100+ datasets found
  1. Datasets for manuscript "A data engineering framework for chemical flow...

    • catalog.data.gov
    • gimi9.com
    Updated Nov 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2021). Datasets for manuscript "A data engineering framework for chemical flow analysis of industrial pollution abatement operations" [Dataset]. https://catalog.data.gov/dataset/datasets-for-manuscript-a-data-engineering-framework-for-chemical-flow-analysis-of-industr
    Explore at:
    Dataset updated
    Nov 7, 2021
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    The EPA GitHub repository PAU4ChemAs as described in the README.md file, contains Python scripts written to build the PAU dataset modules (technologies, capital and operating costs, and chemical prices) for tracking chemical flows transfers, releases estimation, and identification of potential occupation exposure scenarios in pollution abatement units (PAUs). These PAUs are employed for on-site chemical end-of-life management. The folder datasets contains the outputs for each framework step. The Chemicals_in_categories.csv contains the chemicals for the TRI chemical categories. The EPA GitHub repository PAU_case_study as described in its readme.md entry, contains the Python scripts to run the manuscript case study for designing the PAUs, the data-driven models, and the decision-making module for chemicals of concern and tracking flow transfers at the end-of-life stage. The data was obtained by means of data engineering using different publicly-available databases. The properties of chemicals were obtained using the GitHub repository Properties_Scraper, while the PAU dataset using the repository PAU4Chem. Finally, the EPA GitHub repository Properties_Scraper contains a Python script to massively gather information about exposure limits and physical properties from different publicly-available sources: EPA, NOAA, OSHA, and the institute for Occupational Safety and Health of the German Social Accident Insurance (IFA). Also, all GitHub repositories describe the Python libraries required for running their code, how to use them, the obtained outputs files after running the Python script modules, and the corresponding EPA Disclaimer. This dataset is associated with the following publication: Hernandez-Betancur, J.D., M. Martin, and G.J. Ruiz-Mercado. A data engineering framework for on-site end-of-life industrial operations. JOURNAL OF CLEANER PRODUCTION. Elsevier Science Ltd, New York, NY, USA, 327: 129514, (2021).

  2. Z

    #PraCegoVer dataset

    • data.niaid.nih.gov
    • data-staging.niaid.nih.gov
    Updated Jan 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gabriel Oliveira dos Santos; Esther Luna Colombini; Sandra Avila (2023). #PraCegoVer dataset [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_5710561
    Explore at:
    Dataset updated
    Jan 19, 2023
    Dataset provided by
    Institute of Computing, University of Campinas
    Authors
    Gabriel Oliveira dos Santos; Esther Luna Colombini; Sandra Avila
    Description

    Automatically describing images using natural sentences is an essential task to visually impaired people's inclusion on the Internet. Although there are many datasets in the literature, most of them contain only English captions, whereas datasets with captions described in other languages are scarce.

    PraCegoVer arose on the Internet, stimulating users from social media to publish images, tag #PraCegoVer and add a short description of their content. Inspired by this movement, we have proposed the #PraCegoVer, a multi-modal dataset with Portuguese captions based on posts from Instagram. It is the first large dataset for image captioning in Portuguese with freely annotated images.

    PraCegoVer has 533,523 pairs with images and captions described in Portuguese collected from more than 14 thousand different profiles. Also, the average caption length in #PraCegoVer is 39.3 words and the standard deviation is 29.7.

    Dataset Structure

    PraCegoVer dataset is composed of the main file dataset.json and a collection of compressed files named images.tar.gz.partX

    containing the images. The file dataset.json comprehends a list of json objects with the attributes:

    user: anonymized user that made the post;

    filename: image file name;

    raw_caption: raw caption;

    caption: clean caption;

    date: post date.

    Each instance in dataset.json is associated with exactly one image in the images directory whose filename is pointed by the attribute filename. Also, we provide a sample with five instances, so the users can download the sample to get an overview of the dataset before downloading it completely.

    Download Instructions

    If you just want to have an overview of the dataset structure, you can download sample.tar.gz. But, if you want to use the dataset, or any of its subsets (63k and 173k), you must download all the files and run the following commands to uncompress and join the files:

    cat images.tar.gz.part* > images.tar.gz tar -xzvf images.tar.gz

    Alternatively, you can download the entire dataset from the terminal using the python script download_dataset.py available in PraCegoVer repository. In this case, first, you have to download the script and create an access token here. Then, you can run the following command to download and uncompress the image files:

    python download_dataset.py --access_token=

  3. original : CIFAR 100

    • kaggle.com
    zip
    Updated Dec 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shashwat Pandey (2024). original : CIFAR 100 [Dataset]. https://www.kaggle.com/datasets/shashwat90/original-cifar-100
    Explore at:
    zip(168517945 bytes)Available download formats
    Dataset updated
    Dec 28, 2024
    Authors
    Shashwat Pandey
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    The CIFAR-10 and CIFAR-100 datasets are labeled subsets of the 80 million tiny images dataset. CIFAR-10 and CIFAR-100 were created by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. (Sadly, the 80 million tiny images dataset has been thrown into the memory hole by its authors. Spotting the doublethink which was used to justify its erasure is left as an exercise for the reader.)

