All processing was performed in the raster package [1] of the R program [2] unless otherwise specified, with function names as specified below.
Topography predictors
Elevation data was extracted in tiles from Shuttle Radar Topography Mission data version 4 [3] an original resolution of 0.000833 degrees Latitude and Longitude resolution (approximately 90m by 90m grid cells). Tiles were mosaicked across the study region using the merge function. A slope value for each pixel was calculated (in degrees) using the terrain function of the raster package, and a focal window of 3 by 3 cells. Both the resulting elevation and slope rasters were cropped to the administrative boundaries of the Shivamogga District (raster package: crop function) and re-projected to an equal area projection (Albers equal area conic projection) using the projectRaster function (method=”bilinear”). Mean elevation and slope values were then calculated across the study 1km and 2km grid cells, using the aggregate function to average values across the appropriate number of ~90m grid cells and then the resample function to align the resulting grid to the study grids.
Landscape predictors
Metrics of the current availability (and fragmentation) of forest, agricultural and built-up land use types as well as that of water-bodies were extracted from the MonkeyFeverRisk Land Use Land Cover map of Shimoga. The latter was produced from classification of earth observation data from 2016 to 2018 using the methods described in the Supplementary information S3 file of the paper linked to this dataset. The LULC map had an original grid square resolution of 0.000269 degrees Latitude and Longitude resolution (or 30m x 28m grid cells) and nine different LULC classes. It was cropped to the administrative boundaries of the Shimoga District (raster package: crop function) and re-projected to the equal area projection (Albers equal area conic projection) using the projectRaster function (method=”ngb” for categorical data). The agriculture and fallow land classes were combined before landscape analysis (due to the difficulty of separating them accurately in the classification process).
An algorithm was developed in R to identify which of the pixels in the LULC map coincided with each 1km and 2km grid cell of the study area. The ClassStat function of the SDM Tools package [4] was used to calculate the proportional area of each 1km or 2km grid cell landscape that was made up of a particular land class, as well patch density and edge density metrics for the forest classes as indicators of fragmentation and forest-agriculture interface habitat respectively (Fig. S2B). The proportional area values (pi) of the n different forest classes (wet evergreen forest, moist deciduous forest, dry deciduous forest and plantation) were used to calculate an index of forest type diversity per grid cell as follows, after Shannon & Weaver (1949) [5]:
H'= -1npi(lognpi)
Metrics of longer term forest changes in Shimoga since 2000 were derived from a global product by Hansen et al. (2013) [6] available at a spatial resolution of 1 arc-second per pixel, (~ 30 meters per pixel at equator). Forest loss during the period 2000–2014, is defined as a stand-replacement disturbance, or a change from a forest to non-forest state, encoded as either 1 (loss) or 0 (no loss). Forest gain during the period 2000–2012, is defined as a non-forest to forest change entirely within the study period, encoded as either 1 (gain) or 0 (no gain).These layers were again cropped to the administrative boundaries of the Shimoga District (raster package: crop function) and re-projected to an equal area projection (Albers equal area conic projection) using the projectRaster function (method=”ngb”) in R. An algorithm was developed in R to identify which of the pixels in the loss and gain rasters coincided with each 1km and 2km grid cell of the study area. The ClassStat function of the SDM Tools package [4] was used to calculate the proportional area of each 1km or 2km grid cell that was made up of loss pixels or gain pixels. Forest gain and loss are very highly correlated (r=0.986) and occur in similar places in the landscape (Fig. S2C). Forest loss was a much more common transition than a forest gain affecting 1.2% of land pixels rather than 0.16% of land pixels for forest gain.
To assess how forest loss or gain from a global product like Hansen et al. (2013) should be interpreted locally in south India, we analysed how the loss and gain pixels from Hansen et al. 2013 coincided with classes in the MonkeyFeverRisk LULC map (by extracting the value of the LULC map for the centroids of loss or gain pixels).
The distribution of loss and gain pixels across forest classes from the MonkeyFeverRisk LULC map is shown in Table 1. Locations categorised as a loss by Hansen et al. were most commonly classified currently as plantation, followed by moist evergreen forest, followed by
moist or dry deciduous forest by the MonkeyFeverRisk LULC map. The pattern was similar for the gain pixels. Since not all forest loss pixels were non-forest in the current day and not all forest gain pixels were forest in the current day, the precise meaning of the Hansen et al. (2013) forest loss layer was unclear for south India, though we expect that it is at least indicative of areas where the forest has undergone a larger degree of change since 2000.
