Download link to ArcGIS Pro 2.5: see https://drive.google.com/file/d/1IxWetAP875KQbm4HXBCdluvFE_yLfp3u/view?usp=sharing
Yarrrrrrrr maps are too crisp and clean! You need a hand-painted grubby tattered treasure map from antiquity to make yer point. Download this here style for ArrrrrrcGIS Pro and be off to makin dern-near realistic maps ready for an eager public (or set designerrrr).To be used in conjunction with these tattered paper assets, available here (seriously, it's a pretty important bit). Or you can use them with an assortment of paper textures, available in Living Atlas here.Also, there's two cool hand-inked looking north arrows in the style. You can see them in the sample maps above.Happy Mapping! John Nelson
Created to honor the impressionistic atmospheric quality of the work of Swiss topographic painter and cartographer, Eduard Imhof. These symbols and palettes allow for the application of an homage aesthetic when applied to layered hillshades and digital elevation models. An accompanying how-to resource is forthcoming.In the meantime, the Hillshade color scheme is intended to be applied to a traditional hillshade layer and a multidirectional hillshade layer. The Mist color scheme is intended to be applied to a DEM layer. When viewed in concert with an imagery basemap, the hues and opacities combine to create a distinctive quality.Here it is at a broader scale...Here is a map that uses the Area of Interest, Mask, and Locator layers...Contents:Alternatively, you can download an ArcGIS Pro project with the data and styles already implemented, and you can just start cranking away at Imhofs.Happy Topographic Painting! John Nelson
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer features special areas of interest (AOIs) that have been contributed to Esri Community Maps using the new Community Maps Editor app. The data that is accepted by Esri will be included in selected Esri basemaps, including our suite of Esri Vector Basemaps, and made available through this layer to export and use offline. Export DataThe contributed data is also available for contributors and other users to export (or extract) and re-use for their own purposes. Users can export the full layer from the ArcGIS Online item details page by clicking the Export Data button and selecting one of the supported formats (e.g. shapefile, or file geodatabase (FGDB)). User can extract selected layers for an area of interest by opening in Map Viewer, clicking the Analysis button, viewing the Manage Data tools, and using the Extract Data tool. To display this data with proper symbology and metadata in ArcGIS Pro, you can download and use this layer file.Data UsageThe data contributed through the Community Maps Editor app is primarily intended for use in the Esri Basemaps. Esri staff will periodically (e.g. weekly) review the contents of the contributed data and either accept or reject the data for use in the basemaps. Accepted features will be added to the Esri basemaps in a subsequent update and will remain in the app for the contributor or others to edit over time. Rejected features will be removed from the app.Esri Community Maps Contributors and other ArcGIS Online users can download accepted features from this layer for their internal use or map publishing, subject to the terms of use below.
Download In State Plane Projection Here The 2024 Parcel Fabric Data is a copy of the Lake County Chief Assessor's Office spatial dataset, consisting of separate layers which represent the boundaries for Tax Parcels, Lots, Units, Subs, Condos, Rights of Way, and Encumbrance parcels, along with points, lines, and PLSS townships for reference, which have all been captured for the 2024 Tax Year.This data is spatial in nature and does not include extensive fields of attributes to which each layer may be associated. This data is provided for use to individuals or entities with an understanding of Esri's ArcGIS Pro (specifically the Parcel Fabric), and those with access to ArcGIS Pro, which is necessary to view or manipulate the data.Casual users can find the standalone Tax Parcel Boundary Data here and Parcel Attribute Data here. Update Frequency: This dataset is updated on a yearly basis.