    The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images.

    The dataset is divided into five training batches and one test batch, each with 10000 images. The test batch contains exactly 1000 randomly-selected images from each class. The training batches contain the remaining images in random order, but some training batches may contain more images from one class than another. Between them, the training batches contain exactly 5000 images from each class.

    The classes are completely mutually exclusive. There is no overlap between automobiles and trucks. "Automobile" includes sedans, SUVs, things of that sort. "Truck" includes only big trucks. Neither includes pickup trucks.

    Baseline results You can find some baseline replicable results on this dataset on the project page for cuda-convnet. These results were obtained with a convolutional neural network. Briefly, they are 18% test error without data augmentation and 11% with. Additionally, Jasper Snoek has a new paper in which he used Bayesian hyperparameter optimization to find nice settings of the weight decay and other hyperparameters, which allowed him to obtain a test error rate of 15% (without data augmentation) using the architecture of the net that got 18%.

    Other results Rodrigo Benenson has collected results on CIFAR-10/100 and other datasets on his website; click here to view.

    Dataset layout Python / Matlab versions I will describe the layout of the Python version of the dataset. The layout of the Matlab version is identical.

    The archive contains the files data_batch_1, data_batch_2, ..., data_batch_5, as well as test_batch. Each of these files is a Python "pickled" object produced with cPickle. Here is a python2 routine which will open such a file and return a dictionary: python def unpickle(file): import cPickle with open(file, 'rb') as fo: dict = cPickle.load(fo) return dict And a python3 version: def unpickle(file): import pickle with open(file, 'rb') as fo: dict = pickle.load(fo, encoding='bytes') return dict Loaded in this way, each of the batch files contains a dictionary with the following elements: data -- a 10000x3072 numpy array of uint8s. Each row of the array stores a 32x32 colour image. The first 1024 entries contain the red channel values, the next 1024 the green, and the final 1024 the blue. The image is stored in row-major order, so that the first 32 entries of the array are the red channel values of the first row of the image. labels -- a list of 10000 numbers in the range 0-9. The number at index i indicates the label of the ith image in the array data.

    The dataset contains another file, called batches.meta. It too contains a Python dictionary object. It has the following entries: label_names -- a 10-element list which gives meaningful names to the numeric labels in the labels array described above. For example, label_names[0] == "airplane", label_names[1] == "automobile", etc. Binary version The binary version contains the files data_batch_1.bin, data_batch_2.bin, ..., data_batch_5.bin, as well as test_batch.bin. Each of these files is formatted as follows: <1 x label><3072 x pixel> ... <1 x label><3072 x pixel> In other words, the first byte is the label of the first image, which is a number in the range 0-9. The next 3072 bytes are the values of the pixels of the image. The first 1024 bytes are the red channel values, the next 1024 the green, and the final 1024 the blue. The values are stored in row-major order, so the first 32 bytes are the red channel values of the first row of the image.

    Each file contains 10000 such 3073-byte "rows" of images, although there is nothing delimiting the rows. Therefore each file should be exactly 30730000 bytes long.

    There is another file, called batches.meta.txt. This is an ASCII file that maps numeric labels in the range 0-9 to meaningful class names. It is merely a list of the 10 class names, one per row. The class name on row i corresponds to numeric label i.

    The CIFAR-100 dataset This dataset is just like the CIFAR-10, except it has 100 classes containing 600 images each. There are 500 training images and 100 testing images per class. The 100 classes in the CIFAR-100 are grouped into 20 superclasses. Each image comes with a "fine" label (the class to which it belongs) and a "coarse" label (the superclass to which it belongs). Her...

  4. Z

    Multimodal Vision-Audio-Language Dataset

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jul 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Schaumlöffel, Timothy; Roig, Gemma; Choksi, Bhavin (2024). Multimodal Vision-Audio-Language Dataset [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_10060784
    Explore at:
    Dataset updated
    Jul 11, 2024
    Dataset provided by
    Goethe University Frankfurt
    Authors
    Schaumlöffel, Timothy; Roig, Gemma; Choksi, Bhavin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The Multimodal Vision-Audio-Language Dataset is a large-scale dataset for multimodal learning. It contains 2M video clips with corresponding audio and a textual description of the visual and auditory content. The dataset is an ensemble of existing datasets and fills the gap of missing modalities. Details can be found in the attached report. Annotation The annotation files are provided as Parquet files. They can be read using Python and the pandas and pyarrow library. The split into train, validation and test set follows the split of the original datasets. Installation

    pip install pandas pyarrow Example

    import pandas as pddf = pd.read_parquet('annotation_train.parquet', engine='pyarrow')print(df.iloc[0])

    dataset AudioSet filename train/---2_BBVHAA.mp3 captions_visual [a man in a black hat and glasses.] captions_auditory [a man speaks and dishes clank.] tags [Speech] Description The annotation file consists of the following fields:filename: Name of the corresponding file (video or audio file)dataset: Source dataset associated with the data pointcaptions_visual: A list of captions related to the visual content of the video. Can be NaN in case of no visual contentcaptions_auditory: A list of captions related to the auditory content of the videotags: A list of tags, classifying the sound of a file. It can be NaN if no tags are provided Data files The raw data files for most datasets are not released due to licensing issues. They must be downloaded from the source. However, due to missing files, we provide them on request. Please contact us at schaumloeffel@em.uni-frankfurt.de

