Facebook
TwitterThe EPA GitHub repository PAU4ChemAs as described in the README.md file, contains Python scripts written to build the PAU dataset modules (technologies, capital and operating costs, and chemical prices) for tracking chemical flows transfers, releases estimation, and identification of potential occupation exposure scenarios in pollution abatement units (PAUs). These PAUs are employed for on-site chemical end-of-life management. The folder datasets contains the outputs for each framework step. The Chemicals_in_categories.csv contains the chemicals for the TRI chemical categories. The EPA GitHub repository PAU_case_study as described in its readme.md entry, contains the Python scripts to run the manuscript case study for designing the PAUs, the data-driven models, and the decision-making module for chemicals of concern and tracking flow transfers at the end-of-life stage. The data was obtained by means of data engineering using different publicly-available databases. The properties of chemicals were obtained using the GitHub repository Properties_Scraper, while the PAU dataset using the repository PAU4Chem. Finally, the EPA GitHub repository Properties_Scraper contains a Python script to massively gather information about exposure limits and physical properties from different publicly-available sources: EPA, NOAA, OSHA, and the institute for Occupational Safety and Health of the German Social Accident Insurance (IFA). Also, all GitHub repositories describe the Python libraries required for running their code, how to use them, the obtained outputs files after running the Python script modules, and the corresponding EPA Disclaimer. This dataset is associated with the following publication: Hernandez-Betancur, J.D., M. Martin, and G.J. Ruiz-Mercado. A data engineering framework for on-site end-of-life industrial operations. JOURNAL OF CLEANER PRODUCTION. Elsevier Science Ltd, New York, NY, USA, 327: 129514, (2021).
Facebook
TwitterAutomatically describing images using natural sentences is an essential task to visually impaired people's inclusion on the Internet. Although there are many datasets in the literature, most of them contain only English captions, whereas datasets with captions described in other languages are scarce.
PraCegoVer arose on the Internet, stimulating users from social media to publish images, tag #PraCegoVer and add a short description of their content. Inspired by this movement, we have proposed the #PraCegoVer, a multi-modal dataset with Portuguese captions based on posts from Instagram. It is the first large dataset for image captioning in Portuguese with freely annotated images.
Dataset Structure
containing the images. The file dataset.json comprehends a list of json objects with the attributes:
user: anonymized user that made the post;
filename: image file name;
raw_caption: raw caption;
caption: clean caption;
date: post date.
Each instance in dataset.json is associated with exactly one image in the images directory whose filename is pointed by the attribute filename. Also, we provide a sample with five instances, so the users can download the sample to get an overview of the dataset before downloading it completely.
Download Instructions
If you just want to have an overview of the dataset structure, you can download sample.tar.gz. But, if you want to use the dataset, or any of its subsets (63k and 173k), you must download all the files and run the following commands to uncompress and join the files:
cat images.tar.gz.part* > images.tar.gz tar -xzvf images.tar.gz
Alternatively, you can download the entire dataset from the terminal using the python script download_dataset.py available in PraCegoVer repository. In this case, first, you have to download the script and create an access token here. Then, you can run the following command to download and uncompress the image files:
python download_dataset.py --access_token=
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The CIFAR-10 and CIFAR-100 datasets are labeled subsets of the 80 million tiny images dataset. CIFAR-10 and CIFAR-100 were created by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. (Sadly, the 80 million tiny images dataset has been thrown into the memory hole by its authors. Spotting the doublethink which was used to justify its erasure is left as an exercise for the reader.)
The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images.
The dataset is divided into five training batches and one test batch, each with 10000 images. The test batch contains exactly 1000 randomly-selected images from each class. The training batches contain the remaining images in random order, but some training batches may contain more images from one class than another. Between them, the training batches contain exactly 5000 images from each class.
The classes are completely mutually exclusive. There is no overlap between automobiles and trucks. "Automobile" includes sedans, SUVs, things of that sort. "Truck" includes only big trucks. Neither includes pickup trucks.