Please note, the updated version of this toolbox is now available for download on this page. The COVID-19-Modeling-v1.zip file contains version 5 of the toolbox with updated documentation. Version 5 of the toolbox updates the CHIME Model v1.1.5 tool. The COVID-19Surge (CDC) model is unchanged in this version.More information about the toolbox can be found in the toolbox document. More information about the CHIME Model v1.1.5 tool, including the change log, can be found in the tool documentation and this video.More information about the COVID-19Surge (CDC) tool is included in the tool documentation and this video. CHIME Model v1.1.5 ToolVersion 4 - Updated 11 MAY 2020An implementation of Penn Medicine’s COVID-19 Hospital Impact Model for Epidemics (CHIME) for use in ArcGIS Pro 2.3 or later. This tool leverages SIR (Susceptible, Infected, Recovered) modeling to assist hospitals, cities, and regions with capacity planning around COVID-19 by providing estimates of daily new admissions and current inpatient hospitalizations (census), ICU admissions, and patients requiring ventilation. Version 4 of this tool is based on CHIME v1.1.5 (2020-05-07). Learn more about how CHIME works.Version 4 contains the following updates:Updated the CHIME tool from CHIME v1.1.2 to CHIME v1.1.5.Added a new parameter called Date of Social Distancing Measures Effect to specify the date when social distancing measures started showing their effects.Added a new parameter called Recovery to specify the number of recovered cases at the start of the model.COVID-19Surge (CDC) ToolVersion 1 - Released 04 MAY 2020An implementation of Centers for Disease Control and Prevention’s (CDC) COVID-19Surge for use in ArcGIS Pro 2.3 or later. This tool leverages SIICR (Susceptible, Infected, Infectious, Convalescing, Recovered) modeling to assist hospitals, cities, and regions with capacity planning around COVID-19 by providing estimates of daily new admissions and current inpatient hospitalizations (census), ICU admissions, and patients requiring ventilation based on the extent to which mitigation strategies such as social distancing or shelter-in-place recommendations are implemented. This tool is based on COVID-19Surge. Learn more about how COVID-19Surge works.Potential ApplicationsThe illustration above depicts the outputs of the COVID-19Surge (CDC) tool of the COVID-19 Modeling toolbox.A hospital systems administrator needs a simple model to project the number of patients the hospitals in the network will need to accommodate in the next 90 days due to COVID-19. You know the population served by each hospital, the date and level of current social distancing, the number of people who have recovered, and the number of patients that are currently hospitalized with COVID-19 in each facility. Using your hospital point layer, you run the CHIME Model v1.1.5 tool.An aid agency wants to estimate where and when resources will be required in the counties you serve. You know the population and number of COVID-19 cases today and 14 days ago in each county. You run the COVID-19Surge (CDC) tool using your county polygon data, introducing an Intervention Policy and New Infections Per Case (R0) driven by fields to account for differences in anticipated social distancing policies and effectiveness between counties.A county wants to understand how the lessening or removal of interventions may impact hospital bed availability within the county. You run the CHIME Model v1.1.5 and COVID-19Surge (CDC) tool, checking Add Additional Web App Fields in Summary in both tools. You display the published results from each tool in the Capacity Analysis configurable app so estimates can be compared between models.This toolbox requires any license of ArcGIS Pro 2.3 or higher in order to run. Steps for upgrading ArcGIS Pro can be found here.For questions, comments and support, please visit our COVID-19 GeoNet community.
Geocode addresses for the Portland metropolitan region. This locator is an ArcGIS Pro version of the RLIS Address Locator, with autosuggestion capabilities enabled. It is based on RLIS data including the Master Address File and Streets and supports finding an address in a single-line format. It is available both as a geocode service and as a downloadable locator package. This is the ArcGIS Pro version of the downloadable locator package, the ArcMap-compatible version is available under the name "RLIS Address Locator - Download." The new ArcGIS Pro version of the geocode service with autosuggest functionality enabled is available under the name "RLIS Address Locator (Pro)." Date of last data update: 2025-02-03 This is official RLIS data. Contact Person: Alicia Wood alicia.wood@oregonmetro.gov 503-813-7561 RLIS Metadata Viewer: https://gis.oregonmetro.gov/rlis-metadata/#/details/3736 RLIS Terms of Use: https://rlisdiscovery.oregonmetro.gov/pages/terms-of-use
ArcGIS and QGIS map packages, with ESRI shapefiles for the DSM2 Model Grid. These are not finalized products. Locations in these shapefiles are approximate.
Monitoring Stations - shapefile with approximate locations of monitoring stations.
7/12/2022: The document "DSM2 v8.2.1, historical version grid map release notes (PDF)" was corrected by removing section 4.4, which incorrectly stated that the grid included channels 710-714, representing the Toe Drain, and that the Yolo Flyway restoration area was included.
