10 datasets found
  1. d

    CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Oct 2, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 1-year storm in San Diego County [Dataset]. https://catalog.data.gov/dataset/cosmos-coastal-storm-modeling-system-southern-california-v3-0-phase-2-ocean-currents-proje-62d49
    Explore at:
    Dataset updated
    Oct 2, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    San Diego County, California, Southern California
    Description

    Projected Hazard: Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Phase 2 data for Southern California include flood-hazard information for the coast from the border of Mexico to Pt. Conception. Several changes from Phase 1 projections are reflected in many areas; please read the model summary and inspect output carefully. Data are complete for the information presented. Details: Model background: The CoSMoS model comprises three tiers. Tier I consists of one Delft3D hydrodynamics FLOW grid for computation of tides, water level variations, flows, and currents and one SWAN grid for computation of wave generation and propagation across the continental shelf. The FLOW and SWAN models are two-way coupled so that tidal currents are accounted for in wave propagation and growth and conversely, so that orbital velocities generated by waves impart changes on tidal currents. The Tier I SWAN and FLOW models consist of identical structured curvilinear grids that extend from far offshore to the shore and range in resolution from 0.5 km in the offshore to 0.2 km in the nearshore. Spatially varying astronomic tidal amplitudes and phases and steric rises in water levels due to large-scale effects (for example, a prolonged rise in sea level) are applied along all open boundaries of the Tier I FLOW grid. Winds (split into eastward and northward components) and sea-level pressure (SLP) fields from CaRD10 (Dr. Dan Cayan, Scripps Institute of Oceanography, San Diego, California, written commun., 2014) that vary in both space and time are applied to all grid cells at each model time-step. Deep-water wave conditions, applied at the open boundaries of the Tier I SWAN model runs, were projected for the 21st century Representative Concentration Pathway (RCP) 4.5 climate scenario (2011-2100) using the WaveWatch III numerical wave model (Tolman and others, 2002) and 3-hourly winds from the GFDL-ESM2M Global Climate Model (GCM). Tier II provides higher resolution near the shore and in areas that require greater resolution of physical processes (such as bays, harbors, and estuaries). A single nested outer grid and multiple two-way coupled domain decomposition (DD) structured grids allow for local grid refinement and higher resolution where needed. Tier II was segmented into 11 sections along the Southern California Bight, to reduce computation time and complete runs within computational limitations. Water-level and Neumann time-series, extracted from Tier I simulations, are applied to the shore-parallel and lateral open boundaries of each Tier II sub-model outer grid respectively. Several of the sub-models proved to be unstable with lateral Neumann boundaries; for those cases one or both of the lateral boundaries were converted to water-level time-series or left unassigned. The open-boundary time-series are extracted from completed Tier I simulations so that there is no communication from Tier II to Tier I. Because this one-way nesting could produce erroneous results near the boundaries of Tier II and because data near any model boundary are always suspect, Tier II sub-model extents were designed to overlap in the along-coast direction. In the landward direction, Tier II DD grids extend to the 10-m topographic contour; exceptions exist where channels (such as the Los Angeles River) or other low-lying regions extend very far inland. Space- and time-varying wind and SLP fields, identical to those used in Tier I simulations, are applied to all Tier II DD grids to allow for wind-setup and local inverse barometer effects (IBE, rise or depression of water levels in response to atmospheric pressure gradients). A total of 42 time-series fluvial discharges are included in the Tier II FLOW domains in an effort to simulate exacerbated flooding caused by backflow at the confluence of high river seaward flows and elevated coastal surge levels migrating inland. Time-varying fluvial discharges are applied either at the closed boundaries or distributed as point sources within the relevant model domains. Wave computations are accomplished with the SWAN model using two grids for each Tier II sub-model: one larger grid covering the same area as the outer FLOW grid and a second finer resolution two-way coupled nearshore nested grid. The nearshore grid extends from approximately 800-1,000 m water depth up to 8-10 m elevations onshore. The landward extension is included to allow for wave computations of the higher SLR scenarios. Time- and space-varying 2D wave spectra extracted from previously completed Tier I simulations are applied approximately every kilometer along the open boundaries of the outer Tier II sub-model SWAN grids. The same space- and time-varying wind fields used in Tier I simulations are also applied to both Tier II SWAN grids to allow for computation of local wave generation. Tier III for the entire Southern California Bight consists of 4,802 cross-shore transects (CST) spaced approximately 100 m apart in the along-shore direction. The profiles extend from the -15 m isobath to at least 10 m above NAVD88. The CSTs are truncated for cases where a lagoon or other waterway exists on the landward end of the profile. Time-varying water levels and wave parameters (significant wave heights, Hs; peak periods, Tp; and peak incident wave directions, Dp), extracted from Tier II grid cells that coincide with the seaward end of the CSTs, are applied at the open boundary of each CST. The XBeach model is run in a hydrostatic (no vertical pressure gradients) mode including event-based morphodynamic change. Wave propagation, two-way wave-current interaction, water-level variations, and wave runup are computed at each transect. XBeach simulations are included in the CoSMoS model to account for infragravity waves that can significantly extend the reach of wave runup (Roelvink and others, 2009) compared to short-wave incident waves. The U.S. west coast is particularly susceptible to infragravity waves at the shore due to breaking of long-period swell waves (Tp > 15). Resulting water levels (WLs) from both Delft3D (high interest bays and marshes) and open-coast XBeach (CSTs) were spatially combined and interpolated to a 10 m grid. These WL elevations are differenced from the originating 2 m digital elevation model (DEM) to determine final flooding extent and depth of flooding. Events: The model system is run for pre-determined scenarios of interest such as the 1-yr or 100-yr storm event in combination with sea-level rise. Storms are first identified from time-series of total water level proxies (TWLpx) at the shore. TWLpx are computed for the majority of the 21st century (2010-2100), assuming a linear super-position of the major processes that contribute to the overall total water level. TWLpx time-series are then evaluated for extreme events, which define the boundary conditions for subsequent modeling with CoSMoS. Multiple 100-yr events are determined (varying Hs, Tp, Dp) and used for multiple model runs to better account for regional and directional flooding affects. Model results are combined and compiled into scenario-specific composites of flood projection. Digital Elevation Model (DEM): Our seamless, topobathymetric digital elevation model (DEM) was based largely upon the Coastal California TopoBathy Merge Project DEM, with some modifications performed by the USGS Earth Resources Observation and Science (EROS) Center to incorporate the most recent, high-resolution topographic and bathymetric datasets available. Topography is derived from bare-earth light detection and ranging (lidar) data collected in 2009-2011 for the CA Coastal Conservancy Lidar Project and bathymetry from 2009-2010 bathymetric lidar as well as acoustic multi- and single-beam data collected primarily between 2001 and 2013. The DEM was constructed to define the shape of nearshore, beach, and cliff surfaces as accurately as possible, utilizing dozens of bathymetric and topographic data sets. These data were used to populate the majority of the Tier I and II grids. To describe and include impacts from long-term shoreline evolution, including cumulative storm activity, seasonal trends, ENSO, and SLR, the DEM was modified for each SLR scenario. Long-term shoreline (Vitousek and Barnard, 2015) and cliff (Limber and others, 2015) erosion projections were efficiently combined along the cross-shore transects to evolve the shore-normal profiles. Elevation changes from the profiles were spatially-merged for a cohesive, 3D depiction of coastal evolution used to modify the DEM. These data are used to generate initial profiles of the 4,802 CSTs used for Phase 2 Tier III XBeach modeling and determining final projected flood depths in each SLR scenario. All data are referenced to NAD83 horizontal datum and NAVD88 vertical datum. Data for Tiers II and III are projected in UTM, zone 11. Outputs include: Projected ocean current velocities for the 100-year storm and 0.0 m sea-level rise scenario. Data correspond to the near-shore region including areas vulnerable to coastal flooding due to storm surge, sea-level anomalies, tide elevation, and wave run-up during the same storm and sea-level rise simulation. References Cited: Howell, S., Smith-Konter, B., Frazer, N., Tong, X., and Sandwell, D., 2016, The vertical fingerprint of