Baseline results You can find some baseline replicable results on this dataset on the project page for cuda-convnet. These results were obtained with a convolutional neural network. Briefly, they are 18% test error without data augmentation and 11% with. Additionally, Jasper Snoek has a new paper in which he used Bayesian hyperparameter optimization to find nice settings of the weight decay and other hyperparameters, which allowed him to obtain a test error rate of 15% (without data augmentation) using the architecture of the net that got 18%.
Other results Rodrigo Benenson has collected results on CIFAR-10/100 and other datasets on his website; click here to view.
Dataset layout Python / Matlab versions I will describe the layout of the Python version of the dataset. The layout of the Matlab version is identical.
The archive contains the files data_batch_1, data_batch_2, ..., data_batch_5, as well as test_batch. Each of these files is a Python "pickled" object produced with cPickle. Here is a python2 routine which will open such a file and return a dictionary:
python
def unpickle(file):
import cPickle
with open(file, 'rb') as fo:
dict = cPickle.load(fo)
return dict
And a python3 version:
def unpickle(file):
import pickle
with open(file, 'rb') as fo:
dict = pickle.load(fo, encoding='bytes')
return dict
Loaded in this way, each of the batch files contains a dictionary with the following elements:
data -- a 10000x3072 numpy array of uint8s. Each row of the array stores a 32x32 colour image. The first 1024 entries contain the red channel values, the next 1024 the green, and the final 1024 the blue. The image is stored in row-major order, so that the first 32 entries of the array are the red channel values of the first row of the image.
labels -- a list of 10000 numbers in the range 0-9. The number at index i indicates the label of the ith image in the array data.
The dataset contains another file, called batches.meta. It too contains a Python dictionary object. It has the following entries: label_names -- a 10-element list which gives meaningful names to the numeric labels in the labels array described above. For example, label_names[0] == "airplane", label_names[1] == "automobile", etc. Binary version The binary version contains the files data_batch_1.bin, data_batch_2.bin, ..., data_batch_5.bin, as well as test_batch.bin. Each of these files is formatted as follows: <1 x label><3072 x pixel> ... <1 x label><3072 x pixel> In other words, the first byte is the label of the first image, which is a number in the range 0-9. The next 3072 bytes are the values of the pixels of the image. The first 1024 bytes are the red channel values, the next 1024 the green, and the final 1024 the blue. The values are stored in row-major order, so the first 32 bytes are the red channel values of the first row of the image.
Each file contains 10000 such 3073-byte "rows" of images, although there is nothing delimiting the rows. Therefore each file should be exactly 30730000 bytes long.
There is another file, called batches.meta.txt. This is an ASCII file that maps numeric labels in the range 0-9 to meaningful class names. It is merely a list of the 10 class names, one per row. The class name on row i corresponds to numeric label i.
The CIFAR-100 dataset This dataset is just like the CIFAR-10, except it has 100 classes containing 600 images each. There are 500 training images and 100 testing images per class. The 100 classes in the CIFAR-100 are grouped into 20 superclasses. Each image comes with a "fine" label (the class to which it belongs) and a "coarse" label (the superclass to which it belongs). Her...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Multimodal Vision-Audio-Language Dataset is a large-scale dataset for multimodal learning. It contains 2M video clips with corresponding audio and a textual description of the visual and auditory content. The dataset is an ensemble of existing datasets and fills the gap of missing modalities. Details can be found in the attached report. Annotation The annotation files are provided as Parquet files. They can be read using Python and the pandas and pyarrow library. The split into train, validation and test set follows the split of the original datasets. Installation
pip install pandas pyarrow Example
import pandas as pddf = pd.read_parquet('annotation_train.parquet', engine='pyarrow')print(df.iloc[0])
dataset AudioSet filename train/---2_BBVHAA.mp3 captions_visual [a man in a black hat and glasses.] captions_auditory [a man speaks and dishes clank.] tags [Speech] Description The annotation file consists of the following fields:filename: Name of the corresponding file (video or audio file)dataset: Source dataset associated with the data pointcaptions_visual: A list of captions related to the visual content of the video. Can be NaN in case of no visual contentcaptions_auditory: A list of captions related to the auditory content of the videotags: A list of tags, classifying the sound of a file. It can be NaN if no tags are provided Data files The raw data files for most datasets are not released due to licensing issues. They must be downloaded from the source. However, due to missing files, we provide them on request. Please contact us at schaumloeffel@em.uni-frankfurt.de
