We discuss a statistical framework that underlies envelope detection schemes as well as dynamical models based on Hidden Markov Models (HMM) that can encompass both discrete and continuous sensor measurements for use in Integrated System Health Management (ISHM) applications. The HMM allows for the rapid assimilation, analysis, and discovery of system anomalies. We motivate our work with a discussion of an aviation problem where the identification of anomalous sequences is essential for safety reasons. The data in this application are discrete and continuous sensor measurements and can be dealt with seamlessly using the methods described here to discover anomalous flights. We specifically treat the problem of discovering anomalous features in the time series that may be hidden from the sensor suite and compare those methods to standard envelope detection methods on test data designed to accentuate the differences between the two methods. Identification of these hidden anomalies is crucial to building stable, reusable, and cost-efficient systems. We also discuss a data mining framework for the analysis and discovery of anomalies in high-dimensional time series of sensor measurements that would be found in an ISHM system. We conclude with recommendations that describe the tradeoffs in building an integrated scalable platform for robust anomaly detection in ISHM applications.
Peer-to-peer (P2P) networks are gaining popularity in many applications such as file sharing, e-commerce, and social networking, many of which deal with rich, distributed data sources that can benefit from data mining. P2P networks are, in fact,well-suited to distributed data mining (DDM), which deals with the problem of data analysis in environments with distributed data,computing nodes,and users. This article offers an overview of DDM applications and algorithms for P2P environments,focusing particularly on local algorithms that perform data analysis by using computing primitives with limited communication overhead. The authors describe both exact and approximate local P2P data mining algorithms that work in a decentralized and communication-efficient manner.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Biological data analysis is the key to new discoveries in disease biology and drug discovery. The rapid proliferation of high-throughput ‘omics’ data has necessitated a need for tools and platforms that allow the researchers to combine and analyse different types of biological data and obtain biologically relevant knowledge. We had previously developed TargetMine, an integrative data analysis platform for target prioritisation and broad-based biological knowledge discovery. Here, we describe the newly modelled biological data types and the enhanced visual and analytical features of TargetMine. These enhancements have included: an enhanced coverage of gene–gene relations, small molecule metabolite to pathway mappings, an improved literature survey feature, and in silico prediction of gene functional associations such as protein–protein interactions and global gene co-expression. We have also described two usage examples on trans-omics data analysis and extraction of gene-disease associations using MeSH term descriptors. These examples have demonstrated how the newer enhancements in TargetMine have contributed to a more expansive coverage of the biological data space and can help interpret genotype–phenotype relations. TargetMine with its auxiliary toolkit is available at https://targetmine.mizuguchilab.org. The TargetMine source code is available at https://github.com/chenyian-nibio/targetmine-gradle.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This research explored what happens when social media data mining becomes ordinary and is carried out by organisations that might be seen as the pillars of everyday life. The interviews on which the transcripts are based are discussed in Chapter 6 of the book. The referenced book contains a description of the methods. No other publications resulted from working with these transcripts.