  5. h

    python

    • huggingface.co
    Updated Feb 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    changamonika (2025). python [Dataset]. https://huggingface.co/datasets/changamonika/python
    Explore at:
    Dataset updated
    Feb 20, 2025
    Authors
    changamonika
    Description

    pip install numpy pandas scikit-learn matplotlib seaborn

      Sample dataset: Age, Salary, and whether they purchased (1 = Yes, 0 = No)
    

    data = { 'Age': [22, 25, 47, 52, 46, 56, 24, 27, 32, 37], 'Salary': [20000, 25000, 50000, 60000, 58000, 70000, 22000, 27000, 32000, 37000], 'Purchased': [0, 0, 1, 1, 1, 1, 0, 0, 1, 1] } df = pd.DataFrame(data)

      Split dataset into Features (X) and Target (y)
    

    X = df[['Age', 'Salary']] # Independent variables y = df['Purchased'] #… See the full description on the dataset page: https://huggingface.co/datasets/changamonika/python.

  6. Job Dataset

    • kaggle.com
    zip
    Updated Sep 17, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ravender Singh Rana (2023). Job Dataset [Dataset]. https://www.kaggle.com/datasets/ravindrasinghrana/job-description-dataset
    Explore at:
    zip(479575920 bytes)Available download formats
    Dataset updated
    Sep 17, 2023
    Authors
    Ravender Singh Rana
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Job Dataset

    This dataset provides a comprehensive collection of synthetic job postings to facilitate research and analysis in the field of job market trends, natural language processing (NLP), and machine learning. Created for educational and research purposes, this dataset offers a diverse set of job listings across various industries and job types.

    Descriptions for each of the columns in the dataset:

    1. Job Id: A unique identifier for each job posting.
    2. Experience: The required or preferred years of experience for the job.
    3. Qualifications: The educational qualifications needed for the job.
    4. Salary Range: The range of salaries or compensation offered for the position.
    5. Location: The city or area where the job is located.
    6. Country: The country where the job is located.
    7. Latitude: The latitude coordinate of the job location.
    8. Longitude: The longitude coordinate of the job location.
    9. Work Type: The type of employment (e.g., full-time, part-time, contract).
    10. Company Size: The approximate size or scale of the hiring company.
    11. Job Posting Date: The date when the job posting was made public.
    12. Preference: Special preferences or requirements for applicants (e.g., Only Male or Only Female, or Both)
    13. Contact Person: The name of the contact person or recruiter for the job.
    14. Contact: Contact information for job inquiries.
    15. Job Title: The job title or position being advertised.
    16. Role: The role or category of the job (e.g., software developer, marketing manager).
    17. Job Portal: The platform or website where the job was posted.
    18. Job Description: A detailed description of the job responsibilities and requirements.
    19. Benefits: Information about benefits offered with the job (e.g., health insurance, retirement plans).
    20. Skills: The skills or qualifications required for the job.
    21. Responsibilities: Specific responsibilities and duties associated with the job.
    22. Company Name: The name of the hiring company.
    23. Company Profile: A brief overview of the company's background and mission.

    Potential Use Cases:

    • Building predictive models to forecast job market trends.
    • Enhancing job recommendation systems for job seekers.
    • Developing NLP models for resume parsing and job matching.
    • Analyzing regional job market disparities and opportunities.
    • Exploring salary prediction models for various job roles.

    Acknowledgements:

    We would like to express our gratitude to the Python Faker library for its invaluable contribution to the dataset generation process. Additionally, we appreciate the guidance provided by ChatGPT in fine-tuning the dataset, ensuring its quality, and adhering to ethical standards.

    Note:

    Please note that the examples provided are fictional and for illustrative purposes. You can tailor the descriptions and examples to match the specifics of your dataset. It is not suitable for real-world applications and should only be used within the scope of research and experimentation. You can also reach me via email at: rrana157@gmail.com

  7. Data from: ManyTypes4Py: A benchmark Python Dataset for Machine...

    • data.europa.eu
    unknown
    Updated Feb 28, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zenodo (2021). ManyTypes4Py: A benchmark Python Dataset for Machine Learning-Based Type Inference [Dataset]. https://data.europa.eu/88u/dataset/oai-zenodo-org-4571228
    Explore at:
    unknown(395470535)Available download formats
    Dataset updated
    Feb 28, 2021
    Dataset authored and provided by
    Zenodohttp://zenodo.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The dataset is gathered on Sep. 17th 2020. It has more than 5.4K Python repositories that are hosted on GitHub. Check out the file ManyTypes4PyDataset.spec for repositories URL and their commit SHA. The dataset is also de-duplicated using the CD4Py tool. The list of duplicate files is provided in duplicate_files.txt file. All of its Python projects are processed in JSON-formatted files. They contain a seq2seq representation of each file, type-related hints, and information for machine learning models. The structure of JSON-formatted files is described in JSONOutput.md file. The dataset is split into train, validation and test sets by source code files. The list of files and their corresponding set is provided in dataset_split.csv file. Notable changes to each version of the dataset are documented in CHANGELOG.md.