Facebook
Twitterpip install numpy pandas scikit-learn matplotlib seaborn
Sample dataset: Age, Salary, and whether they purchased (1 = Yes, 0 = No)
data = { 'Age': [22, 25, 47, 52, 46, 56, 24, 27, 32, 37], 'Salary': [20000, 25000, 50000, 60000, 58000, 70000, 22000, 27000, 32000, 37000], 'Purchased': [0, 0, 1, 1, 1, 1, 0, 0, 1, 1] } df = pd.DataFrame(data)
Split dataset into Features (X) and Target (y)
X = df[['Age', 'Salary']] # Independent variables y = df['Purchased'] #… See the full description on the dataset page: https://huggingface.co/datasets/changamonika/python.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset provides a comprehensive collection of synthetic job postings to facilitate research and analysis in the field of job market trends, natural language processing (NLP), and machine learning. Created for educational and research purposes, this dataset offers a diverse set of job listings across various industries and job types.
We would like to express our gratitude to the Python Faker library for its invaluable contribution to the dataset generation process. Additionally, we appreciate the guidance provided by ChatGPT in fine-tuning the dataset, ensuring its quality, and adhering to ethical standards.
Please note that the examples provided are fictional and for illustrative purposes. You can tailor the descriptions and examples to match the specifics of your dataset. It is not suitable for real-world applications and should only be used within the scope of research and experimentation. You can also reach me via email at: rrana157@gmail.com
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset is gathered on Sep. 17th 2020. It has more than 5.4K Python repositories that are hosted on GitHub. Check out the file ManyTypes4PyDataset.spec for repositories URL and their commit SHA. The dataset is also de-duplicated using the CD4Py tool. The list of duplicate files is provided in duplicate_files.txt file. All of its Python projects are processed in JSON-formatted files. They contain a seq2seq representation of each file, type-related hints, and information for machine learning models. The structure of JSON-formatted files is described in JSONOutput.md file. The dataset is split into train, validation and test sets by source code files. The list of files and their corresponding set is provided in dataset_split.csv file. Notable changes to each version of the dataset are documented in CHANGELOG.md.
Facebook
TwitterThis child item describes Python code used to retrieve gridMET climate data for a specific area and time period. Climate data were retrieved for public-supply water service areas, but the climate data collector could be used to retrieve data for other areas of interest. This dataset is part of a larger data release using machine learning to predict public supply water use for 12-digit hydrologic units from 2000-2020. Data retrieved by the climate data collector code were used as input feature variables in the public supply delivery and water use machine learning models. This page includes the following file: climate_data_collector.zip - a zip file containing the climate data collector Python code used to retrieve climate data and a README file.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Reference
Studies who have been using the data (in any form) are required to include the following reference:
@inproceedings{Orru2015, abstract = {The aim of this paper is to present a dataset of metrics associated to the first release of a curated collection of Python software systems. We describe the dataset along with the adopted criteria and the issues we faced while building such corpus. This dataset can enhance the reliability of empirical studies, enabling their reproducibility, reducing their cost, and it can foster further research on Python software.}, author = {Orrú, Matteo and Tempero, Ewan and Marchesi, Michele and Tonelli, Roberto and Destefanis, Giuseppe}, booktitle = {Submitted to PROMISE '15}, keywords = {Python, Empirical Studies, Curated Code Collection}, title = {A Curated Benchmark Collection of Python Systems for Empirical Studies on Software Engineering}, year = {2015} }
About the Data
Overview
This paper presents a dataset of metrics taken from a curated collection of 51 popular Python software systems.
The dataset reports 41 metrics of different categories: volume/size, complexity and object oriented metrics. These metrics and computed both at file and class level. We provide metrics for any file and class of each system and global metrics (computed on the entire system). Moreover we provide 14 meta-data for each system.