  2. d

    CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 100-year storm in San Diego County [Dataset]. https://catalog.data.gov/dataset/cosmos-coastal-storm-modeling-system-southern-california-v3-0-phase-2-water-level-projecti-2dff3
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    U.S. Geological Survey
    Area covered
    San Diego County, California, Southern California
    Description

    Projected Hazard: Model-derived water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Phase 2 data for Southern California include flood-hazard information for the coast from the border of Mexico to Pt. Conception. Several changes from Phase 1 projections are reflected in many areas; please read the model summary and inspect output carefully. Data are complete for the information presented. Details: Model background: The CoSMoS model comprises three tiers. Tier I consists of one Delft3D hydrodynamics FLOW grid for computation of tides, water level variations, flows, and currents and one SWAN grid for computation of wave generation and propagation across the continental shelf. The FLOW and SWAN models are two-way coupled so that tidal currents are accounted for in wave propagation and growth and conversely, so that orbital velocities generated by waves impart changes on tidal currents. The Tier I SWAN and FLOW models consist of identical structured curvilinear grids that extend from far offshore to the shore and range in resolution from 0.5 km in the offshore to 0.2 km in the nearshore. Spatially varying astronomic tidal amplitudes and phases and steric rises in water levels due to large-scale effects (for example, a prolonged rise in sea level) are applied along all open boundaries of the Tier I FLOW grid. Winds (split into eastward and northward components) and sea-level pressure (SLP) fields from CaRD10 (Dr. Dan Cayan, Scripps Institute of Oceanography, San Diego, California, written commun., 2014) that vary in both space and time are applied to all grid cells at each model time-step. Deep-water wave conditions, applied at the open boundaries of the Tier I SWAN model runs, were projected for the 21st century Representative Concentration Pathway (RCP) 4.5 climate scenario (2011-2100) using the WaveWatch III numerical wave model (Tolman and others, 2002) and 3-hourly winds from the GFDL-ESM2M Global Climate Model (GCM). Tier II provides higher resolution near the shore and in areas that require greater resolution of physical processes (such as bays, harbors, and estuaries). A single nested outer grid and multiple two-way coupled domain decomposition (DD) structured grids allow for local grid refinement and higher resolution where needed. Tier II was segmented into 11 sections along the Southern California Bight, to reduce computation time and complete runs within computational limitations. Water-level and Neumann time-series, extracted from Tier I simulations, are applied to the shore-parallel and lateral open boundaries of each Tier II sub-model outer grid respectively. Several of the sub-models proved to be unstable with lateral Neumann boundaries; for those cases one or both of the lateral boundaries were converted to water-level time-series or left unassigned. The open-boundary time-series are extracted from completed Tier I simulations so that there is no communication from Tier II to Tier I. Because this one-way nesting could produce erroneous results near the boundaries of Tier II and because data near any model boundary are always suspect, Tier II sub-model extents were designed to overlap in the along-coast direction. In the landward direction, Tier II DD grids extend to the 10-m topographic contour; exceptions exist where channels (such as the Los Angeles River) or other low-lying regions extend very far inland. Space- and time-varying wind and SLP fields, identical to those used in Tier I simulations, are applied to all Tier II DD grids to allow for wind-setup and local inverse barometer effects (IBE, rise or depression of water levels in response to atmospheric pressure gradients). A total of 42 time-series fluvial discharges are included in the Tier II FLOW domains in an effort to simulate exacerbated flooding caused by backflow at the confluence of high river seaward flows and elevated coastal surge levels migrating inland. Time-varying fluvial discharges are applied either at the closed boundaries or distributed as point sources within the relevant model domains. Wave computations are accomplished with the SWAN model using two grids for each Tier II sub-model: one larger grid covering the same area as the outer FLOW grid and a second finer resolution two-way coupled nearshore nested grid. The nearshore grid extends from approximately 800-1,000 m water depth up to 8-10 m elevations onshore. The landward extension is included to allow for wave computations of the higher SLR scenarios. Time- and space-varying 2D wave spectra extracted from previously completed Tier I simulations are applied approximately every kilometer along the open boundaries of the outer Tier II sub-model SWAN grids. The same space- and time-varying wind fields used in Tier I simulations are also applied to both Tier II SWAN grids to allow for computation of local wave generation. Tier III for the entire Southern California Bight consists of 4,802 cross-shore transects (CST) spaced approximately 100 m apart in the along-shore direction. The profiles extend from the -15 m isobath to at least 10 m above NAVD88. The CSTs are truncated for cases where a lagoon or other waterway exists on the landward end of the profile. Time-varying water levels and wave parameters (significant wave heights, Hs; peak periods, Tp; and peak incident wave directions, Dp), extracted from Tier II grid cells that coincide with the seaward end of the CSTs, are applied at the open boundary of each CST. The XBeach model is run in a hydrostatic (no vertical pressure gradients) mode including event-based morphodynamic change. Wave propagation, two-way wave-current interaction, water-level variations, and wave runup are computed at each transect. XBeach simulations are included in the CoSMoS model to account for infragravity waves that can significantly extend the reach of wave runup (Roelvink and others, 2009) compared to short-wave incident waves. The U.S. west coast is particularly susceptible to infragravity waves at the shore due to breaking of long-period swell waves (Tp > 15). Resulting water levels (WLs) from both Delft3D (high interest bays and marshes) and open-coast XBeach (CSTs) were spatially combined and interpolated to a 10 m grid. These WL elevations are differenced from the originating 2 m digital elevation model (DEM) to determine final flooding extent and depth of flooding. Events: The model system is run for pre-determined scenarios of interest such as the 1-yr or 100-yr storm event in combination with sea-level rise. Storms are first identified from time-series of total water level proxies (TWLpx) at the shore. TWLpx are computed for the majority of the 21st century (2010-2100), assuming a linear super-position of the major processes that contribute to the overall total water level. TWLpx time-series are then evaluated for extreme events, which define the boundary conditions for subsequent modeling with CoSMoS. Multiple 100-yr events are determined (varying Hs, Tp, Dp) and used for multiple model runs to better account for regional and directional flooding affects. Model results are combined and compiled into scenario-specific composites of flood projection. Digital Elevation Model (DEM): Our seamless, topobathymetric digital elevation model (DEM) was based largely upon the Coastal California TopoBathy Merge Project DEM, with some modifications performed by the USGS Earth Resources Observation and Science (EROS) Center to incorporate the most recent, high-resolution topographic and bathymetric datasets available. Topography is derived from bare-earth light detection and ranging (lidar) data collected in 2009-2011 for the CA Coastal Conservancy Lidar Project and bathymetry from 2009-2010 bathymetric lidar as well as acoustic multi- and single-beam data collected primarily between 2001 and 2013. The DEM was constructed to define the shape of nearshore, beach, and cliff surfaces as accurately as possible, utilizing dozens of bathymetric and topographic data sets. These data were used to populate the majority of the Tier I and II grids. To describe and include impacts from long-term shoreline evolution, including cumulative storm activity, seasonal trends, ENSO, and SLR, the DEM was modified for each SLR scenario. Long-term shoreline (Vitousek and Barnard, 2015) and cliff (Limber and others, 2015) erosion projections were efficiently combined along the cross-shore transects to evolve the shore-normal profiles. Elevation changes from the profiles were spatially-merged for a cohesive, 3D depiction of coastal evolution used to modify the DEM. These data are used to generate initial profiles of the 4,802 CSTs used for Phase 2 Tier III XBeach modeling and determining final projected flood depths in each SLR scenario. All data are referenced to NAD83 horizontal datum and NAVD88 vertical datum. Data for Tiers II and III are projected in UTM, zone 11. Outputs include: Projected water levels for the storm and sea-level rise scenario indicated. Data correspond to the near-shore region including areas vulnerable to coastal flooding due to storm surge, sea-level anomalies, tide elevation, and wave run-up during the same storm and sea-level rise simulation. References Cited: Howell, S., Smith-Konter, B., Frazer, N., Tong, X., and Sandwell, D., 2016, The vertical fingerprint of earthquake cycle loading in southern

  3. San Diego, California Tsunami Forecast Grids for MOST Model

    • datasets.ai
    • data.cnra.ca.gov
    • +5more
    0, 21
    Updated Sep 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Oceanic and Atmospheric Administration, Department of Commerce (2024). San Diego, California Tsunami Forecast Grids for MOST Model [Dataset]. https://datasets.ai/datasets/san-diego-california-tsunami-forecast-grids-for-most-model
    Explore at:
    0, 21Available download formats
    Dataset updated
    Sep 7, 2024
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Authors
    National Oceanic and Atmospheric Administration, Department of Commerce
    Area covered
    San Diego, California
    Description

    The San Diego, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a suite of numerical simulation codes capable of simulating three processes of tsunami evolution: generation, transoceanic propagation, and inundation of dry land. Tsunami waves are computationally propagated across a set of three nested grids (A, B, and C), each of which is successively finer in resolution, moving from offshore to onshore. Nearshore details are resolved to the point that model output can be directly compared with tide gauge observations and can provide estimates of wave arrival time, wave amplitude and simulation of wave inundation onto dry land. A Grid Resolution: 60 arc-sec. B Grid Resolution: 12 arc-sec. C Grid Resolution: 3 arc-sec.