This webmap is a subset of Global Landcover 1992 - 2020 Image Layer. You can access the source data from here. This layer is a time series of the annual ESA CCI (Climate Change Initiative) land cover maps of the world. ESA has produced land cover maps for the years 1992-2020. These are available at the European Space Agency Climate Change Initiative website.Time Extent: 1992-2020Cell Size: 300 meterSource Type: ThematicPixel Type: 8 Bit UnsignedData Projection: GCS WGS84Mosaic Projection: Web Mercator Auxiliary SphereExtent: GlobalSource: ESA Climate Change InitiativeUpdate Cycle: Annual until 2020, no updates thereafterWhat can you do with this layer?This layer may be added to ArcGIS Online maps and applications and shown in a time series to watch a "time lapse" view of land cover change since 1992 for any part of the world. The same behavior exists when the layer is added to ArcGIS Pro.In addition to displaying all layers in a series, this layer may be queried so that only one year is displayed in a map. This layer can be used in analysis. For example, the layer may be added to ArcGIS Pro with a query set to display just one year. Then, an area count of land cover types may be produced for a feature dataset using the zonal statistics tool. Statistics may be compared with the statistics from other years to show a trend.To sum up area by land cover using this service, or any other analysis, be sure to use an equal area projection, such as Albers or Equal Earth.Different Classifications Available to MapFive processing templates are included in this layer. The processing templates may be used to display a smaller set of land cover classes.Cartographic Renderer (Default Template)Displays all ESA CCI land cover classes.*Forested lands TemplateThe forested lands template shows only forested lands (classes 50-90).Urban Lands TemplateThe urban lands template shows only urban areas (class 190).Converted Lands TemplateThe converted lands template shows only urban lands and lands converted to agriculture (classes 10-40 and 190).Simplified RendererDisplays the map in ten simple classes which match the ten simplified classes used in 2050 Land Cover projections from Clark University.Any of these variables can be displayed or analyzed by selecting their processing template. In ArcGIS Online, select the Image Display Options on the layer. Then pull down the list of variables from the Renderer options. Click Apply and Close. In ArcGIS Pro, go into the Layer Properties. Select Processing Templates from the left hand menu. From the Processing Template pull down menu, select the variable to display.Using TimeBy default, the map will display as a time series animation, one year per frame. A time slider will appear when you add this layer to your map. To see the most current data, move the time slider until you see the most current year.In addition to displaying the past quarter century of land cover maps as an animation, this time series can also display just one year of data by use of a definition query. For a step by step example using ArcGIS Pro on how to display just one year of this layer, as well as to compare one year to another, see the blog called Calculating Impervious Surface Change.Hierarchical ClassificationLand cover types are defined using the land cover classification (LCCS) developed by the United Nations, FAO. It is designed to be as compatible as possible with other products, namely GLCC2000, GlobCover 2005 and 2009.This is a heirarchical classification system. For example, class 60 means "closed to open" canopy broadleaved deciduous tree cover. But in some places a more specific type of broadleaved deciduous tree cover may be available. In that case, a more specific code 61 or 62 may be used which specifies "open" (61) or "closed" (62) cover.Land Cover ProcessingTo provide consistency over time, these maps are produced from baseline land cover maps, and are revised for changes each year depending on the best available satellite data from each period in time. These revisions were made from AVHRR 1km time series from 1992 to 1999, SPOT-VGT time series between 1999 and 2013, and PROBA-V data for years 2013, 2014 and 2015. When MERIS FR or PROBA-V time series are available, changes detected at 1 km are re-mapped at 300 m. The last step consists in back- and up-dating the 10-year baseline LC map to produce the 24 annual LC maps from 1992 to 2015.Source dataThe datasets behind this layer were extracted from NetCDF files and TIFF files produced by ESA. Years 1992-2015 were acquired from ESA