In a large network of computers or wireless sensors, each of the components (henceforth, peers) has some data about the global state of the system. Much of the system's functionality such as message routing, information retrieval and load sharing relies on modeling the global state. We refer to the outcome of the function (e.g., the load experienced by each peer) as the emph{model} of the system. Since the state of the system is constantly changing, it is necessary to keep the models up-to-date. Computing global data mining models e.g. decision trees, k-means clustering in large distributed systems may be very costly due to the scale of the system and due to communication cost, which may be high. The cost further increases in a dynamic scenario when the data changes rapidly. In this paper we describe a two step approach for dealing with these costs. First, we describe a highly efficient emph{local} algorithm which can be used to monitor a wide class of data mining models. Then, we use this algorithm as a feedback loop for the monitoring of complex functions of the data such as its k-means clustering. The theoretical claims are corroborated with a thorough experimental analysis.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains the review results of the manuscript of "A Systematic Review on Privacy-Preserving Distributed Data Mining" authored by Chang Sun, Lianne Ippel, Andre Dekker, Michel Dumontier, Johan van Soest. In the datasets, there are 231 published articles about privacy-perserving distributed data mining. Variables include article DOI, title, authors, keywords, user scenarios, distributed data scenarios, privacy/security definition/proof/analysis, privacy statement, privacy-preserving methods category, privacy-preserving methods (specific), data mining problem, data mining/machine learning methods, experiment data information, accuracy of the methods, efficiency (computation and communication cost), and scalability. The search method and evaluation criteria are described in the paper "A Systematic Review on Privacy-Preserving Distributed Data Mining". The DOI and link to the paper will be provided when the paper gets published.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
In a large network of computers, wireless sensors, or mobile devices, each of the components (hence, peers) has some data about the global status of the system. Many of the functions of the system, such as routing decisions, search strategies, data cleansing, and the assignment of mutual trust, depend on the global status. Therefore, it is essential that the system be able to detect, and react to, changes in its global status. Computing global predicates in such systems is usually very costly. Mainly because of their scale, and in some cases (e.g., sensor networks) also because of the high cost of communication. The cost further increases when the data changes rapidly (due to state changes, node failure, etc.) and computation has to follow these changes. In this paper we describe a two step approach for dealing with these costs. First, we describe a highly efficient local algorithm which detect when the L2 norm of the average data surpasses a threshold. Then, we use this algorithm as a feedback loop for the monitoring of complex predicates on the data – such as the data’s k-means clustering. The efficiency of the L2 algorithm guarantees that so long as the clustering results represent the data (i.e., the data is stationary) few resources are required. When the data undergoes an epoch change – a change in the underlying distribution – and the model no longer represents it, the feedback loop indicates this and the model is rebuilt. Furthermore, the existence of a feedback loop allows using approximate and “best-effort ” methods for constructing the model; if an ill-fit model is built the feedback loop would indicate so, and the model would be rebuilt.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
LScD (Leicester Scientific Dictionary)April 2020 by Neslihan Suzen, PhD student at the University of Leicester (ns433@leicester.ac.uk/suzenneslihan@hotmail.com)Supervised by Prof Alexander Gorban and Dr Evgeny Mirkes[Version 3] The third version of LScD (Leicester Scientific Dictionary) is created from the updated LSC (Leicester Scientific Corpus) - Version 2*. All pre-processing steps applied to build the new version of the dictionary are the same as in Version 2** and can be found in description of Version 2 below. We did not repeat the explanation. After pre-processing steps, the total number of unique words in the new version of the dictionary is 972,060. The files provided with this description are also same as described as for LScD Version 2 below.