  4. A

    CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2...

    • data.amerigeoss.org
    • s.cnmilf.com
    • +1more
    xml
    Updated Aug 22, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States (2022). CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 100-year storm in San Diego County [Dataset]. https://data.amerigeoss.org/dataset/cosmos-coastal-storm-modeling-system-southern-california-v3-0-phase-2-flood-hazard-project-ea7f
    Explore at:
    xmlAvailable download formats
    Dataset updated
    Aug 22, 2022
    Dataset provided by
    United States
    Area covered
    San Diego County, California, Southern California
    Description

    Projected Hazard: Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential associated with the sea-level rise and storm condition indicated. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Phase 2 data for Southern California include flood-hazard information for the coast from the border of Mexico to Pt. Conception. Several changes from Phase 1 projections are reflected in many areas; please read the model summary and inspect output carefully. Data are complete for the information presented. Details: Model background: The CoSMoS model comprises three tiers. Tier I consists of one Delft3D hydrodynamics FLOW grid for computation of tides, water level variations, flows, and currents and one SWAN grid for computation of wave generation and propagation across the continental shelf. The FLOW and SWAN models are two-way coupled so that tidal currents are accounted for in wave propagation and growth and conversely, so that orbital velocities generated by waves impart changes on tidal currents. The Tier I SWAN and FLOW models consist of identical structured curvilinear grids that extend from far offshore to the shore and range in resolution from 0.5 km in the offshore to 0.2 km in the nearshore. Spatially varying astronomic tidal amplitudes and phases and steric rises in water levels due to large-scale effects (for example, a prolonged rise in sea level) are applied along all open boundaries of the Tier I FLOW grid. Winds (split into eastward and northward components) and sea-level pressure (SLP) fields from CaRD10 (Dr. Dan Cayan, Scripps Institute of Oceanography, San Diego, California, written commun., 2014) that vary in both space and time are applied to all grid cells at each model time-step. Deep-water wave conditions, applied at the open boundaries of the Tier I SWAN model runs, were projected for the 21st century Representative Concentration Pathway (RCP) 4.5 climate scenario (2011-2100) using the WaveWatch III numerical wave model (Tolman and others, 2002) and 3-hourly winds from the GFDL-ESM2M Global Climate Model (GCM). Tier II provides higher resolution near the shore and in areas that require greater resolution of physical processes (such as bays, harbors, and estuaries). A single nested outer grid and multiple two-way coupled domain decomposition (DD) structured grids allow for local grid refinement and higher resolution where needed. Tier II was segmented into 11 sections along the Southern California Bight, to reduce computation time and complete runs within computational limitations. Water-level and Neumann time-series, extracted from Tier I simulations, are applied to the shore-parallel and lateral open boundaries of each Tier II sub-model outer grid respectively. Several of the sub-models proved to be unstable with lateral Neumann boundaries; for those cases one or both of the lateral boundaries were converted to water-level time-series or left unassigned. The open-boundary time-series are extracted from completed Tier I simulations so that there is no communication from Tier II to Tier I. Because this one-way nesting could produce erroneous results near the boundaries of Tier II and because data near any model boundary are always suspect, Tier II sub-model extents were designed to overlap in the along-coast direction. In the landward direction, Tier II DD grids extend to the 10-m topographic contour; exceptions exist where channels (such as the Los Angeles River) or other low-lying regions extend very far inland. Space- and time-varying wind and SLP fields, identical to those used in Tier I simulations, are applied to all Tier II DD grids to allow for wind-setup and local inverse barometer effects (IBE, rise or depression of water levels in response to atmospheric pressure gradients). A total of 42 time-series fluvial discharges are included in the Tier II FLOW domains in an effort to simulate exacerbated flooding caused by backflow at the confluence of high river seaward flows and elevated coastal surge levels migrating inland. Time-varying fluvial discharges are applied either at the closed boundaries or distributed as point sources within the relevant model domains. Wave computations are accomplished with the SWAN model using two grids for each Tier II sub-model: one larger grid covering the same area as the outer FLOW grid and a second finer resolution two-way coupled nearshore nested grid. The nearshore grid extends from approximately 800-1,000 m water depth up to 8-10 m elevations onshore. The landward extension is included to allow for wave computations of the higher SLR scenarios. Time- and space-varying 2D wave spectra extracted from previously completed Tier I simulations are applied approximately every kilometer along the open boundaries of the outer Tier II sub-model SWAN grids. The same space- and time-varying wind fields used in Tier I simulations are also applied to both Tier II SWAN grids to allow for computation of local wave generation. Tier III for the entire Southern California Bight consists of 4,802 cross-shore transects (CST) spaced approximately 100 m apart in the along-shore direction. The profiles extend from the -15 m isobath to at least 10 m above NAVD88. The CSTs are truncated for cases where a lagoon or other waterway exists on the landward end of the profile. Time-varying water levels and wave parameters (significant wave heights, Hs; peak periods, Tp; and peak incident wave directions, Dp), extracted from Tier II grid cells that coincide with the seaward end of the CSTs, are applied at the open boundary of each CST. The XBeach model is run in a hydrostatic (no vertical pressure gradients) mode including event-based morphodynamic change. Wave propagation, two-way wave-current interaction, water-level variations, and wave runup are computed at each transect. XBeach simulations are included in the CoSMoS model to account for infragravity waves that can significantly extend the reach of wave runup (Roelvink and others, 2009) compared to short-wave incident waves. The U.S. west coast is particularly susceptible to infragravity waves at the shore due to breaking of long-period swell waves (Tp > 15). Resulting water levels (WLs) from both Delft3D (high interest bays and marshes) and open-coast XBeach (CSTs) were spatially combined and interpolated to a 10 m grid. These WL elevations are differenced from the originating 2 m digital elevation model (DEM) to determine final flooding extent and depth of flooding. Events: The model system is run for pre-determined scenarios of interest such as the 1-yr or 100-yr storm event in combination with sea-level rise. Storms are first identified from time-series of total water level proxies (TWLpx) at the shore. TWLpx are computed for the majority of the 21st century (2010-2100), assuming a linear super-position of the major processes that contribute to the overall total water level. TWLpx time-series are then evaluated for extreme events, which define the boundary conditions for subsequent modeling with CoSMoS. Multiple 100-yr events are determined (varying Hs, Tp, Dp) and used for multiple model runs to better account for regional and directional flooding affects. Model results are combined and compiled into scenario-specific composites of flood projection.
    Digital Elevation Model (DEM): Our seamless, topobathymetric digital elevation model (DEM) was based largely upon the Coastal California TopoBathy Merge Project DEM, with some modifications performed by the USGS Earth Resources Observation and Science (EROS) Center to incorporate the most recent, high-resolution topographic and bathymetric datasets available. Topography is derived from bare-earth light detection and ranging (lidar) data collected in 2009-2011 for the CA Coastal Conservancy Lidar Project and bathymetry from 2009-2010 bathymetric lidar as well as acoustic multi- and single-beam data collected primarily between 2001 and 2013. The DEM was constructed to define the shape of nearshore, beach, and cliff surfaces as accurately as possible, utilizing dozens of bathymetric and topographic data sets. These data were used to populate the majority of the tier I and II grids. To describe and include impacts from long-term shoreline evolution, including cumulative storm activity, seasonal trends, ENSO, and SLR, the DEM was modified for each SLR scenario. Long-term shoreline (Vitousek and Barnard, 2015) and cliff (Limber et al., 2015) erosion projections were efficiently combined along the cross-shore transects to evolve the shore-normal profiles. Elevation changes from the profiles were spatially-merged for a cohesive, 3D depiction of coastal evolution used to modify the DEM. These data are used to generate initial profiles of the 4,802 CSTs used for Phase 2 tier III XBeach modeling and determining final projected flood depths in each SLR scenario. All data are referenced to NAD83 horizontal datum and NAVD88 vertical datum. Data for Tiers II and III are projected in UTM, zone 11. Outputs include: Areas of projected flood hazards: The area vulnerable to coastal flooding due to storm surge, sea-level anomalies, tide elevation, and wave run-up during the storm simulation, based on the maximum elevation of still-water level (inundation for several minutes) at each CST profile. Enclosed areas illustrate the projected water surface and is shown extending from