CCI LC version 2.0.7 in TIFF format, and years 2016-2018 were acquired from version 2.1.1 in NetCDF format. These are downloadable from ESA with an account, after agreeing to their terms of use. https://maps.elie.ucl.ac.be/CCI/viewer/download.phpCitationESA. Land Cover CCI Product User Guide Version 2. Tech. Rep. (2017). Available at: maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdfMore technical documentation on the source datasets is available here:https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=doc*Index of all classes in this layer:10 Cropland, rainfed11 Herbaceous cover12 Tree or shrub cover20 Cropland, irrigated or post-flooding30 Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) (<50%)40 Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / cropland (<50%)50 Tree cover, broadleaved, evergreen, closed to open (>15%)60 Tree cover, broadleaved, deciduous, closed to open (>15%)61 Tree cover, broadleaved, deciduous, closed (>40%)62 Tree cover, broadleaved, deciduous, open (15-40%)70 Tree cover, needleleaved, evergreen, closed to open (>15%)71 Tree cover, needleleaved, evergreen, closed (>40%)72 Tree cover, needleleaved, evergreen, open (15-40%)80 Tree cover, needleleaved, deciduous, closed to open (>15%)81 Tree cover, needleleaved, deciduous, closed (>40%)82 Tree cover, needleleaved, deciduous, open (15-40%)90 Tree cover, mixed leaf type (broadleaved and needleleaved)100 Mosaic tree and shrub (>50%) / herbaceous cover (<50%)110 Mosaic herbaceous cover (>50%) / tree and shrub (<50%)120 Shrubland121 Shrubland evergreen122 Shrubland deciduous130 Grassland140 Lichens and mosses150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%)151 Sparse tree (<15%)152 Sparse shrub (<15%)153 Sparse herbaceous cover (<15%)160 Tree cover, flooded, fresh or brakish water170 Tree cover, flooded, saline water180 Shrub or herbaceous cover, flooded, fresh/saline/brakish water190 Urban areas200 Bare areas201 Consolidated bare areas202 Unconsolidated bare areas210 Water bodies
The Terrain Ruggedness Index (TRI) is used to express the amount of elevation difference between adjacent cells of a DEM. This raster function template is used to generate a visual representation of the TRI with your elevation data. The results are interpreted as follows:0-80m is considered to represent a level terrain surface81-116m represents a nearly level surface117-161m represents a slightly rugged surface162-239m represents an intermediately rugged surface240-497m represents a moderately rugged surface498-958m represents a highly rugged surface959-4367m represents an extremely rugged surfaceWhen to use this raster function templateThe main value of this measurement is that it gives a relatively accurate view of the vertical change taking place in the terrain model from cell to cell. The TRI provides data on the relative change in height of the hillslope (rise), such as the side of a canyon.How to use this raster function templateIn ArcGIS Pro, search ArcGIS Living Atlas for raster function templates to apply them to your imagery layer. You can also download the raster function template, attach it to a mosaic dataset, and publish it as an image service. The output is a visual TRI representation of your imagery. This index supports elevation data.References:Raster functionsApplicable geographiesThe index is a standard index which is designed to work globally.
Vegetative Difference Image gives an easy to interpret visual representation of vegetative increase/decrease across 2 time periods.This raster function template is used to generate a visual product. The results cannot be used for analysis. This templates generates an NDVI in the backend, hence it requires your imagery to have the red and near infrared bands. In the resulting image, greens indicate increase in vegetation, while the magenta indicates decrease in vegetationReferences:Raster functionsWhen to use this raster function templateThis template is particularly useful when trying to intuitively visualize the increase or decrease in vegetation over two time periods. How to use this raster function templateIn ArcGIS Pro, search ArcGIS Living Atlas for raster function templates to apply them to your imagery layer. You can also download the raster function template, attach it to a mosaic dataset, and publish it as an image service. This index supports many satellite sensors, such as Landsat-8, Sentinel-2, Quickbird, IKONOS, Geoeye-1, and Pleiades-1.Applicable geographiesThe template uses a standard vegetation which is designed to work globally.