Paper Abstract
The aim of this paper is to present a dataset of metrics associated to the first release of a curated collection of Python software systems. We describe the dataset along with the adopted criteria and the issues we faced while building such corpus. This dataset can enhance the reliability of empirical studies, enabling their reproducibility, reducing their cost, and it can foster further research on Python software.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is an enriched version of the Code4ML dataset, a large-scale corpus of annotated Python code snippets, competition summaries, and data descriptions sourced from Kaggle. The initial release includes approximately 2.5 million snippets of machine learning code extracted from around 100,000 Jupyter notebooks. A portion of these snippets has been manually annotated by human assessors through a custom-built, user-friendly interface designed for this task.
The original dataset is organized into multiple CSV files, each containing structured data on different entities:
Table 1. code_blocks.csv structure
| Column | Description |
| code_blocks_index | Global index linking code blocks to markup_data.csv. |
| kernel_id | Identifier for the Kaggle Jupyter notebook from which the code block was extracted. |
| code_block_id |
Position of the code block within the notebook. |
| code_block |
The actual machine learning code snippet. |
Table 2. kernels_meta.csv structure
| Column | Description |
| kernel_id | Identifier for the Kaggle Jupyter notebook. |
| kaggle_score | Performance metric of the notebook. |
| kaggle_comments | Number of comments on the notebook. |
| kaggle_upvotes | Number of upvotes the notebook received. |
| kernel_link | URL to the notebook. |
| comp_name | Name of the associated Kaggle competition. |
Table 3. competitions_meta.csv structure
| Column | Description |
| comp_name | Name of the Kaggle competition. |
| description | Overview of the competition task. |
| data_type | Type of data used in the competition. |
| comp_type | Classification of the competition. |
| subtitle | Short description of the task. |
| EvaluationAlgorithmAbbreviation | Metric used for assessing competition submissions. |
| data_sources | Links to datasets used. |
| metric type | Class label for the assessment metric. |
Table 4. markup_data.csv structure
| Column | Description |
| code_block | Machine learning code block. |
| too_long | Flag indicating whether the block spans multiple semantic types. |
| marks | Confidence level of the annotation. |
| graph_vertex_id | ID of the semantic type. |
The dataset allows mapping between these tables. For example:
kernel_id column.comp_name. To maintain quality, kernels_meta.csv includes only notebooks with available Kaggle scores.In addition, data_with_preds.csv contains automatically classified code blocks, with a mapping back to code_blocks.csvvia the code_blocks_index column.
The updated Code4ML 2.0 corpus introduces kernels extracted from Meta Kaggle Code. These kernels correspond to the kaggle competitions launched since 2020. The natural descriptions of the competitions are retrieved with the aim of LLM.
Notebooks in kernels_meta2.csv may not have a Kaggle score but include a leaderboard ranking (rank), providing additional context for evaluation.
competitions_meta_2.csv is enriched with data_cards, decsribing the data used in the competitions.
The Code4ML 2.0 corpus is a versatile resource, enabling training and evaluation of models in areas such as:
Facebook
TwitterDataset Card for my-distiset-3c1699f5
This dataset has been created with distilabel.
Dataset Summary
This dataset contains a pipeline.yaml which can be used to reproduce the pipeline that generated it in distilabel using the distilabel CLI: distilabel pipeline run --config "https://huggingface.co/datasets/sdiazlor/my-distiset-3c1699f5/raw/main/pipeline.yaml"
or explore the configuration: distilabel pipeline info --config… See the full description on the dataset page: https://huggingface.co/datasets/sdiazlor/math-python-reasoning-dataset.