  5. n

    Data from: Los Angeles and San Diego Margin High-Resolution Multibeam...

    • cmr.earthdata.nasa.gov
    html
    Updated Apr 24, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). Los Angeles and San Diego Margin High-Resolution Multibeam Bathymetry and Backscatter Data [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C2231552471-CEOS_EXTRA.html
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Apr 24, 2017
    Time period covered
    Jan 1, 1970 - Present
    Area covered
    Description

    The U.S. Geological Survey in cooperation with the University of New Hampshire and the University of New Brunswick mapped the nearshore regions off Los Angeles and San Diego, California using multibeam echosounders. Multibeam bathymetry and co-registered, corrected acoustic backscatter were collected in water depths ranging from about 3 to 900 m offshore Los Angeles and in water depths ranging from about 17 to 1230 m offshore San Diego. Continuous, 16-m spatial resolution, GIS ready format data of the entire Los Angeles Margin and San Diego Margin are available online as separate USGS Open-File Reports.

    For ongoing research, the USGS has processed sub-regions within these datasets at finer resolutions. The resolution of each sub-region was determined by the density of soundings within the region. This Open-File Report contains the finer resolution multibeam bathymetry and acoustic backscatter data that the USGS, Western Region, Coastal and Marine Geology Team has processed into GIS ready formats as of April 2004. The data are available in ArcInfo GRID and XYZ formats. See the Los Angeles or San Diego maps for the sub-region locations.

    These datasets in their present form were not originally intended for publication. The bathymetry and backscatter have data-collection and processing artifacts. These data are being made public to fulfill a Freedom of Information Act request. Care must be taken not to confuse artifacts with real seafloor morphology and acoustic backscatter.

    [Summary provided by the USGS.]

  6. d

    Data from: CoSMoS (Coastal Storm Modeling System) Southern California v3.0...

    • datadiscoverystudio.org
    • data.wu.ac.at
    Updated Jun 8, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 1 (100-year storm) sea-level rise 0.0 m: wave-hazard projections. [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/068a7741dbe241ee919c26f35f8afd6e/html
    Explore at:
    Dataset updated
    Jun 8, 2018
    Area covered
    California, Southern California
    Description

    description: Projected Hazard: Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Phase I data for Southern California include flood-hazard information for the coast from the border of Mexico to Pt. Conception. Changes from the initial November 2015 release may be reflected in small areas. Data are complete for the information presented but are considered preliminary; additional changes may be reflected with model improvements made for the Phase II data release in summer 2016. Details: Model background: The CoSMoS model comprises three tiers. Tier I consists of one Delft3D hydrodynamics FLOW grid for computation of tides, water level variations, flows, and currents and one SWAN grid for computation of wave generation and propagation across the continental shelf. The FLOW and SWAN models are two-way coupled so that tidal currents are accounted for in wave propagation and growth and conversely, so that orbital velocities generated by waves impart changes on tidal currents. The Tier I SWAN and FLOW models consist of identical structured curvilinear grids that extend from far offshore to the shore and range in resolution from 0.5 km in the offshore to 0.2 km in the nearshore. Spatially varying astronomic tidal amplitudes and phases and steric rises in water levels due to large-scale effects (for example, a prolonged rise in sea level) are applied along all open boundaries of the Tier I FLOW grid. Winds (split into eastward and northward components) and sea-level pressure (SLP) fields from CaRD10 (Dr. Dan Cayan, Scripps Institute of Oceanography, San Diego, California, written commun., 2014) that vary in both space and time are applied to all grid cells at each model time-step. Deep-water wave conditions, applied at the open boundaries of the Tier I SWAN model runs, were projected for the 21st century Representative Concentration Pathway (RCP) 4.5 climate scenario (2011-2100) using the WaveWatch III numerical wave model (Tolman and others, 2002) and 3-hourly winds from the GFDL-ESM2M Global Climate Model (GCM). Tier II provides higher resolution near the shore and in areas that require greater resolution of physical processes (such as bays, harbors, and estuaries). A single nested outer grid and multiple two-way coupled domain decomposition (DD) structured grids allow for local grid refinement and higher resolution where needed. Tier II was segmented into 11 sections along the Southern California Bight, to reduce computation time and complete runs within computational limitations. Water-level and Neumann time-series, extracted from Tier I simulations, are applied to the shore-parallel and lateral open boundaries of each Tier II sub-model outer grid respectively. Several of the sub-models proved to be unstable with lateral Neumann boundaries; for those cases one or both of the lateral boundaries were converted to water-level time-series or left unassigned. The open-boundary time-series are extracted from completed Tier I simulations so that there is no communication from Tier II to Tier I. Because this one-way nesting could produce erroneous results near the boundaries of Tier II and because data near any model boundary are always suspect, Tier II sub-model extents were designed to overlap in the along-coast direction. In the landward direction, Tier II DD grids extend to the 10-m topographic contour; exceptions exist where channels (such as the Los Angeles River) or other low-lying regions extend very far inland. Space- and time-varying wind and SLP fields, identical to those used in Tier I simulations, are applied to all Tier II DD grids to allow for wind-setup and local inverse barometer effects (IBE, rise or depression of water levels in response to atmospheric pressure gradients). A total of 42 time-series fluvial discharges are included in the Tier II FLOW domains in an effort to simulate exacerbated flooding caused by backflow at the confluence of high river seaward flows and elevated coastal surge levels migrating inland. Time-varying fluvial discharges are applied either at the closed boundaries or distributed as point sources within the relevant model domains. Wave computations are accomplished with the SWAN model using two grids for each Tier II sub-model: one larger grid covering the same area as the outer FLOW grid and a second finer resolution two-way coupled nearshore nested grid. The nearshore grid extends from approximately 800-1,000 m water depth up to 8-10 m elevations onshore. The landward extension is included to allow for wave computations of the higher SLR scenarios. Time- and space-varying 2D wave spectra extracted from previously completed Tier I simulations are applied approximately every kilometer along the open boundaries of the outer Tier II sub-model SWAN grids. The same space- and time-varying wind fields used in Tier I simulations are also applied to both Tier II SWAN grids to allow for computation of local wave generation. Tier III for the entire Southern California Bight consists of 4,802 cross-shore transects (CST) spaced approximately 100 m apart in the along-shore direction. The profiles extend from the -15 m isobath to at least 10 m above NAVD88. The CSTs are truncated for cases where a lagoon or other waterway exists on the landward end of the profile. Time-varying water levels and wave parameters (significant wave heights, Hs; peak periods, Tp; and peak incident wave directions, Dp), extracted from Tier II grid cells that coincide with the seaward end of the CSTs, are applied at the open boundary of each CST. The XBeach model is run in a hydrostatic (no vertical pressure gradients) mode including event-based morphodynamic change. Wave propagation, two-way wave-current interaction, water-level variations, and wave runup are computed at each transect. XBeach simulations are included in the CoSMoS model to account for infragravity waves that can significantly extend the reach of wave runup (Roelvink and others, 2009) compared to short-wave incident waves. The U.S. west coast is particularly susceptible to infragravity waves at the shore due to breaking of long-period swell waves (Tp > 15). Resulting water levels (WLs) from both Delft3D (high interest bays and marshes) and open-coast XBeach (CSTs) were spatially combined and interpolated to a 10 m grid. These WL elevations are differenced from the originating 2 m digital elevation model (DEM) to determine final flooding extent and depth of flooding. Events: The model system is run for pre-determined scenarios of interest such as the 1-yr or 100-yr storm event in combination with sea-level rise. For Phase I, only the 100-year storm is run. Storms are first identified from time-series of total water level proxies (TWLpx) at the shore. TWLpx are computed for the majority of the 21st century (2010-2100), assuming a linear super-position of the major processes that contribute to the overall total water level. TWLpx time-series are then evaluated for extreme events, which define the boundary conditions for subsequent modeling with CoSMoS. Multiple 100-yr events are determined (varying Hs, Tp, Dp) and used for multiple model runs to better account for regional and directional flooding affects. Model results are combined and compiled into scenario-specific composites of flood projection. Digital Elevation Model (DEM): Our seamless, topobathymetric digital elevation model (DEM) was based largely upon the Coastal California TopoBathy Merge Project DEM, with some modifications performed by the USGS Earth Resources Observation and Science (EROS) Center to incorporate the most recent, high-resolution topographic and bathymetric datasets available. Topography is derived from bare-earth light detection and ranging (lidar) data collected in 2009-2011 for the CA Coastal Conservancy Lidar Project and bathymetry from 2009-2010 bathymetric lidar as well as acoustic multi- and single-beam data collected primarily between 2001 and 2013. The DEM was constructed to define the shape of nearshore, beach, and cliff surfaces as accurately as possible, utilizing dozens of bathymetric and topographic data sets. These data were used to populate the majority of the Tier II grids and generate initial profiles of the 4,802 CSTs used for Tier III XBeach modeling. All data are referenced to NAD83 horizontal datum and NAVD88 vertical datum. Data for Tiers II and III are projected in UTM, zone 11. Outputs include: Projected wave height for the 100-year storm and 0.0 m sea-level rise scenario. Data correspond to the near-shore region including areas vulnerable to coastal flooding due to storm surge, sea-level anomalies, tide elevation, and wave run-up during the same storm and sea-level rise simulation. References Cited: Roelvink, J.A., Reniers, A., van Dongeren, A.R., van Thiel de Vries, J., McCall, R., and Lescinski, J., 2009, Modeling storm impacts on beaches, dunes and barrier islands: Coastal Engineering, v. 56, p. 1,133€“1,152, doi:10.1016/j.coastaleng.2009.08.006. Tolman, H.L., Balasubramaniyan, B., Burroughs, L.D., Chalikov, D.V., Chao, Y.Y., Chen H.S., Gerald, V.M., 2002, Development and implementation of wind generated ocean surface wave models at NCEP: Weather and Forecasting, v. 17, p. 311-333.; abstract: Projected Hazard: Model-derived significant wave height (in meters) for the given