The ArcGIS Online US Geological Survey (USGS) topographic map collection now contains over 177,000 historical quadrangle maps dating from 1882 to 2006. The USGS Historical Topographic Map Explorer app brings these maps to life through an interface that guides users through the steps for exploring the map collection:
Finding the maps of interest is simple. Users can see a footprint of the map in the map view before they decide to add it to the display, and thumbnails of the maps are shown in pop-ups on the timeline. The timeline also helps users find maps because they can zoom and pan, and maps at select scales can be turned on or off by using the legend boxes to the left of the timeline. Once maps have been added to the display, users can reorder them by dragging them. Users can also download maps as zipped GeoTIFF images. Users can also share the current state of the app through a hyperlink or social media. This ArcWatch article guides you through each of these steps: https://www.esri.com/esri-news/arcwatch/1014/envisioning-the-past.
Notice: this is not the latest Heat Island Severity image service. For 2023 data, visit https://tpl.maps.arcgis.com/home/item.html?id=db5bdb0f0c8c4b85b8270ec67448a0b6. This layer contains the relative heat severity for every pixel for every city in the United States, including Alaska, Hawaii, and Puerto Rico. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2022, patched with data from 2021 where necessary.Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter than the average temperature for that same city as a whole. Severity is measured on a scale of 1 to 5, with 1 being a relatively mild heat area (slightly above the mean for the city), and 5 being a severe heat area (significantly above the mean for the city). The absolute heat above mean values are classified into these 5 classes using the Jenks Natural Breaks classification method, which seeks to reduce the variance within classes and maximize the variance between classes. Knowing where areas of high heat are located can help a city government plan for mitigation strategies.This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at The Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.What can you do with this layer?This layer has query, identify, and export image services available. Since it is served as an image service, it is not necessary to download the data; the service itself is data that can be used directly in any Esri geoprocessing tool that accepts raster data as input.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): A typical operation at this point is to clip out your area of interest. To do this, add your polygon shapefile or feature class to the map view, and use the Clip Raster tool to export your area of interest as a geoTIFF raster (file extension ".tif"). In the environments tab for the Clip Raster tool, click the dropdown for "Extent" and select "Same as Layer:", and select the name of your polygon. If you then need to convert the output raster to a polygon shapefile or feature class, run the Raster to Polygon tool, and select "Value" as the field.Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so The Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). The Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.
Geocode addresses for the Portland metropolitan region. The locator is based on RLIS data including the Master Address File and streets and supports finding an address in a single-line format. It is available both as a geocode service and as a downloadable locator package. This is the original ArcMap-compatible downloadable locator package, the original geocode service is available under the name "RLIS Address Locator." The new ArcGIS Pro version of the downloadable locator package with autosuggest functionality enabled is available under the name "RLIS Address Locator (Pro) - Download." Date of last data update: 2025-02-03 This is official RLIS data. Contact Person: Alicia Wood alicia.wood@oregonmetro.gov 503-813-7561 RLIS Metadata Viewer: https://gis.oregonmetro.gov/rlis-metadata/#/details/2751 RLIS Terms of Use: https://rlisdiscovery.oregonmetro.gov/pages/terms-of-use
GDB Version: ArcGIS Pro 3.3Additional Resources:Shapefile DownloadShapefile Download (Clipped to VIMS shoreline)Administrative Boundary Data Standard REST Endpoint (Unclipped) - REST Endpoint (Clipped)The Administrative Boundary feature classes represent the best available boundary information in Virginia. VGIN initially sought to develop an improved city, county, and town boundary dataset in late 2013, spurred by response of the Virginia Administrative Boundaries Workgroup community. The feature class initially started from an extraction of features from the Census TIGER dataset for Virginia. VGIN solicited input from localities in Virginia through the Road Centerlines data submission process as well as through public forums such as the Virginia Administrative Boundaries Workgroup and VGIN listservs. Data received were analyzed and incorporated into the appropriate feature classes where locality data were a superior representation of boundaries. Administrative Boundary geodatabase and shapefiles are unclipped to hydrography features by default. The clipped to hydro dataset is included as a separate shapefile download below.
Total file size: about 367M in zip format and about 600M after extracted. (To download: click the Download button at the upper right area of this page)Alternatively, you can download the data by chapters:- Go to https://go.esri.com/gtkwebgis4- Under Group Categories on the left, click each chapter, you will see the data file to download for that chapter.