  8. d

    Python code used to download gridMET climate data for public-supply water...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Nov 12, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Python code used to download gridMET climate data for public-supply water service areas [Dataset]. https://catalog.data.gov/dataset/python-code-used-to-download-gridmet-climate-data-for-public-supply-water-service-areas
    Explore at:
    Dataset updated
    Nov 12, 2025
    Dataset provided by
    U.S. Geological Survey
    Description

    This child item describes Python code used to retrieve gridMET climate data for a specific area and time period. Climate data were retrieved for public-supply water service areas, but the climate data collector could be used to retrieve data for other areas of interest. This dataset is part of a larger data release using machine learning to predict public supply water use for 12-digit hydrologic units from 2000-2020. Data retrieved by the climate data collector code were used as input feature variables in the public supply delivery and water use machine learning models. This page includes the following file: climate_data_collector.zip - a zip file containing the climate data collector Python code used to retrieve climate data and a README file.

  9. Z

    Python Systems for Empirical Analysis

    • data.niaid.nih.gov
    Updated Jan 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Matteo Orrù (2020). Python Systems for Empirical Analysis [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_268468
    Explore at:
    Dataset updated
    Jan 24, 2020
    Authors
    Matteo Orrù
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Reference

    Studies who have been using the data (in any form) are required to include the following reference:

    @inproceedings{Orru2015, abstract = {The aim of this paper is to present a dataset of metrics associated to the first release of a curated collection of Python software systems. We describe the dataset along with the adopted criteria and the issues we faced while building such corpus. This dataset can enhance the reliability of empirical studies, enabling their reproducibility, reducing their cost, and it can foster further research on Python software.}, author = {Orrú, Matteo and Tempero, Ewan and Marchesi, Michele and Tonelli, Roberto and Destefanis, Giuseppe}, booktitle = {Submitted to PROMISE '15}, keywords = {Python, Empirical Studies, Curated Code Collection}, title = {A Curated Benchmark Collection of Python Systems for Empirical Studies on Software Engineering}, year = {2015} }

    About the Data

    Overview

    This paper presents a dataset of metrics taken from a curated collection of 51 popular Python software systems.

    The dataset reports 41 metrics of different categories: volume/size, complexity and object oriented metrics. These metrics and computed both at file and class level. We provide metrics for any file and class of each system and global metrics (computed on the entire system). Moreover we provide 14 meta-data for each system.

    Paper Abstract

    The aim of this paper is to present a dataset of metrics associated to the first release of a curated collection of Python software systems. We describe the dataset along with the adopted criteria and the issues we faced while building such corpus. This dataset can enhance the reliability of empirical studies, enabling their reproducibility, reducing their cost, and it can foster further research on Python software.

  10. Code4ML 2.0

    • zenodo.org
    csv, txt
    Updated May 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anonimous authors; Anonimous authors (2025). Code4ML 2.0 [Dataset]. http://doi.org/10.5281/zenodo.15465737
    Explore at:
    csv, txtAvailable download formats
    Dataset updated
    May 19, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Anonimous authors; Anonimous authors
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is an enriched version of the Code4ML dataset, a large-scale corpus of annotated Python code snippets, competition summaries, and data descriptions sourced from Kaggle. The initial release includes approximately 2.5 million snippets of machine learning code extracted from around 100,000 Jupyter notebooks. A portion of these snippets has been manually annotated by human assessors through a custom-built, user-friendly interface designed for this task.

    The original dataset is organized into multiple CSV files, each containing structured data on different entities:

    • code_blocks.csv: Contains raw code snippets extracted from Kaggle.
    • kernels_meta.csv: Metadata for the notebooks (kernels) from which the code snippets were derived.
    • competitions_meta.csv: Metadata describing Kaggle competitions, including information about tasks and data.
    • markup_data.csv: Annotated code blocks with semantic types, allowing deeper analysis of code structure.
    • vertices.csv: A mapping from numeric IDs to semantic types and subclasses, used to interpret annotated code blocks.

    Table 1. code_blocks.csv structure

    ColumnDescription
    code_blocks_indexGlobal index linking code blocks to markup_data.csv.
    kernel_idIdentifier for the Kaggle Jupyter notebook from which the code block was extracted.
    code_block_id

    Position of the code block within the notebook.

    code_block

    The actual machine learning code snippet.

    Table 2. kernels_meta.csv structure

    ColumnDescription
    kernel_idIdentifier for the Kaggle Jupyter notebook.
    kaggle_scorePerformance metric of the notebook.
    kaggle_commentsNumber of comments on the notebook.
    kaggle_upvotesNumber of upvotes the notebook received.
    kernel_linkURL to the notebook.
    comp_nameName of the associated Kaggle competition.