  7. c

    CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2...

    • s.cnmilf.com
    • data.usgs.gov
    • +1more
    Updated Jul 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 1-year storm in San Diego County [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/cosmos-coastal-storm-modeling-system-southern-california-v3-0-phase-2-wave-hazard-projecti-c3c7e
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    San Diego County, California, Southern California
    Description

    Projected Hazard: Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Phase 2 data for Southern California include flood-hazard information for the coast from the border of Mexico to Pt. Conception. Several changes from Phase 1 projections are reflected in many areas; please read the model summary and inspect output carefully. Data are complete for the information presented. Details: Model background: The CoSMoS model comprises three tiers. Tier I consists of one Delft3D hydrodynamics FLOW grid for computation of tides, water level variations, flows, and currents and one SWAN grid for computation of wave generation and propagation across the continental shelf. The FLOW and SWAN models are two-way coupled so that tidal currents are accounted for in wave propagation and growth and conversely, so that orbital velocities generated by waves impart changes on tidal currents. The Tier I SWAN and FLOW models consist of identical structured curvilinear grids that extend from far offshore to the shore and range in resolution from 0.5 km in the offshore to 0.2 km in the nearshore. Spatially varying astronomic tidal amplitudes and phases and steric rises in water levels due to large-scale effects (for example, a prolonged rise in sea level) are applied along all open boundaries of the Tier I FLOW grid. Winds (split into eastward and northward components) and sea-level pressure (SLP) fields from CaRD10 (Dr. Dan Cayan, Scripps Institute of Oceanography, San Diego, California, written commun., 2014) that vary in both space and time are applied to all grid cells at each model time-step. Deep-water wave conditions, applied at the open boundaries of the Tier I SWAN model runs, were projected for the 21st century Representative Concentration Pathway (RCP) 4.5 climate scenario (2011-2100) using the WaveWatch III numerical wave model (Tolman and others, 2002) and 3-hourly winds from the GFDL-ESM2M Global Climate Model (GCM). Tier II provides higher resolution near the shore and in areas that require greater resolution of physical processes (such as bays, harbors, and estuaries). A single nested outer grid and multiple two-way coupled _domain decomposition (DD) structured grids allow for local grid refinement and higher resolution where needed. Tier II was segmented into 11 sections along the Southern California Bight, to reduce computation time and complete runs within computational limitations. Water-level and Neumann time-series, extracted from Tier I simulations, are applied to the shore-parallel and lateral open boundaries of each Tier II sub-model outer grid respectively. Several of the sub-models proved to be unstable with lateral Neumann boundaries; for those cases one or both of the lateral boundaries were converted to water-level time-series or left unassigned. The open-boundary time-series are extracted from completed Tier I simulations so that there is no communication from Tier II to Tier I. Because this one-way nesting could produce erroneous results near the boundaries of Tier II and because data near any model boundary are always suspect, Tier II sub-model extents were designed to overlap in the along-coast direction. In the landward direction, Tier II DD grids extend to the 10-m topographic contour; exceptions exist where channels (such as the Los Angeles River) or other low-lying regions extend very far inland. Space- and time-varying wind and SLP fields, identical to those used in Tier I simulations, are applied to all Tier II DD grids to allow for wind-setup and local inverse barometer effects (IBE, rise or depression of water levels in response to atmospheric pressure gradients). A total of 42 time-series fluvial discharges are included in the Tier II FLOW domains in an effort to simulate exacerbated flooding caused by backflow at the confluence of high river seaward flows and elevated coastal surge levels migrating inland. Time-varying fluvial discharges are applied either at the closed boundaries or distributed as point sources within the relevant model domains. Wave computations are accomplished with the SWAN model using two grids for each Tier II sub-model: one larger grid covering the same area as the outer FLOW grid and a second finer resolution two-way coupled nearshore nested grid. The nearshore grid extends from approximately 800-1,000 m water depth up to 8-10 m elevations onshore. The landward extension is included to allow for wave computations of the higher SLR scenarios. Time- and space-varying 2D wave spectra extracted from previously completed Tier I simulations are applied approximately every kilometer along the open boundaries of the outer Tier II sub-model SWAN grids. The same space- and time-varying wind fields used in Tier I simulations are also applied to both Tier II SWAN grids to allow for computation of local wave generation. Tier III for the entire Southern California Bight consists of 4,802 cross-shore transects (CST) spaced approximately 100 m apart in the along-shore direction. The profiles extend from the -15 m isobath to at least 10 m above NAVD88. The CSTs are truncated for cases where a lagoon or other waterway exists on the landward end of the profile. Time-varying water levels and wave parameters (significant wave heights, Hs; peak periods, Tp; and peak incident wave directions, Dp), extracted from Tier II grid cells that coincide with the seaward end of the CSTs, are applied at the open boundary of each CST. The XBeach model is run in a hydrostatic (no vertical pressure gradients) mode including event-based morphodynamic change. Wave propagation, two-way wave-current interaction, water-level variations, and wave runup are computed at each transect. XBeach simulations are included in the CoSMoS model to account for infragravity waves that can significantly extend the reach of wave runup (Roelvink and others, 2009) compared to short-wave incident waves. The U.S. west coast is particularly susceptible to infragravity waves at the shore due to breaking of long-period swell waves (Tp > 15). Resulting water levels (WLs) from both Delft3D (high interest bays and marshes) and open-coast XBeach (CSTs) were spatially combined and interpolated to a 10 m grid. These WL elevations are differenced from the originating 2 m digital elevation model (DEM) to determine final flooding extent and depth of flooding. Events: The model system is run for pre-determined scenarios of interest such as the 1-yr or 100-yr storm event in combination with sea-level rise. Storms are first identified from time-series of total water level proxies (TWLpx) at the shore. TWLpx are computed for the majority of the 21st century (2010-2100), assuming a linear super-position of the major processes that contribute to the overall total water level. TWLpx time-series are then evaluated for extreme events, which define the boundary conditions for subsequent modeling with CoSMoS. Multiple 100-yr events are determined (varying Hs, Tp, Dp) and used for multiple model runs to better account for regional and directional flooding affects. Model results are combined and compiled into scenario-specific composites of flood projection. Digital Elevation Model (DEM): Our seamless, topobathymetric digital elevation model (DEM) was based largely upon the Coastal California TopoBathy Merge Project DEM, with some modifications performed by the USGS Earth Resources Observation and Science (EROS) Center to incorporate the most recent, high-resolution topographic and bathymetric datasets available. Topography is derived from bare-earth light detection and ranging (lidar) data collected in 2009-2011 for the CA Coastal Conservancy Lidar Project and bathymetry from 2009-2010 bathymetric lidar as well as acoustic multi- and single-beam data collected primarily between 2001 and 2013. The DEM was constructed to define the shape of nearshore, beach, and cliff surfaces as accurately as possible, utilizing dozens of bathymetric and topographic data sets. These data were used to populate the majority of the Tier I and II grids. To describe and include impacts from long-term shoreline evolution, including cumulative storm activity, seasonal trends, ENSO, and SLR, the DEM was modified for each SLR scenario. Long-term shoreline (Vitousek and Barnard, 2015) and cliff (Limber and others, 2015) erosion projections were efficiently combined along the cross-shore transects to evolve the shore-normal profiles. Elevation changes from the profiles were spatially-merged for a cohesive, 3D depiction of coastal evolution used to modify the DEM. These data are used to generate initial profiles of the 4,802 CSTs used for Phase 2 Tier III XBeach modeling and determining final projected flood depths in each SLR scenario. All data are referenced to NAD83 horizontal datum and NAVD88 vertical datum. Data for Tiers II and III are projected in UTM, zone 11. Outputs include: Projected wave height for the storm and sea-level rise scenario indicated. Data correspond to the near-shore region including areas vulnerable to coastal flooding due to storm surge, sea-level anomalies, tide elevation, and wave run-up during the same storm and sea-level rise simulation. References Cited: Howell, S., Smith-Konter, B., Frazer, N., Tong, X., and Sandwell, D., 2016, The vertical fingerprint of earthquake cycle loading in