* Suzen, Neslihan (2019): LSC (Leicester Scientific Corpus). figshare. Dataset. https://doi.org/10.25392/leicester.data.9449639.v2** Suzen, Neslihan (2019): LScD (Leicester Scientific Dictionary). figshare. Dataset. https://doi.org/10.25392/leicester.data.9746900.v2[Version 2] Getting StartedThis document provides the pre-processing steps for creating an ordered list of words from the LSC (Leicester Scientific Corpus) [1] and the description of LScD (Leicester Scientific Dictionary). This dictionary is created to be used in future work on the quantification of the meaning of research texts. R code for producing the dictionary from LSC and instructions for usage of the code are available in [2]. The code can be also used for list of texts from other sources, amendments to the code may be required.LSC is a collection of abstracts of articles and proceeding papers published in 2014 and indexed by the Web of Science (WoS) database [3]. Each document contains title, list of authors, list of categories, list of research areas, and times cited. The corpus contains only documents in English. The corpus was collected in July 2018 and contains the number of citations from publication date to July 2018. The total number of documents in LSC is 1,673,824.LScD is an ordered list of words from texts of abstracts in LSC.The dictionary stores 974,238 unique words, is sorted by the number of documents containing the word in descending order. All words in the LScD are in stemmed form of words. The LScD contains the following information:1.Unique words in abstracts2.Number of documents containing each word3.Number of appearance of a word in the entire corpusProcessing the LSCStep 1.Downloading the LSC Online: Use of the LSC is subject to acceptance of request of the link by email. To access the LSC for research purposes, please email to ns433@le.ac.uk. The data are extracted from Web of Science [3]. You may not copy or distribute these data in whole or in part without the written consent of Clarivate Analytics.Step 2.Importing the Corpus to R: The full R code for processing the corpus can be found in the GitHub [2].All following steps can be applied for arbitrary list of texts from any source with changes of parameter. The structure of the corpus such as file format and names (also the position) of fields should be taken into account to apply our code. The organisation of CSV files of LSC is described in README file for LSC [1].Step 3.Extracting Abstracts and Saving Metadata: Metadata that include all fields in a document excluding abstracts and the field of abstracts are separated. Metadata are then saved as MetaData.R. Fields of metadata are: List_of_Authors, Title, Categories, Research_Areas, Total_Times_Cited and Times_cited_in_Core_Collection.Step 4.Text Pre-processing Steps on the Collection of Abstracts: In this section, we presented our approaches to pre-process abstracts of the LSC.1.Removing punctuations and special characters: This is the process of substitution of all non-alphanumeric characters by space. We did not substitute the character “-” in this step, because we need to keep words like “z-score”, “non-payment” and “pre-processing” in order not to lose the actual meaning of such words. A processing of uniting prefixes with words are performed in later steps of pre-processing.2.Lowercasing the text data: Lowercasing is performed to avoid considering same words like “Corpus”, “corpus” and “CORPUS” differently. Entire collection of texts are converted to lowercase.3.Uniting prefixes of words: Words containing prefixes joined with character “-” are united as a word. The list of prefixes united for this research are listed in the file “list_of_prefixes.csv”. The most of prefixes are extracted from [4]. We also added commonly used prefixes: ‘e’, ‘extra’, ‘per’, ‘self’ and ‘ultra’.4.Substitution of words: Some of words joined with “-” in the abstracts of the LSC require an additional process of substitution to avoid losing the meaning of the word before removing the character “-”. Some examples of such words are “z-test”, “well-known” and “chi-square”. These words have been substituted to “ztest”, “wellknown” and “chisquare”. Identification of such words is done by sampling of abstracts form LSC. The full list of such words and decision taken for substitution are presented in the file “list_of_substitution.csv”.5.Removing the character “-”: All remaining character “-” are replaced by space.6.Removing numbers: All digits which are not included in a word are replaced by space. All words that contain digits and letters are kept because alphanumeric characters such as chemical formula might be important for our analysis. Some examples are “co2”, “h2o” and “21st”.7.Stemming: Stemming is the process of converting inflected words into their word stem. This step results in uniting several forms of words with similar meaning into one form and also saving memory space and time [5]. All words in the LScD are stemmed to their word stem.8.Stop words removal: Stop words are words that are extreme common but provide little value in a language. Some common stop words in English are ‘I’, ‘the’, ‘a’ etc. We used ‘tm’ package in R to remove stop words [6]. There are 174 English stop words listed in the package.Step 5.Writing the LScD into CSV Format: There are 1,673,824 plain processed texts for further analysis. All unique words in the corpus are