Table 1: Percentage of loss (n= 108398) and gain (n= 14646) land pixels from the global Hansen et al. (2013) product that fall into different forest classes according to the MonkeyFeverRisk LULC map
Land use class
Gain
Loss
moist evergreen
30.4
26.1
moist deciduous
6.5
16.2
dry deciduous
3.0
9.7
plantation
46.2
37.2
Non-forest classes
14.0
10.9
Host and public health predictors
Livestock host density data, namely buffalo and indigenous cattle densities in units of total head per village were obtained from Department of Animal Husbandry, Dairying and Fisheries, Government of India Census from 2011 at village level. These were linked to village boundaries from the Survey of India using the village census codes in R. The village areas were calculated from the spatial polygons dataframe of villages using the rgeos package in R, so that the total head per village metrics could be convert into an areal density of buffalo and indigenous cattle per km and then rasterized at 1km and 2km using the rasterize function of the raster package.
The human population size and public health metrics were obtained from the Government of India Population Census 2011. The human population size (census field TOT_P) was again linked to the spatial polygon village boundaries using the census village code (census field VCT_2011) and converted to an areal metric of population density per km and rasterized at 1km and 2km as above. The number of medics per head of population was derived by summing all doctors and para-medicals “in position” across all types of health centres, clinics and dispensaries per village and dividing by the total population of the village (TOT_P) and then linked to village boundaries and rasterized as above. The proximity to health centres was a categorical variable derived from the “Primary.Health.Centre..Numbers” field, where 1 = Primary Health Centre (PHC) within village boundary, 2 = PHC within 5km of village, 3=PHC within 5-10km of village, 4= PHC further than 10km from village. It was linked to village boundaries and rasterized as above.
The resulting raster layers for all predictors were saved in GeoTiff format.
References
Robert J. Hijmans (2017). raster: Geographic Data Analysis and Modeling. R package version 2.6-7. https://CRAN.R-project.org/package=raster
R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.URL https://www.R-project.org/
Jarvis, A., Reuter, I., Nelson, A., Guevara, E. Hole-filled SRTM for the globe Version 4. 2008.
VanDerWal, J., Falconi, L., Januchowski, S., Shoo, L., & Storlie, C. (2014). SDMTools: Species Distribution Modelling Tools: Tools for processing data associated with species distribution modelling exercises. R
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The India Lights platform shows light output at night for 20 years for 600,000 villages across India. The Defense Meteorological Satellite Program (DMSP) has taken pictures of the Earth every night from 1993 to 2013. Researchers at the University of Michigan, in collaboration with the World Bank, used the DMSP images to extract the data you see on the India Lights platform. Each point you see on the map represents the light output of a specific village at a specific point in time. On the district level, the map also allows you to filter to view villages that have participated in India’s flagship electrification program. This tremendous trove of data can be used to look at changes in light output, which can be used to complement research about electrification in the country. About the Data: The DMSP raster images have a resolution of 30 arc-seconds, equal to roughly 1 square kilometer at the equator. Each pixel of the image is assigned a number on a relative scale from 0 to 63, with 0 indicating no light output and 63 indicating the highest level of output. This number is relative and may change depending on the gain settings of the satellite’s sensor, which constantly adjusts to current conditions as it takes pictures throughout the day and at night. Methodology To derive a single measurement, the light output values were extracted from the raster image for each date for the pixels that correspond to each village's approximate latitude and longitude coordinates. We then processed the data through a series of filtering and aggregation steps. First, we filtered out data with too much cloud cover and solar glare, according to recommendations from the National Oceanic and Atmospheric Administration (NOAA). We aggregated the resulting 4.4 billion data points by taking the median measurement for each village over the course of a month. We adjusted for differences among satellites using a multiple regression on year and satellite to isolate the effect of each satellite. To analyze data on the state and district level, we also determined the median village light output within each administrative boundary for each month in the twenty-year time span. These monthly aggregates for each village, district, and state are the data that we have made accessible through the