    Table 3. competitions_meta.csv structure

    ColumnDescription
    comp_nameName of the Kaggle competition.
    descriptionOverview of the competition task.
    data_typeType of data used in the competition.
    comp_typeClassification of the competition.
    subtitleShort description of the task.
    EvaluationAlgorithmAbbreviationMetric used for assessing competition submissions.
    data_sourcesLinks to datasets used.
    metric typeClass label for the assessment metric.

    Table 4. markup_data.csv structure

    ColumnDescription
    code_blockMachine learning code block.
    too_longFlag indicating whether the block spans multiple semantic types.
    marksConfidence level of the annotation.
    graph_vertex_idID of the semantic type.

    The dataset allows mapping between these tables. For example:

    • code_blocks.csv can be linked to kernels_meta.csv via the kernel_id column.
    • kernels_meta.csv is connected to competitions_meta.csv through comp_name. To maintain quality, kernels_meta.csv includes only notebooks with available Kaggle scores.

    In addition, data_with_preds.csv contains automatically classified code blocks, with a mapping back to code_blocks.csvvia the code_blocks_index column.

    Code4ML 2.0 Enhancements

    The updated Code4ML 2.0 corpus introduces kernels extracted from Meta Kaggle Code. These kernels correspond to the kaggle competitions launched since 2020. The natural descriptions of the competitions are retrieved with the aim of LLM.

    Notebooks in kernels_meta2.csv may not have a Kaggle score but include a leaderboard ranking (rank), providing additional context for evaluation.

    competitions_meta_2.csv is enriched with data_cards, decsribing the data used in the competitions.

    Applications

    The Code4ML 2.0 corpus is a versatile resource, enabling training and evaluation of models in areas such as:

    • Code generation
    • Code understanding
    • Natural language processing of code-related tasks
  11. h

    math-python-reasoning-dataset

    • huggingface.co
    Updated Feb 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sara Han Díaz (2025). math-python-reasoning-dataset [Dataset]. https://huggingface.co/datasets/sdiazlor/math-python-reasoning-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 8, 2025
    Authors
    Sara Han Díaz
    Description

    Dataset Card for my-distiset-3c1699f5

    This dataset has been created with distilabel.

      Dataset Summary
    

    This dataset contains a pipeline.yaml which can be used to reproduce the pipeline that generated it in distilabel using the distilabel CLI: distilabel pipeline run --config "https://huggingface.co/datasets/sdiazlor/my-distiset-3c1699f5/raw/main/pipeline.yaml"

    or explore the configuration: distilabel pipeline info --config… See the full description on the dataset page: https://huggingface.co/datasets/sdiazlor/math-python-reasoning-dataset.

  12. d

    Python code used to determine average yearly and monthly tourism per 1000...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Nov 12, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Python code used to determine average yearly and monthly tourism per 1000 residents for public-supply water service areas [Dataset]. https://catalog.data.gov/dataset/python-code-used-to-determine-average-yearly-and-monthly-tourism-per-1000-residents-for-pu
    Explore at:
    Dataset updated
    Nov 12, 2025
    Dataset provided by
    U.S. Geological Survey
    Description

    This child item describes Python code used to estimate average yearly and monthly tourism per 1000 residents within public-supply water service areas. Increases in population due to tourism may impact amounts of water used by public-supply water systems. This data release contains model input datasets, Python code used to develop the tourism information, and output estimates of tourism. This dataset is part of a larger data release using machine learning to predict public supply water use for 12-digit hydrologic units from 2000-2020. Output from this code was used as an input feature in the public supply delivery and water use machine learning models. This page includes the following files: tourism_input_data.zip - a zip file containing input data sets used by the tourism Python code tourism_output.zip - a zip file with output produced by the tourism Python code README.txt - a README file describing the data files and code requirements tourism_study_code.zip - a zip file containing the Python code used to create the tourism feature variable

  13. h

    Magicoder-Evol-Instruct-110K-python

    • huggingface.co
    Updated Nov 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    pxy (2024). Magicoder-Evol-Instruct-110K-python [Dataset]. https://huggingface.co/datasets/pxyyy/Magicoder-Evol-Instruct-110K-python
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 17, 2024
    Authors
    pxy
    Description

    Dataset Card for "Magicoder-Evol-Instruct-110K-python"

    from datasets import load_dataset

    Load your dataset

    dataset = load_dataset("pxyyy/Magicoder-Evol-Instruct-110K", split="train") # Replace with your dataset and split

    Define a filter function

    def contains_python(entry): for c in entry["messages"]: if "python" in c['content'].lower(): return True # return "python" in entry["messages"].lower() # Replace 'column_name' with the column to search

    … See the full description on the dataset page: https://huggingface.co/datasets/pxyyy/Magicoder-Evol-Instruct-110K-python.

  14. d

    Python code used to download U.S. Census Bureau data for public-supply water...