  8. San Diego, California 1/3 Arc-second MHW Coastal Digital Elevation Model

    • datadiscoverystudio.org
    • ncei.noaa.gov
    • +1more
    netcdf v.4 classic
    Updated Mar 7, 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce (2012). San Diego, California 1/3 Arc-second MHW Coastal Digital Elevation Model [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/e1f00c9a402c445e8b8a53cc90e291af/html
    Explore at:
    netcdf v.4 classicAvailable download formats
    Dataset updated
    Mar 7, 2012
    Dataset provided by
    United States Department of Commercehttp://www.commerce.gov/
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    National Environmental Satellite, Data, and Information Service
    Authors
    DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce
    Area covered
    Description

    NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated bathymetric-topographic DEMs are used to support tsunami forecasting and warning efforts at the NOAA Center for Tsunami Research, Pacific Marine Environmental Laboratory (PMEL). The DEMs are part of the tsunami forecast system SIFT (Short-term Inundation Forecasting for Tsunamis) currently being developed by PMEL for the NOAA Tsunami Warning Centers, and are used in the MOST (Method of Splitting Tsunami) model developed by PMEL to simulate tsunami generation, propagation, and inundation. Bathymetric, topographic, and shoreline data used in DEM compilation are obtained from various sources, including NGDC, the U.S. National Ocean Service (NOS), the U.S. Geological Survey (USGS), the U.S. Army Corps of Engineers (USACE), the Federal Emergency Management Agency (FEMA), and other federal, state, and local government agencies, academic institutions, and private companies. DEMs are referenced to the vertical tidal datum of North American Vertical Datum of 1988 (NAVD 88) or Mean High Water (MHW) and horizontal datum of World Geodetic System 1984 (WGS84). Cell size for the DEMs ranges from 1/3 arc-second (~10 meters) to 3 arc-seconds (~90 meters).The DEM Global Mosaic is an image service providing access to bathymetric/topographic digital elevation models stewarded at NOAA's National Centers for Environmental Information (NCEI), along with the global GEBCO_2014 grid: http://www.gebco.net/data_and_products/gridded_bathymetry_data. NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. This service is a general-purpose global, seamless bathymetry/topography mosaic. It combines DEMs from a variety of near sea-level vertical datums, such as mean high water (MHW), mean sea level (MSL), and North American Vertical Datum of 1988 (NAVD88). Elevation values have been rounded to the nearest meter, with DEM cell sizes going down to 1 arc-second. Higher-resolution DEMs, with greater elevation precision, are available in the companion NAVD88: http://noaa.maps.arcgis.com/home/item.html?id=e9ba2e7afb7d46cd878b34aa3bfce042 and MHW: http://noaa.maps.arcgis.com/home/item.html?id=3bc7611c1d904a5eaf90ecbec88fa799 mosaics. By default, the DEMs are drawn in order of cell size, with higher-resolution grids displayed on top of lower-resolution grids. If overlapping DEMs have the same resolution, the newer one is shown. Please see NCEI's corresponding DEM Footprints map service: http://noaa.maps.arcgis.com/home/item.html?id=d41f39c8a6684c54b62c8f1ab731d5ad for polygon footprints and more information about the individual DEMs used to create this composite view. In this visualization, the elevations/depths are displayed using this color ramp: http://gis.ngdc.noaa.gov/viewers/images/dem_color_scale.png.A map service showing the location and coverage of land and seafloor digital elevation models (DEMs) available from NOAA's National Centers for Environmental Information (NCEI). NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. Layers available in the map service: Layers 1-4: DEMs by Category (includes various DEMs, both hosted at NCEI, and elsewhere on the web); Layers 6-11: NCEI DEM Projects (DEMs hosted at NCEI, color-coded by project); Layer 12: All NCEI Bathymetry DEMs (All bathymetry or bathy-topo DEMs hosted at NCEI).This is an image service providing access to bathymetric/topographic digital elevation models stewarded at NOAA's National Centers for Environmental Information (NCEI), with vertical units referenced to mean high water (MHW). NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. This service provides data from many individual DEMs combined together as a mosaic. By default, the rasters are drawn in order of cell size, with higher-resolution grids displayed on top of lower-resolution grids. If overlapping DEMs have the same resolution, the newer one is shown. Alternatively, a single DEM or group of DEMs can be isolated using a filter/definition query or using the 'Lock Raster 'mosaic method in ArcMap. This is one of three services displaying collections of DEMs that are referenced to common vertical datums: North American Vertical Datum of 1988 (NAVD88): http://noaa.maps.arcgis.com/home/item.html?id=e9ba2e7afb7d46cd878b34aa3bfce042, Mean High Water (MHW): http://noaa.maps.arcgis.com/home/item.html?id=3bc7611c1d904a5eaf90ecbec88fa799, and Mean Higher High Water: http://noaa.maps.arcgis.com/home/item.html?id=9471f8d4f43e48109de6275522856696. In addition, the DEM Global Mosaic is a general-purpose global, seamless bathymetry/topography mosaic containing all the DEMs together. Two services are available: http://noaa.maps.arcgis.com/home/item.html?id=c876e3c96a8642ab8557646a3b4fa0ff Elevation Values: http://noaa.maps.arcgis.com/home/item.html?id=c876e3c96a8642ab8557646a3b4fa0ff and Color Shaded Relief: http://noaa.maps.arcgis.com/home/item.html?id=feb3c625dc094112bb5281c17679c769. Please see the corresponding DEM Footprints map service: http://noaa.maps.arcgis.com/home/item.html?id=d41f39c8a6684c54b62c8f1ab731d5ad for polygon footprints and more information about the individual DEMs used to create this composite view. This service has several server-side functions available. These can be selected in the ArcGIS Online layer using 'Image Display ', or in ArcMap under 'Processing Templates '. None: The default. Provides elevation/depth values in meters relative to the NAVD88 vertical datum. ColorHillshade: An elevation-tinted hillshade visualization. The depths are displayed using this color ramp: http://gis.ngdc.noaa.gov/viewers/images/dem_color_scale.png. GrayscaleHillshade: A simple grayscale hillshade visualization. SlopeMapRGB: Slope in degrees, visualized using these colors: http://downloads.esri.com/esri_content_doc/landscape/SlopeMapLegend_V7b.png. SlopeNumericValues: Slope in degrees, returning the actual numeric values. AspectMapRGB: Orientation of the terrain (0-360 degrees), visualized using these colors: http://downloads.esri.com/esri_content_doc/landscape/AspectMapLegendPie_V7b.png. AspectNumericValues: Aspect in degrees, returning the actual numeric values.