extracted and written in the file “LScD.csv”.The Organisation of the LScDThe total number of words in the file “LScD.csv” is 974,238. Each field is described below:Word: It contains unique words from the corpus. All words are in lowercase and their stem forms. The field is sorted by the number of documents that contain words in descending order.Number of Documents Containing the Word: In this content, binary calculation is used: if a word exists in an abstract then there is a count of 1. If the word exits more than once in a document, the count is still 1. Total number of document containing the word is counted as the sum of 1s in the entire corpus.Number of Appearance in Corpus: It contains how many times a word occurs in the corpus when the corpus is considered as one large document.Instructions for R CodeLScD_Creation.R is an R script for processing the LSC to create an ordered list of words from the corpus [2]. Outputs of the code are saved as RData file and in CSV format. Outputs of the code are:Metadata File: It includes all fields in a document excluding abstracts. Fields are List_of_Authors, Title, Categories, Research_Areas, Total_Times_Cited and Times_cited_in_Core_Collection.File of Abstracts: It contains all abstracts after pre-processing steps defined in the step 4.DTM: It is the Document Term Matrix constructed from the LSC[6]. Each entry of the matrix is the number of times the word occurs in the corresponding document.LScD: An ordered list of words from LSC as defined in the previous section.The code can be used by:1.Download the folder ‘LSC’, ‘list_of_prefixes.csv’ and ‘list_of_substitution.csv’2.Open LScD_Creation.R script3.Change parameters in the script: replace with the full path of the directory with source files and the full path of the directory to write output files4.Run the full code.References[1]N. Suzen. (2019). LSC (Leicester Scientific Corpus) [Dataset]. Available: https://doi.org/10.25392/leicester.data.9449639.v1[2]N. Suzen. (2019). LScD-LEICESTER SCIENTIFIC DICTIONARY CREATION. Available: https://github.com/neslihansuzen/LScD-LEICESTER-SCIENTIFIC-DICTIONARY-CREATION[3]Web of Science. (15 July). Available: https://apps.webofknowledge.com/[4]A. Thomas, "Common Prefixes, Suffixes and Roots," Center for Development and Learning, 2013.[5]C. Ramasubramanian and R. Ramya, "Effective pre-processing activities in text mining using improved porter’s stemming algorithm," International Journal of Advanced Research in Computer and Communication Engineering, vol. 2, no. 12, pp. 4536-4538, 2013.[6]I. Feinerer, "Introduction to the tm Package Text Mining in R," Accessible en ligne: https://cran.r-project.org/web/packages/tm/vignettes/tm.pdf, 2013.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We present a ProgSnap2-based dataset containing anonymized logs of over 34,000 programming events exhibited by 81 programming students in Scratch, a visual programming environment, during our designed study as described in the paper "Semi-Automatically Mining Students' Common Scratch Programming Behaviors." We also include a list of approx. 3100 mined sequential patterns of programming processes that are performed by at least 10% of the 62 of the 81 students who are novice programmers, and represent maximal patterns generated by the MG-FSM algorithm while allowing a gap of one programming event. README.txt — overview of the dataset and its propertiesmainTable.csv — main event table of the dataset holding rows of programming eventscodeState.csv — table holding XML representations of code snapshots at the time of each programming eventdatasetMetadata.csv — describes features of the datasetScratch-SeqPatterns.txt — list of sequential patterns mined from the Main Event Table
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset comes from a questionnaire structured into 24 questions, which can be accessed at https://forms.gle/bUgYMfoNHh7r6ebs6. This questionnaire was completed by 956 respondents and aims to analyze the online activities carried out during March - April 2020, being distributed to teachers.
Each question is designed to reveal different aspects of the experiences, skills, and perspectives of teaching staff regarding online teaching and learning.
To protect the identity of the respondents and to obtain accurate responses, all data collected from teachers was anonymous. We did not collect any personal information whatsoever. This aspect was made clear to the respondents in the description of the questionnaire.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