    • catalog.data.gov
    • data.usgs.gov
    Updated Nov 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Python code used to download U.S. Census Bureau data for public-supply water service areas [Dataset]. https://catalog.data.gov/dataset/python-code-used-to-download-u-s-census-bureau-data-for-public-supply-water-service-areas
    Explore at:
    Dataset updated
    Nov 19, 2025
    Dataset provided by
    U.S. Geological Survey
    Description

    This child item describes Python code used to query census data from the TigerWeb Representational State Transfer (REST) services and the U.S. Census Bureau Application Programming Interface (API). These data were needed as input feature variables for a machine learning model to predict public supply water use for the conterminous United States. Census data were retrieved for public-supply water service areas, but the census data collector could be used to retrieve data for other areas of interest. This dataset is part of a larger data release using machine learning to predict public supply water use for 12-digit hydrologic units from 2000-2020. Data retrieved by the census data collector code were used as input features in the public supply delivery and water use machine learning models. This page includes the following file: census_data_collector.zip - a zip file containing the census data collector Python code used to retrieve data from the U.S. Census Bureau and a README file.

  15. Data from: ManyTypes4Py: A Benchmark Python Dataset for Machine...

    • data.europa.eu
    unknown
    Updated Jul 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zenodo (2025). ManyTypes4Py: A Benchmark Python Dataset for Machine Learning-Based Type Inference [Dataset]. https://data.europa.eu/data/datasets/oai-zenodo-org-5244636?locale=lv
    Explore at:
    unknown(1052407809)Available download formats
    Dataset updated
    Jul 3, 2025
    Dataset authored and provided by
    Zenodohttp://zenodo.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The dataset is gathered on Sep. 17th 2020 from GitHub. It has clean and complete versions (from v0.7): The clean version has 5.1K type-checked Python repositories and 1.2M type annotations. The complete version has 5.2K Python repositories and 3.3M type annotations. The dataset's source files are type-checked using mypy (clean version). The dataset is also de-duplicated using the CD4Py tool. Check out the README.MD file for the description of the dataset. Notable changes to each version of the dataset are documented in CHANGELOG.md. The dataset's scripts and utilities are available on its GitHub repository.

  16. Datasets for manuscript "Predicting chemical end-of-life scenarios using...

    • catalog.data.gov
    • datasets.ai
    • +1more
    Updated Apr 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2023). Datasets for manuscript "Predicting chemical end-of-life scenarios using structure-based classification models" [Dataset]. https://catalog.data.gov/dataset/datasets-for-manuscript-predicting-chemical-end-of-life-scenarios-using-structure-based-cl
    Explore at:
    Dataset updated
    Apr 1, 2023
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    As described in the README.md file, the GitHub repository github.com/USEPA/PRTR-QSTR-models/tree/data-driven are Python scripts written to run Quantitative Structure–Transfer Relationship (QSTR) models based on chemical structure-based machine learning (ML) models for supporting environmental regulatory decision-making. Using features associated with annual chemical transfer amounts, chemical generator industry sectors, environmental policy stringency, gross value added by industry sectors, chemical descriptors, and chemical unit prices, as in the GitHub repository PRTR_transfers, the QSTR models developed here can predict potential EoL activities for chemicals transferred to off-site locations for EoL management. Also, this contribution shows that QSTR models aid in estimating the mass fraction allocation of chemicals of concern transferred off-site for EoL activities. Also, it describes the Python libraries required for running the code, how to use it, the obtained outputs files after running the Python script, and how to obtain all manuscript figures and results. This dataset is associated with the following publication: Hernandez-Betancur, J.D., G.J. Ruiz-Mercado, and M. Martín. Predicting Chemical End-of-Life Scenarios Using Structure-Based Classification Models. ACS Sustainable Chemistry & Engineering. American Chemical Society, Washington, DC, USA, 11(9): 3594-3602, (2023).

  17. Naukri data Scraped

    • kaggle.com
    zip
    Updated Jul 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tadaka SuryaTeja (2022). Naukri data Scraped [Dataset]. https://www.kaggle.com/datasets/tadakasuryateja/python-jobs-and-salaries
    Explore at:
    zip(926089 bytes)Available download formats
    Dataset updated
    Jul 13, 2022
    Authors
    Tadaka SuryaTeja
    Description

    Scraped data from Naukri. This dataset is extracted on 13-july-2022. The salaries may vary in future.

    The data consists of 8 Columns: 1) Job title 2) Company Name 3) Experience 4) Salary 5) Location 6) Key skills 7) About Company 8) Job Description

    Following data is extracted from Naukri search using the Keywords: Python, 3years experience and Hyderabad Location.

    You can extract the required data by running the naukri_scrape.py file which is available in the below github link.

    Source code available at: https://github.com/TadakaSuryaTeja/LinkedIn_Automation/blob/main/naukri_scrape.py

  18. Data from: Ecosystem-Level Determinants of Sustained Activity in Open-Source...

    • zenodo.org
    application/gzip, bin +2
    Updated Aug 2, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marat Valiev; Marat Valiev; Bogdan Vasilescu; James Herbsleb; Bogdan Vasilescu; James Herbsleb (2024). Ecosystem-Level Determinants of Sustained Activity in Open-Source Projects: A Case Study of the PyPI Ecosystem [Dataset]. http://doi.org/10.5281/zenodo.1419788
    Explore at:
    bin, application/gzip, zip, text/x-pythonAvailable download formats
    Dataset updated
    Aug 2, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Marat Valiev; Marat Valiev; Bogdan Vasilescu; James Herbsleb; Bogdan Vasilescu; James Herbsleb
    License

    https://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.htmlhttps://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.html

    Description
    Replication pack, FSE2018 submission #164:
    ------------------------------------------
    
    **Working title:** Ecosystem-Level Factors Affecting the Survival of Open-Source Projects: 
    A Case Study of the PyPI Ecosystem
    
    **Note:** link to data artifacts is already included in the paper. 
    Link to the code will be included in the Camera Ready version as well.
    