  9. w

    New River Geothermal Exploration (Ram Power Inc.) New River MT Depth Plan...

    • data.wu.ac.at
    Updated Mar 6, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    HarvestMaster (2018). New River Geothermal Exploration (Ram Power Inc.) New River MT Depth Plan Maps.zip [Dataset]. https://data.wu.ac.at/schema/geothermaldata_org/OTE4YmNlMzAtM2QzMC00Y2QwLTllMjYtZjk2ZWJjMDYyNTNj
    Explore at:
    Dataset updated
    Mar 6, 2018
    Dataset provided by
    HarvestMaster
    Area covered
    79caa08ff41fb660d3af1bec0f6e845e08dcbda4
    Description

    The New River Geothermal Exploration (DOE Award No. EE0002843) is located approximately 25km south of the Salton Sea, near town of Brawley in Imperial County and approximately 150km east of San Diego, California.

    A total of 182 MT Logger sites were completed covering the two separate Mesquite and New River grids. The data was collected over a frequency range of 320Hz to 0.001Hz with variable site spacing. A number of different inversion algorithms in 1D, 2D and 3D were used to produce resistivity-depth profiles and maps of subsurface resistivity variations over the survey area. For 2D inversions, a total of eighteen lines were constructed in east-west and north-south orientations crossing the entire survey area. For MT 3D inversion, the New River property was divided in two sub-grids, Mesquite and New River areas.

    The report comprises of two parts. For the first part, inversions and geophysical interpretation results are presented with some recommendations of the potential targets for future follow up on the property. The second part of the report describes logistics of the survey, survey parameters, methodology and the survey results (data) in digital documents.

    The report reviews a Spartan MT survey carried out by Quantec Geoscience Limited over the New River Project in California, USA on behalf of Ram Power Inc. Data was acquired over a period of 29 days from 2010/06/26 to 2010/07/24. Site Locations Files in pdf, png, tab and wor formats

  10. d

    Data from: CoSMoS (Coastal Storm Modeling System) Southern California v3.0...

    • search.dataone.org
    Updated Sep 14, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Patrick Barnard; Li Erikson; Amy Foxgrover; Andrea O'Neill; Liv Herdman (2017). CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 1 (100-year storm) sea-level rise 0.0 m: wave-hazard projections [Dataset]. https://search.dataone.org/view/5ee8b1e0-ed1c-46b7-b43b-5af8673e9244
    Explore at:
    Dataset updated
    Sep 14, 2017
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Patrick Barnard; Li Erikson; Amy Foxgrover; Andrea O'Neill; Liv Herdman
    Time period covered
    Dec 10, 2015 - Jan 31, 2016
    Area covered
    Variables measured
    Projection of significant wave height for given storm condition and sea-level rise (SLR) value
    Description

    Projected Hazard: Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Phase I data for Southern California include flood-hazard information for the coast from the border of Mexico to Pt. Conception. Changes from the initial November 2015 release may be reflected in small areas. Data are complete for the information presented but are considered preliminary; additional changes may be reflected with model improvements made for the Phase II data release in summer 2016. Details: Model background: The CoSMoS model comprises three tiers. Tier I consists of one Delft3D hydrodynamics FLOW grid for computation of tides, water level variations, flows, and currents and one SWAN grid for computation of wave generation and propagation across the continental shelf. The FLOW and SWAN models are two-way coupled so that tidal currents are accounted for in wave propagation and growth and conversely, so that orbital velocities generated by waves impart changes on tidal currents. The Tier I SWAN and FLOW models consist of identical structured curvilinear grids that extend from far offshore to the shore and range in resolution from 0.5 km in the offshore to 0.2 km in the nearshore. Spatially varying astronomic tidal amplitudes and phases and steric rises in water levels due to large-scale effects (for example, a prolonged rise in sea level) are applied along all open boundaries of the Tier I FLOW grid. Winds (split into eastward and northward components) and sea-level pressure (SLP) fields from CaRD10 (Dr. Dan Cayan, Scripps Institute of Oceanography, San Diego, California, written commun., 2014) that vary in both space and time are applied to all grid cells at each model time-step. Deep-water wave conditions, applied at the open boundaries of the Tier I SWAN model runs, were projected for the 21st century Representative Concentration Pathway (RCP) 4.5 climate scenario (2011-2100) using the WaveWatch III numerical wave model (Tolman and others, 2002) and 3-hourly winds from the GFDL-ESM2M Global Climate Model (GCM). Tier II provides higher resolution near the shore and in areas that require greater resolution of physical processes (such as bays, harbors, and estuaries). A single nested outer grid and multiple two-way coupled domain decomposition (DD) structured grids allow for local grid refinement and higher resolution where needed. Tier II was segmented into 11 sections along the Southern California Bight, to reduce computation time and complete runs within computational limitations. Water-level and Neumann time-series, extracted from Tier I simulations, are applied to the shore-parallel and lateral open boundaries of each Tier II sub-model outer grid respectively. Several of the sub-models proved to be unstable with lateral Neumann boundaries; for those cases one or both of the lateral boundaries were converted to water-level time-series or left unassigned. The open-boundary time-series are extracted from completed Tier I simulations so that there is no communication from Tier II to Tier I. Because this one-way nesting could produce erroneous results near the boundaries of Tier II and because data near any model boundary are always suspect, Tier II sub-model extents were designed to overlap in the along-coast direction. In the landward direction, Tier II DD grids extend to the 10-m topographic contour; exceptions exist where channels (such as the Los Angeles River) or other low-lying regions extend very far inland. Space- and time-varying wind and SLP fields, identical to those used in Tier I simulations, are applied to all Tier II DD grids to allow for wind-setup and local inverse barometer effects (IBE, rise or depression of water levels in response to atmospheric pressure gradients). A total of 42 time-series fluvial discharges are included in the Tier II FLOW domains in an effort to simulate exacerbated flooding caused by backflow at the confluence of high river seaward flows and elevated coastal surge levels migrating inland. Time-varying fluvial discharges are applied either at the closed boundaries or distributed as point sources within the relevant model domains. Wave computations are accomplished with the SWAN model using two grids for... Visit https://dataone.org/datasets/5ee8b1e0-ed1c-46b7-b43b-5af8673e9244 for complete metadata about this dataset.