LScDC Word-Category RIG MatrixApril 2020 by Neslihan Suzen, PhD student at the University of Leicester (ns433@leicester.ac.uk / suzenneslihan@hotmail.com)Supervised by Prof Alexander Gorban and Dr Evgeny MirkesGetting StartedThis file describes the Word-Category RIG Matrix for theLeicester Scientific Corpus (LSC) [1], the procedure to build the matrix and introduces the Leicester Scientific Thesaurus (LScT) with the construction process. The Word-Category RIG Matrix is a 103,998 by 252 matrix, where rows correspond to words of Leicester Scientific Dictionary-Core (LScDC) [2] and columns correspond to 252 Web of Science (WoS) categories [3, 4, 5]. Each entry in the matrix corresponds to a pair (category,word). Its value for the pair shows the Relative Information Gain (RIG) on the belonging of a text from the LSC to the category from observing the word in this text. The CSV file of Word-Category RIG Matrix in the published archive is presented with two additional columns of the sum of RIGs in categories and the maximum of RIGs over categories (last two columns of the matrix). So, the file ‘Word-Category RIG Matrix.csv’ contains a total of 254 columns.This matrix is created to be used in future research on quantifying of meaning in scientific texts under the assumption that words have scientifically specific meanings in subject categories and the meaning can be estimated by information gains from word to categories. LScT (Leicester Scientific Thesaurus) is a scientific thesaurus of English. The thesaurus includes a list of 5,000 words from the LScDC. We consider ordering the words of LScDC by the sum of their RIGs in categories. That is, words are arranged in their informativeness in the scientific corpus LSC. Therefore, meaningfulness of words evaluated by words’ average informativeness in the categories. We have decided to include the most informative 5,000 words in the scientific thesaurus. Words as a Vector of Frequencies in WoS CategoriesEach word of the LScDC is represented as a vector of frequencies in WoS categories. Given the collection of the LSC texts, each entry of the vector consists of the number of texts containing the word in the corresponding category.It is noteworthy that texts in a corpus do not necessarily belong to a single category, as they are likely to correspond to multidisciplinary studies, specifically in a corpus of scientific texts. In other words, categories may not be exclusive. There are 252 WoS categories and a text can be assigned to at least 1 and at most 6 categories in the LSC. Using the binary calculation of frequencies, we introduce the presence of a word in a category. We create a vector of frequencies for each word, where dimensions are categories in the corpus.The collection of vectors, with all words and categories in the entire corpus, can be shown in a table, where each entry corresponds to a pair (word,category). This table is build for the LScDC with 252 WoS categories and presented in published archive with this file. The value of each entry in the table shows how many times a word of LScDC appears in a WoS category. The occurrence of a word in a category is determined by counting the number of the LSC texts containing the word in a category. Words as a Vector of Relative Information Gains Extracted for CategoriesIn this section, we introduce our approach to representation of a word as a vector of relative information gains for categories under the assumption that meaning of a word can be quantified by their information gained for categories.For each category, a function is defined on texts that takes the value 1, if the text belongs to the category, and 0 otherwise. For each word, a function is defined on texts that takes the value 1 if the word belongs to the text, and 0 otherwise. Consider LSC as a probabilistic sample space (the space of equally probable elementary outcomes). For the Boolean random variables, the joint probability distribution, the entropy and information gains are defined.The information gain about the category from the word is the amount of information on the belonging of a text from the LSC to the category from observing the word in the text [6]. We used the Relative Information Gain (RIG) providing a normalised measure of the Information Gain. This provides the ability of comparing information gains for different categories. The calculations of entropy, Information Gains and Relative Information Gains can be found in the README file in the archive published. Given a word, we created a vector where each component of the vector corresponds to a category. Therefore, each word is represented as a vector of relative information gains. It is obvious that the dimension of vector for each word is the number of categories. The set of vectors is used to form the Word-Category RIG Matrix, in which each column corresponds to a category, each row corresponds to a word and each component is the relative information gain from the word to the category. In Word-Category RIG Matrix, a row vector represents the corresponding word as a vector of RIGs in categories. We note that in the matrix, a column vector represents RIGs of all words in an individual category. If we choose an arbitrary category, words can be ordered by their RIGs from the most informative to the least informative for the category. As well as ordering words in each category, words can be ordered by two criteria: sum and maximum of RIGs in categories. The top n words in this list can be considered as the most informative words in the scientific texts. For a