    
    Content description
    ===================
    
    - **ghd-0.1.0.zip** - the code archive. This code produces the dataset files 
     described below
    - **settings.py** - settings template for the code archive.
    - **dataset_minimal_Jan_2018.zip** - the minimally sufficient version of the dataset.
     This dataset only includes stats aggregated by the ecosystem (PyPI)
    - **dataset_full_Jan_2018.tgz** - full version of the dataset, including project-level
     statistics. It is ~34Gb unpacked. This dataset still doesn't include PyPI packages
     themselves, which take around 2TB.
    - **build_model.r, helpers.r** - R files to process the survival data 
      (`survival_data.csv` in **dataset_minimal_Jan_2018.zip**, 
      `common.cache/survival_data.pypi_2008_2017-12_6.csv` in 
      **dataset_full_Jan_2018.tgz**)
    - **Interview protocol.pdf** - approximate protocol used for semistructured interviews.
    - LICENSE - text of GPL v3, under which this dataset is published
    - INSTALL.md - replication guide (~2 pages)
    Replication guide
    =================
    
    Step 0 - prerequisites
    ----------------------
    
    - Unix-compatible OS (Linux or OS X)
    - Python interpreter (2.7 was used; Python 3 compatibility is highly likely)
    - R 3.4 or higher (3.4.4 was used, 3.2 is known to be incompatible)
    
    Depending on detalization level (see Step 2 for more details):
    - up to 2Tb of disk space (see Step 2 detalization levels)
    - at least 16Gb of RAM (64 preferable)
    - few hours to few month of processing time
    
    Step 1 - software
    ----------------
    
    - unpack **ghd-0.1.0.zip**, or clone from gitlab:
    
       git clone https://gitlab.com/user2589/ghd.git
       git checkout 0.1.0
     
     `cd` into the extracted folder. 
     All commands below assume it as a current directory.
      
    - copy `settings.py` into the extracted folder. Edit the file:
      * set `DATASET_PATH` to some newly created folder path
      * add at least one GitHub API token to `SCRAPER_GITHUB_API_TOKENS` 
    - install docker. For Ubuntu Linux, the command is 
      `sudo apt-get install docker-compose`
    - install libarchive and headers: `sudo apt-get install libarchive-dev`
    - (optional) to replicate on NPM, install yajl: `sudo apt-get install yajl-tools`
     Without this dependency, you might get an error on the next step, 
     but it's safe to ignore.
    - install Python libraries: `pip install --user -r requirements.txt` . 
    - disable all APIs except GitHub (Bitbucket and Gitlab support were
     not yet implemented when this study was in progress): edit
     `scraper/init.py`, comment out everything except GitHub support
     in `PROVIDERS`.
    
    Step 2 - obtaining the dataset
    -----------------------------
    
    The ultimate goal of this step is to get output of the Python function 
    `common.utils.survival_data()` and save it into a CSV file:
    
      # copy and paste into a Python console
      from common import utils
      survival_data = utils.survival_data('pypi', '2008', smoothing=6)
      survival_data.to_csv('survival_data.csv')
    
    Since full replication will take several months, here are some ways to speedup
    the process:
    
    ####Option 2.a, difficulty level: easiest
    
    Just use the precomputed data. Step 1 is not necessary under this scenario.
    
    - extract **dataset_minimal_Jan_2018.zip**
    - get `survival_data.csv`, go to the next step
    
    ####Option 2.b, difficulty level: easy
    
    Use precomputed longitudinal feature values to build the final table.
    The whole process will take 15..30 minutes.
    
    - create a folder `
  19. Datasets for manuscript "Tracking end-of-life stage of chemicals: a scalable...