  11. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S. Geological Survey (2024). CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 1-year storm in San Diego County [Dataset]. https://catalog.data.gov/dataset/cosmos-coastal-storm-modeling-system-southern-california-v3-0-phase-2-ocean-currents-proje-62d49

CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 1-year storm in San Diego County

Explore at:
Dataset updated
Oct 2, 2024
Dataset provided by
United States Geological Surveyhttp://www.usgs.gov/
Area covered
San Diego County, California, Southern California
Description

Projected Hazard: Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Phase 2 data for Southern California include flood-hazard information for the coast from the border of Mexico to Pt. Conception. Several changes from Phase 1 projections are reflected in many areas; please read the model summary and inspect output carefully. Data are complete for the information presented. Details: Model background: The CoSMoS model comprises three tiers. Tier I consists of one Delft3D hydrodynamics FLOW grid for computation of tides, water level variations, flows, and currents and one SWAN grid for computation of wave generation and propagation across the continental shelf. The FLOW and SWAN models are two-way coupled so that tidal currents are accounted for in wave propagation and growth and conversely, so that orbital velocities generated by waves impart changes on tidal currents. The Tier I SWAN and FLOW models consist of identical structured curvilinear grids that extend from far offshore to the shore and range in resolution from 0.5 km in the offshore to 0.2 km in the nearshore. Spatially varying astronomic tidal amplitudes and phases and steric rises in water levels due to large-scale effects (for example, a prolonged rise in sea level) are applied along all open boundaries of the Tier I FLOW grid. Winds (split into eastward and northward components) and sea-level pressure (SLP) fields from CaRD10 (Dr. Dan Cayan, Scripps Institute of Oceanography, San Diego, California, written commun., 2014) that vary in both space and time are applied to all grid cells at each model time-step. Deep-water wave conditions, applied at the open boundaries of the Tier I SWAN model runs, were projected for the 21st century Representative Concentration Pathway (RCP) 4.5 climate scenario (2011-2100) using the WaveWatch III numerical wave model (Tolman and others, 2002) and 3-hourly winds from the GFDL-ESM2M Global Climate Model (GCM). Tier II provides higher resolution near the shore and in areas that require greater resolution of physical processes (such as bays, harbors, and estuaries). A single nested outer grid and multiple two-way coupled domain decomposition (DD) structured grids allow for local grid refinement and higher resolution where needed. Tier II was segmented into 11 sections along the Southern California Bight, to reduce computation time and complete runs within computational limitations. Water-level and Neumann time-series, extracted from Tier I simulations, are applied to the shore-parallel and lateral open boundaries of each Tier II sub-model outer grid respectively. Several of the sub-models proved to be unstable with lateral Neumann boundaries; for those cases one or both of the lateral boundaries were converted to water-level time-series or left unassigned. The open-boundary time-series are extracted from completed Tier I simulations so that there is no communication from Tier II to Tier I. Because this one-way nesting could produce erroneous results near the boundaries of Tier II and because data near any model boundary are always suspect, Tier II sub-model extents were designed to overlap in the along-coast direction. In the landward direction, Tier II DD grids extend to the 10-m topographic contour; exceptions exist where channels (such as the Los Angeles River) or other low-lying regions extend very far inland. Space- and time-varying wind and SLP fields, identical to those used in Tier I simulations, are applied to all Tier II DD grids to allow for wind-setup and local inverse barometer effects (IBE, rise or depression of water levels in response to atmospheric pressure gradients). A total of 42 time-series fluvial discharges are included in the Tier II FLOW domains in an effort to simulate exacerbated flooding caused by backflow at the confluence of high river seaward flows and elevated coastal surge levels migrating inland. Time-varying fluvial discharges are applied either at the closed boundaries or distributed as point sources within the relevant model domains. Wave computations are accomplished with the SWAN model using two grids for each Tier II sub-model: one larger grid covering the same area as the outer FLOW grid and a second finer resolution two-way coupled nearshore nested grid. The nearshore grid extends from approximately 800-1,000 m water depth up to 8-10 m elevations onshore. The landward extension is included to allow for wave computations of the higher SLR scenarios. Time- and space-varying 2D wave spectra extracted from previously completed Tier I simulations are applied approximately every kilometer along the open boundaries of the outer Tier II sub-model SWAN grids. The same space- and time-varying wind fields used in Tier I simulations are also applied to both Tier II SWAN grids to allow for computation of local wave generation. Tier III for the entire Southern California Bight consists of 4,802 cross-shore transects (CST) spaced approximately 100 m apart in the along-shore direction. The profiles extend from the -15 m isobath to at least 10 m above NAVD88. The CSTs are truncated for cases where a lagoon or other waterway exists on the landward end of the profile. Time-varying water levels and wave parameters (significant wave heights, Hs; peak periods, Tp; and peak incident wave directions, Dp), extracted from Tier II grid cells that coincide with the seaward end of the CSTs, are applied at the open boundary of each CST. The XBeach model is run in a hydrostatic (no vertical pressure gradients) mode including event-based morphodynamic change. Wave propagation, two-way wave-current interaction, water-level variations, and wave runup are computed at each transect. XBeach simulations are included in the CoSMoS model to account for infragravity waves that can significantly extend the reach of wave runup (Roelvink and others, 2009) compared to short-wave incident waves. The U.S. west coast is particularly susceptible to infragravity waves at the shore due to breaking of long-period swell waves (Tp > 15). Resulting water levels (WLs) from both Delft3D (high interest bays and marshes) and open-coast XBeach (CSTs) were spatially combined and interpolated to a 10 m grid. These WL elevations are differenced from the originating 2 m digital elevation model (DEM) to determine final flooding extent and depth of flooding. Events: The model system is run for pre-determined scenarios of interest such as the 1-yr or 100-yr storm event in combination with sea-level rise. Storms are first identified from time-series of total water level proxies (TWLpx) at the shore. TWLpx are computed for the majority of the 21st century (2010-2100), assuming a linear super-position of the major processes that contribute to the overall total water level. TWLpx time-series are then evaluated for extreme events, which define the boundary conditions for subsequent modeling with CoSMoS. Multiple 100-yr events are determined (varying Hs, Tp, Dp) and used for multiple model runs to better account for regional and directional flooding affects. Model results are combined and compiled into scenario-specific composites of flood projection. Digital Elevation Model (DEM): Our seamless, topobathymetric digital elevation model (DEM) was based largely upon the Coastal California TopoBathy Merge Project DEM, with some modifications performed by the USGS Earth Resources Observation and Science (EROS) Center to incorporate the most recent, high-resolution topographic and bathymetric datasets available. Topography is derived from bare-earth light detection and ranging (lidar) data collected in 2009-2011 for the CA Coastal Conservancy Lidar Project and bathymetry from 2009-2010 bathymetric lidar as well as acoustic multi- and single-beam data collected primarily between 2001 and 2013. The DEM was constructed to define the shape of nearshore, beach, and cliff surfaces as accurately as possible, utilizing dozens of bathymetric and topographic data sets. These data were used to populate the majority of the Tier I and II grids. To describe and include impacts from long-term shoreline evolution, including cumulative storm activity, seasonal trends, ENSO, and SLR, the DEM was modified for each SLR scenario. Long-term shoreline (Vitousek and Barnard, 2015) and cliff (Limber and others, 2015) erosion projections were efficiently combined along the cross-shore transects to evolve the shore-normal profiles. Elevation changes from the profiles were spatially-merged for a cohesive, 3D depiction of coastal evolution used to modify the DEM. These data are used to generate initial profiles of the 4,802 CSTs used for Phase 2 Tier III XBeach modeling and determining final projected flood depths in each SLR scenario. All data are referenced to NAD83 horizontal datum and NAVD88 vertical datum. Data for Tiers II and III are projected in UTM, zone 11. Outputs include: Projected ocean current velocities for the 100-year storm and 0.0 m sea-level rise scenario. Data correspond to the near-shore region including areas vulnerable to coastal flooding due to storm surge, sea-level anomalies, tide elevation, and wave run-up during the same storm and sea-level rise simulation. References Cited: Howell, S., Smith-Konter, B., Frazer, N., Tong, X., and Sandwell, D., 2016, The vertical fingerprint of

Search
Clear search
Close search
Google apps
Main menu