given word, the sum and maximum of RIGs are calculated from the Word-Category RIG Matrix.RIGs for each word of LScDC in 252 categories are calculated and vectors of words are formed. We then form the Word-Category RIG Matrix for the LSC. For each word, the sum (S) and maximum (M) of RIGs in categories are calculated and added at the end of the matrix (last two columns of the matrix). The Word-Category RIG Matrix for the LScDC with 252 categories, the sum of RIGs in categories and the maximum of RIGs over categories can be found in the database.Leicester Scientific Thesaurus (LScT)Leicester Scientific Thesaurus (LScT) is a list of 5,000 words form the LScDC [2]. Words of LScDC are sorted in descending order by the sum (S) of RIGs in categories and the top 5,000 words are selected to be included in the LScT. We consider these 5,000 words as the most meaningful words in the scientific corpus. In other words, meaningfulness of words evaluated by words’ average informativeness in the categories and the list of these words are considered as a ‘thesaurus’ for science. The LScT with value of sum can be found as CSV file with the published archive. Published archive contains following files:1) Word_Category_RIG_Matrix.csv: A 103,998 by 254 matrix where columns are 252 WoS categories, the sum (S) and the maximum (M) of RIGs in categories (last two columns of the matrix), and rows are words of LScDC. Each entry in the first 252 columns is RIG from the word to the category. Words are ordered as in the LScDC.2) Word_Category_Frequency_Matrix.csv: A 103,998 by 252 matrix where columns are 252 WoS categories and rows are words of LScDC. Each entry of the matrix is the number of texts containing the word in the corresponding category. Words are ordered as in the LScDC.3) LScT.csv: List of words of LScT with sum (S) values. 4) Text_No_in_Cat.csv: The number of texts in categories. 5) Categories_in_Documents.csv: List of WoS categories for each document of the LSC.6) README.txt: Description of Word-Category RIG Matrix, Word-Category Frequency Matrix and LScT and forming procedures.7) README.pdf (same as 6 in PDF format)References[1] Suzen, Neslihan (2019): LSC (Leicester Scientific Corpus). figshare. Dataset. https://doi.org/10.25392/leicester.data.9449639.v2[2] Suzen, Neslihan (2019): LScDC (Leicester Scientific Dictionary-Core). figshare. Dataset. https://doi.org/10.25392/leicester.data.9896579.v3[3] Web of Science. (15 July). Available: https://apps.webofknowledge.com/[4] WoS Subject Categories. Available: https://images.webofknowledge.com/WOKRS56B5/help/WOS/hp_subject_category_terms_tasca.html [5] Suzen, N., Mirkes, E. M., & Gorban, A. N. (2019). LScDC-new large scientific dictionary. arXiv preprint arXiv:1912.06858. [6] Shannon, C. E. (1948). A mathematical theory of communication. Bell system technical journal, 27(3), 379-423.
The Softcite dataset is a gold-standard dataset of software mentions in research publications, a free resource primarily for software entity recognition in scholarly text. This is the first release of this dataset.
What's in the dataset
With the aim of facilitating software entity recognition efforts at scale and eventually increased visibility of research software for the due credit of software contributions to scholarly research, a team of trained annotators from Howison Lab at the University of Texas at Austin annotated 4,093 software mentions in 4,971 open access research publications in biomedicine (from PubMed Central Open Access collection) and economics (from Unpaywall open access services). The annotated software mentions, along with their publisher, version, and access URL, if mentioned in the text, as well as those publications annotated as containing no software mentions, are all included in the released dataset as a TEI/XML corpus file.
For understanding the schema of the Softcite corpus, its design considerations, and provenance, please refer to our paper included in this release (preprint version).
Use scenarios
The release of the Softcite dataset is intended to encourage researchers and stakeholders to make research software more visible in science, especially to academic databases and systems of information retrieval; and facilitate interoperability and collaboration among similar and relevant efforts in software entity recognition and building utilities for software information retrieval. This dataset can also be useful for researchers investigating software use in academic research.
Current release content
softcite-dataset v1.0 release includes:
The Softcite dataset corpus file: softcite_corpus-full.tei.xml
Softcite Dataset: A Dataset of Software Mentions in Biomedical and Economic Research Publications, our paper that describes the design consideration and creation process of the dataset: Softcite_Dataset_Description_RC.pdf. (This is a preprint version of our forthcoming publication in the Journal of the Association for Information Science and Technology.)
The Softcite dataset is licensed under a Creative Commons Attribution 4.0 International License.