    • catalog.data.gov
    • s.cnmilf.com
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2023). Datasets for manuscript "Tracking end-of-life stage of chemicals: a scalable data-centric and chemical-centric approach" [Dataset]. https://catalog.data.gov/dataset/datasets-for-manuscript-tracking-end-of-life-stage-of-chemicals-a-scalable-data-centric-an
    Explore at:
    Dataset updated
    May 30, 2023
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    As described in the README.md file, the GitHub repository PRTR_transfers are Python scripts written to run a data-centric and chemical-centric framework for tracking EoL chemical flow transfers, identifying potential EoL exposure scenarios, and performing Chemical Flow Analysis (CFA). Also, the created Extract, Transform, and Load (ETL) pipeline leverages publicly-accessible Pollutant Release and Transfer Register (PRTR) systems belonging to Organization for Economic Cooperation and Development (OECD) member countries. The Life Cycle Inventory (LCI) data obtained by the ETL is stored in a Structured Query Language (SQL) database called PRTR_transfers that could be connected to Machine Learning Operations (MLOps) in production environments, making the framework scalable for real-world applications. The data ingestion pipeline can supply data at an annual rate, ensuring labeled data can be ingested into data-driven models if retraining is needed, especially to face problems like data and concept drift that could drastically affect the performance of data-driven models. Also, it describes the Python libraries required for running the code, how to use it, the obtained outputs files after running the Python script, and how to obtain all manuscript figures (file Manuscript Figures-EDA.ipynb) and results. This dataset is associated with the following publication: Hernandez-Betancur, J.D., G.J. Ruiz-Mercado, and M. Martín. Tracking end-of-life stage of chemicals: A scalable data-centric and chemical-centric approach. Resources, Conservation and Recycling. Elsevier Science BV, Amsterdam, NETHERLANDS, 196: 107031, (2023).

  20. polyOne Data Set - 100 million hypothetical polymers including 29 properties...

    • zenodo.org
    • data.niaid.nih.gov
    bin, txt
    Updated Mar 24, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Christopher Kuenneth; Christopher Kuenneth; Rampi Ramprasad; Rampi Ramprasad (2023). polyOne Data Set - 100 million hypothetical polymers including 29 properties [Dataset]. http://doi.org/10.5281/zenodo.7124188
    Explore at:
    bin, txtAvailable download formats
    Dataset updated
    Mar 24, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Christopher Kuenneth; Christopher Kuenneth; Rampi Ramprasad; Rampi Ramprasad
    Description

    polyOne Data Set

    The data set contains 100 million hypothetical polymers each with 29 predicted properties using machine learning models. We use PSMILES strings to represent polymer structures, see here and here. The polymers are generated by decomposing previously synthesized polymers into unique chemical fragments. Random and enumerative compositions of these fragments yield 100 million hypothetical PSMILES strings. All PSMILES strings are chemically valid polymers but, mostly, have never been synthesized before. More information can be found in the paper. Please note the license agreement in the LICENSE file.

    Full data set including the properties

    The data files are in Apache Parquet format. The files start with `polyOne_*.parquet`.

    I recommend using dask (`pip install dask`) to load and process the data set. Pandas also works but is slower.

    Load sharded data set with dask
    ```python
    import dask.dataframe as dd
    ddf = dd.read_parquet("*.parquet", engine="pyarrow")
    ```

    For example, compute the description of data set
    ```python
    df_describe = ddf.describe().compute()
    df_describe

    ```

    PSMILES strings only

    • generated_polymer_smiles_train.txt - 80 million PSMILES strings for training polyBERT. One string per line.
    • generated_polymer_smiles_dev.txt - 20 million PSMILES strings for testing polyBERT. One string per line.
Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S. EPA Office of Research and Development (ORD) (2021). Datasets for manuscript "A data engineering framework for chemical flow analysis of industrial pollution abatement operations" [Dataset]. https://catalog.data.gov/dataset/datasets-for-manuscript-a-data-engineering-framework-for-chemical-flow-analysis-of-industr
Organization logo

Datasets for manuscript "A data engineering framework for chemical flow analysis of industrial pollution abatement operations"

Explore at:
Dataset updated
Nov 7, 2021
Dataset provided by
United States Environmental Protection Agencyhttp://www.epa.gov/
Description

The EPA GitHub repository PAU4ChemAs as described in the README.md file, contains Python scripts written to build the PAU dataset modules (technologies, capital and operating costs, and chemical prices) for tracking chemical flows transfers, releases estimation, and identification of potential occupation exposure scenarios in pollution abatement units (PAUs). These PAUs are employed for on-site chemical end-of-life management. The folder datasets contains the outputs for each framework step. The Chemicals_in_categories.csv contains the chemicals for the TRI chemical categories. The EPA GitHub repository PAU_case_study as described in its readme.md entry, contains the Python scripts to run the manuscript case study for designing the PAUs, the data-driven models, and the decision-making module for chemicals of concern and tracking flow transfers at the end-of-life stage. The data was obtained by means of data engineering using different publicly-available databases. The properties of chemicals were obtained using the GitHub repository Properties_Scraper, while the PAU dataset using the repository PAU4Chem. Finally, the EPA GitHub repository Properties_Scraper contains a Python script to massively gather information about exposure limits and physical properties from different publicly-available sources: EPA, NOAA, OSHA, and the institute for Occupational Safety and Health of the German Social Accident Insurance (IFA). Also, all GitHub repositories describe the Python libraries required for running their code, how to use them, the obtained outputs files after running the Python script modules, and the corresponding EPA Disclaimer. This dataset is associated with the following publication: Hernandez-Betancur, J.D., M. Martin, and G.J. Ruiz-Mercado. A data engineering framework for on-site end-of-life industrial operations. JOURNAL OF CLEANER PRODUCTION. Elsevier Science Ltd, New York, NY, USA, 327: 129514, (2021).

Search
Clear search
Close search
Google apps
Main menu