I'd like you to make downloading, implementing, and sharing the output of, this felt-tastic style your new highest priority.So what do you get when you download this style, besides a rush of craft-induced adrenaline? These symbols...I've seeded the style with some pre-colored symbols but each and every one of these felty symbols can be dyed whatever color you want in the symbology panel. Here are some example maps using this style...Happy Mapping! John Nelson
Notice: this is the latest Heat Island Severity image service.This layer contains the relative heat severity for every pixel for every city in the United States, including Alaska, Hawaii, and Puerto Rico. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2023.To explore previous versions of the data, visit the links below:Heat Severity - USA 2022Heat Severity - USA 2021Heat Severity - USA 2020Heat Severity - USA 2019Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter than the average temperature for that same city as a whole. Severity is measured on a scale of 1 to 5, with 1 being a relatively mild heat area (slightly above the mean for the city), and 5 being a severe heat area (significantly above the mean for the city). The absolute heat above mean values are classified into these 5 classes using the Jenks Natural Breaks classification method, which seeks to reduce the variance within classes and maximize the variance between classes. Knowing where areas of high heat are located can help a city government plan for mitigation strategies.This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.What can you do with this layer?This layer has query, identify, and export image services available. Since it is served as an image service, it is not necessary to download the data; the service itself is data that can be used directly in any Esri geoprocessing tool that accepts raster data as input.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): A typical operation at this point is to clip out your area of interest. To do this, add your polygon shapefile or feature class to the map view, and use the Clip Raster tool to export your area of interest as a geoTIFF raster (file extension ".tif"). In the environments tab for the Clip Raster tool, click the dropdown for "Extent" and select "Same as Layer:", and select the name of your polygon. If you then need to convert the output raster to a polygon shapefile or feature class, run the Raster to Polygon tool, and select "Value" as the field.Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.
This project template provides Shipwreck Detection from Bathymetric Data tool that allows the use of Shipwrecks Detection model to detect shipwrecks from high resolution BAG data. Follow the detailed tutorial on using the tool. Using the project template1. Download the template using the download button.2. Open ArcGIS Pro and from the project selection screen, choose the "Select another project template" option.3. Navigate to the downloaded template and click OK.4. Provide a name to your new project and click OK.5. Navigate to Toolboxes in the Catalog Pane to access the tool.6. Follow the detailed tutorial on using the tool.
Updated July 2nd 2020 to adopt Pro 2.6 release and create Pro locators.This sample contains an ArcGIS Pro 2.6 Toolbox file containing five Spatial ETL Tools:ImportPSV2 - imports pipe separated source text files into a new (or existing, optionally to be overwritten) File Geodatabase.ImportStatePSV2 - the same as ImportPSV2 except includes a filter for a target state.MakeAllLocalityAliases - makes a city or locality alias table used in locator creation.MakeAddress2 - makes a point feature class ADDRESS with the schema similar to the ADDRESS_VIEW example in the PSMA documentation.MakeReferenceAddress - creates a point feature class REFERENCEADDRESS from the ADDRESS features, having expanded house number ranges and house number and subaddress details in suitable fields. This is the primary role data for the locator.The download also includes FME workbench FMW files (2020) for use in that product and ArcGIS Pro.You must re-source the Spatial ETL tools in the download toolbox to point to the FMW files in the download and you must re-path the data sources in each Spatial ETL tool to suit your project workspace.A model CreateGNAFLocator is in the download toolbox, use this to create your locator. A sample locator for the ACT is included.The sample locator and ones you create will support subaddress inputs, like flats and units.ImportPSV2 takes 19 hours to process 104M features on my machine. You might like to process a state at a time.If you add intermediate data to a map or leave an output geodatabase expanded in the Catalog pane you may get an error when writing output because of file locking. It is recommended you do not open an output workspace in Pro until app processing is complete.MakeAddress2 and MakeReferenceAddress take 4 hours to run for all Australia.The schema expected is as per February 2021, it may change each release, read the source documentation for change notices, this sample may not be maintained. The primary and foreign key fields according to PSMA's data model are indexed.G-NAF download site is: https://data.gov.au/dataset/geocoded-national-address-file-g-naf
Download link to ArcGIS Pro 2.5: see https://drive.google.com/file/d/1IxWetAP875KQbm4HXBCdluvFE_yLfp3u/view?usp=sharing