If you have questions, please start a discussion or issue in the howisonlab/softcite-dataset Github repository.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Please cite the following paper when using this dataset:N. Thakur, V. Su, M. Shao, K. Patel, H. Jeong, V. Knieling, and A.Bian “A labelled dataset for sentiment analysis of videos on YouTube, TikTok, and other sources about the 2024 outbreak of measles,” arXiv [cs.CY], 2024. Available: https://doi.org/10.48550/arXiv.2406.07693AbstractThis dataset contains the data of 4011 videos about the ongoing outbreak of measles published on 264 websites on the internet between January 1, 2024, and May 31, 2024. These websites primarily include YouTube and TikTok, which account for 48.6% and 15.2% of the videos, respectively. The remainder of the websites include Instagram and Facebook as well as the websites of various global and local news organizations. For each of these videos, the URL of the video, title of the post, description of the post, and the date of publication of the video are presented as separate attributes in the dataset. After developing this dataset, sentiment analysis (using VADER), subjectivity analysis (using TextBlob), and fine-grain sentiment analysis (using DistilRoBERTa-base) of the video titles and video descriptions were performed. This included classifying each video title and video description into (i) one of the sentiment classes i.e. positive, negative, or neutral, (ii) one of the subjectivity classes i.e. highly opinionated, neutral opinionated, or least opinionated, and (iii) one of the fine-grain sentiment classes i.e. fear, surprise, joy, sadness, anger, disgust, or neutral. These results are presented as separate attributes in the dataset for the training and testing of machine learning algorithms for performing sentiment analysis or subjectivity analysis in this field as well as for other applications. The paper associated with this dataset (please see the above-mentioned citation) also presents a list of open research questions that may be investigated using this dataset.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The provided dataset contains data for the PV potentials on building rooftops, evaluated for 9.6 M roof surfaces in Switzerland in an hourly temporal resolution. The methodology of the generation of the dataset is described in:
Walch, Alina, Roberto Castello, Nahid Mohajeri, and Jean-Louis Scartezzini. “Big Data Mining for the Estimation of Hourly Rooftop Photovoltaic Potential and Its Uncertainty.” Applied Energy 262 (March 15, 2020): 114404.
In the process of generating this dataset, the following aspects were included:
Several aspects were estimated and hence include some uncertainty, due to the input datasets and the modelling methodology. For details on the sources of uncertainty and the limitations, please refer to the referenced article. Estimates for these uncertainties are provided alongside the variables. A description of the metadata is provided in the document rooftop_PV_CH_metadata_V1.pdf.
Data description:
The rooftop PV potential data has been computed at monthly-mean-hourly temporal resolution (i.e. 24 hours for each of the 12 months) for each individual roof surface, based on a national roof surface dataset created by SwissTopo (see https://www.uvek-gis.admin.ch/BFE/sonnendach/). The data given in this dataset is aggregated, in order to make the data easier to use for studies inside as well as outside Switzerland, to reduce the file size and to respect license agreements. Two types of aggregation are provided:
If a different type of aggregation or the data per individual roof surface is required, please do not hesitate to get in touch with the authors directly.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Spatiotemporal datasets generated in the context of the Master's Thesis 'Representation and quantification of change on spatiotemporal phenomena', namely for testing the spatiotemporal feature eXtractor prototype.
A total of 7 zip archives have been uploaded, each containing:
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset contains key characteristics about the data described in the Data Descriptor A database for using machine learning and data mining techniques for coronary artery disease diagnosis. Contents:
1. human readable metadata summary table in CSV format
2. machine readable metadata file in JSON formatVersioning Note:Version 2 was generated when the metadata format was updated from JSON to JSON-LD. This was an automatic process that changed only the format, not the contents, of the metadata.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The Gene Ontology (GO) has become the internationally accepted standard for representing function, process, and location aspects of gene products. The wealth of GO annotation data provides a valuable source of implicit knowledge of relationships among these aspects. We describe a new method for association rule mining to discover implicit co-occurrence relationships across the GO sub-ontologies at multiple levels of abstraction. Prior work on association rule mining in the GO has concentrated on mining knowledge at a single level of abstraction and/or between terms from the same sub-ontology. We have developed a bottom-up generalization procedure called Cross-ontology Data Mining-Level by Level (COLL) that takes into account the structure and semantics of the GO, generates generalized transactions from annotation data and mines interesting multi-level cross-ontology association rules. We applied our method on publicly available chicken and mouse GO annotation datasets and mined 5368 and 3959 multi-level cross ontology rules from the two datasets respectively. We show that our approach discovers more and higher quality association rules from the GO as evaluated by biologists in comparison to previously published methods. Biologically interesting rules discovered by our method reveal unknown and surprising knowledge about co-occurring GO terms.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A DataSet of Supply Chains used by the company DataCo Global was used for the analysis. Dataset of Supply Chain , which allows the use of Machine Learning Algorithms and R Software. Areas of important registered activities : Provisioning , Production , Sales , Commercial Distribution.It also allows the correlation of Structured Data with Unstructured Data for knowledge generation.