API. To generate the map and light curve visualizations that are presented on this site, we performed some additional data processing. For the light curves, we used a rolling average to smooth out the noise due to wide fluctuations inherent in satellite measurements. For the map, we took a random sample of 10% of the villages, stratified over districts to ensure good coverage across regions of varying village density. Acknowledgments The India Lights project is a collaboration between Development Seed, The World Bank, and Dr. Brian Min at the University of Michigan. •Satellite base map © Mapbox. •India village locations derived from India VillageMap © 2011-2015 ML Infomap. •India population data and district boundaries © 2011-2015 ML Infomap. •Data for reference map of Uttar Pradesh, India, from Natural Earth Data •Banerjee, Sudeshna Ghosh; Barnes, Douglas; Singh, Bipul; Mayer, Kristy; Samad, Hussain. 2014. Power for all : electricity access challenge in India. A World Bank study. Washington, DC ; World Bank Group. •Hsu, Feng-Chi, Kimberly Baugh, Tilottama Ghosh, Mikhail Zhizhin, and Christopher Elvidge. "DMSP-OLS Radiance Calibrated Nighttime Lights Time Series with Intercalibration." Remote Sensing 7.2 (2015): 1855-876. Web. •Min, Brian. Monitoring Rural Electrification by Satellite. Tech. World Bank, 30 Dec. 2014. Web. •Min, Brian. Power and the Vote: Elections and Electricity in the Developing World. New York and Cambridge: Cambridge University Press. 2015. •Min, Brian, and Kwawu Mensan Gaba. Tracking Electrification in Vietnam Using Nighttime Lights. Remote Sensing 6.10 (2014): 9511-529. •Min, Brian, and Kwawu Mensan Gaba, Ousmane Fall Sarr, Alassane Agalassou. Detection of Rural Electrification in Africa using DMSP-OLS Night Lights Imagery. International Journal of Remote Sensing 34.22 (2013):8118-8141. Disclaimer Country borders or names do not necessarily reflect the World Bank Group's official position. The map is for illustrative purposes and does not imply the expression of any opinion on the part of the World Bank, concerning the legal status of any country or territory or concerning the delimitation of frontiers or boundaries.
There were over one million registered Indians in Canada as of December 2020. The region with the largest Indian population was Ontario, with 222 thousand, followed by Manitoba, which counted 164 thousand Indians. The regions with the smallest Indian populations were Yukon, and Northwest Territories.
The earliest point where scientists can make reasonable estimates for the population of global regions is around 10,000 years before the Common Era (or 12,000 years ago). Estimates suggest that Asia has consistently been the most populated continent, and the least populated continent has generally been Oceania (although it was more heavily populated than areas such as North America in very early years). Population growth was very slow, but an increase can be observed between most of the given time periods. There were, however, dips in population due to pandemics, the most notable of these being the impact of plague in Eurasia in the 14th century, and the impact of European contact with the indigenous populations of the Americas after 1492, where it took almost four centuries for the population of Latin America to return to its pre-1500 level. The world's population first reached one billion people in 1803, which also coincided with a spike in population growth, due to the onset of the demographic transition. This wave of growth first spread across the most industrially developed countries in the 19th century, and the correlation between demographic development and industrial or economic maturity continued until today, with Africa being the final major region to begin its transition in the late-1900s.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Values without references indicate that have been determined for this article (see S1 Fig).
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Census data reveals that population density varies noticeably from area to area. Small area census data do a better job depicting where the crowded neighborhoods are. In this map, the yellow areas of highest density range from 30,000 to 150,000 persons per square kilometer. In those areas, if the people were spread out evenly across the area, there would be just 4 to 9 meters between them. Very high density areas exceed 7,000 persons per square kilometer. High density areas exceed 5,200 persons per square kilometer. The last categories break at 3,330 persons per square kilometer, and 1,500 persons per square kilometer.This dataset is comprised of multiple sources. All of the demographic data are from Michael Bauer Research with the exception of the following countries:Australia: Esri Australia and MapData ServicesCanada: Esri Canada and EnvironicsFrance: Esri FranceGermany: Esri Germany and NexigaIndia: Esri India and IndicusJapan: Esri JapanSouth Korea: Esri Korea and OPENmateSpain: Esri España and AISUnited States: Esri Demographics