Type Data : Structured Data : DataCoSupplyChainDataset.csv Unstructured Data : tokenized_access_logs.csv (Clickstream)
Types of Products : Clothing , Sports , and Electronic Supplies
Additionally it is attached in another file called DescriptionDataCoSupplyChain.csv, the description of each of the variables of the DataCoSupplyChainDatasetc.csv.
The study in three coal mining regions: Lower Silesia, Upper Silesia and Lublin (each N=500) was conducted using Computer Assisted Web Interview (CAWI). The questionnaire includes the block of questions concerning mine water awareness, climate change and local/place attachment. The survey online took 15 to 20 minutes and was prepared after in-depth pilot research among participants with different education level from the mining regions. We used the uninformed approach to the survey, so there were no additional questions nor requirements for participants prior to the survey. Since the mine water energy extraction is a technical issue that is neither well known nor commonly used in the narratives of Poles, we tested survey questions with pilot cognitive interviews to remove the technical language and reduce the number of replies without understanding. The interviews were conducted with 10 participants in July 2020 and due to the pilot's recommendations and results, we implemented additional changes in the final version of the questionnaire. Specifically, some questions were simplified and the background information on mine water extraction was simplified and shortened The survey CAWI was completed by adult people aged 18-65 (N=1500) between 14-19 August 2020 by Kantar Research Agency. The sample was constructed using KANTAR’s internet panel profiled for the basic demographics, such as gender, age, and the town size. Particular attention paid to the quality of the panel is reflected in its structure. Kantar’s internet panel reflects the profile of the Polish population of Internet users in terms of its participants’ demographic characteristics. The sample from each region was 500 respondents and among the full sample (N=1500) we reached only 192 people who chose to call “mining areas” as best description of the area where they live. Although the three voivodships were chosen due to its mining industry the selected sample covers the region in general in which mining communities are statically not fully represented. We also asked about the subjective perception of the area respondents live in, which we further analysed with spatial distribution. The dataset was created within SECURe project (Subsurface Evaluation of CCS and Unconventional Risks) - https://www.securegeoenergy.eu/. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 764531
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This file contains a number of randomly generated datasets. The properties of each dataset are indicated in the name of each respective file: 'C' indicates the number of classes, 'F' indicates the number of features, 'Ne' indicates the number of objects contained in each class, 'A' is related to the average separation between classes and 'R' is an index used to differentiate distinct random trials. So, for instance, the file C2F10N2Ne5A1.2R0 is a dataset containing 2 classes, 10 features, 5 objects for each class and having a typical separation between classes of 1.2. The methodology used for generating the datasets is described in the accompanying reference.
We discuss a statistical framework that underlies envelope detection schemes as well as dynamical models based on Hidden Markov Models (HMM) that can encompass both discrete and continuous sensor measurements for use in Integrated System Health Management (ISHM) applications. The HMM allows for the rapid assimilation, analysis, and discovery of system anomalies. We motivate our work with a discussion of an aviation problem where the identification of anomalous sequences is essential for safety reasons. The data in this application are discrete and continuous sensor measurements and can be dealt with seamlessly using the methods described here to discover anomalous flights. We specifically treat the problem of discovering anomalous features in the time series that may be hidden from the sensor suite and compare those methods to standard envelope detection methods on test data designed to accentuate the differences between the two methods. Identification of these hidden anomalies is crucial to building stable, reusable, and cost-efficient systems. We also discuss a data mining framework for the analysis and discovery of anomalies in high-dimensional time series of sensor measurements that would be found in an ISHM system. We conclude with recommendations that describe the tradeoffs in building an integrated scalable platform for robust anomaly detection in ISHM applications.