Facebook
TwitterThis child item describes Python code used to estimate average yearly and monthly tourism per 1000 residents within public-supply water service areas. Increases in population due to tourism may impact amounts of water used by public-supply water systems. This data release contains model input datasets, Python code used to develop the tourism information, and output estimates of tourism. This dataset is part of a larger data release using machine learning to predict public supply water use for 12-digit hydrologic units from 2000-2020. Output from this code was used as an input feature in the public supply delivery and water use machine learning models. This page includes the following files: tourism_input_data.zip - a zip file containing input data sets used by the tourism Python code tourism_output.zip - a zip file with output produced by the tourism Python code README.txt - a README file describing the data files and code requirements tourism_study_code.zip - a zip file containing the Python code used to create the tourism feature variable
Facebook
TwitterDataset Card for "Magicoder-Evol-Instruct-110K-python"
from datasets import load_dataset
dataset = load_dataset("pxyyy/Magicoder-Evol-Instruct-110K", split="train") # Replace with your dataset and split
def contains_python(entry): for c in entry["messages"]: if "python" in c['content'].lower(): return True # return "python" in entry["messages"].lower() # Replace 'column_name' with the column to search
Facebook
TwitterThis child item describes Python code used to query census data from the TigerWeb Representational State Transfer (REST) services and the U.S. Census Bureau Application Programming Interface (API). These data were needed as input feature variables for a machine learning model to predict public supply water use for the conterminous United States. Census data were retrieved for public-supply water service areas, but the census data collector could be used to retrieve data for other areas of interest. This dataset is part of a larger data release using machine learning to predict public supply water use for 12-digit hydrologic units from 2000-2020. Data retrieved by the census data collector code were used as input features in the public supply delivery and water use machine learning models. This page includes the following file: census_data_collector.zip - a zip file containing the census data collector Python code used to retrieve data from the U.S. Census Bureau and a README file.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset is gathered on Sep. 17th 2020 from GitHub. It has clean and complete versions (from v0.7): The clean version has 5.1K type-checked Python repositories and 1.2M type annotations. The complete version has 5.2K Python repositories and 3.3M type annotations. The dataset's source files are type-checked using mypy (clean version). The dataset is also de-duplicated using the CD4Py tool. Check out the README.MD file for the description of the dataset. Notable changes to each version of the dataset are documented in CHANGELOG.md. The dataset's scripts and utilities are available on its GitHub repository.
Facebook
TwitterAs described in the README.md file, the GitHub repository github.com/USEPA/PRTR-QSTR-models/tree/data-driven are Python scripts written to run Quantitative Structure–Transfer Relationship (QSTR) models based on chemical structure-based machine learning (ML) models for supporting environmental regulatory decision-making. Using features associated with annual chemical transfer amounts, chemical generator industry sectors, environmental policy stringency, gross value added by industry sectors, chemical descriptors, and chemical unit prices, as in the GitHub repository PRTR_transfers, the QSTR models developed here can predict potential EoL activities for chemicals transferred to off-site locations for EoL management. Also, this contribution shows that QSTR models aid in estimating the mass fraction allocation of chemicals of concern transferred off-site for EoL activities. Also, it describes the Python libraries required for running the code, how to use it, the obtained outputs files after running the Python script, and how to obtain all manuscript figures and results. This dataset is associated with the following publication: Hernandez-Betancur, J.D., G.J. Ruiz-Mercado, and M. MartÃn. Predicting Chemical End-of-Life Scenarios Using Structure-Based Classification Models. ACS Sustainable Chemistry & Engineering. American Chemical Society, Washington, DC, USA, 11(9): 3594-3602, (2023).
Facebook
TwitterScraped data from Naukri. This dataset is extracted on 13-july-2022. The salaries may vary in future.
The data consists of 8 Columns: 1) Job title 2) Company Name 3) Experience 4) Salary 5) Location 6) Key skills 7) About Company 8) Job Description
Following data is extracted from Naukri search using the Keywords: Python, 3years experience and Hyderabad Location.
You can extract the required data by running the naukri_scrape.py file which is available in the below github link.
Source code available at: https://github.com/TadakaSuryaTeja/LinkedIn_Automation/blob/main/naukri_scrape.py
Facebook
Twitterhttps://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.htmlhttps://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.html
Replication pack, FSE2018 submission #164: ------------------------------------------
**Working title:** Ecosystem-Level Factors Affecting the Survival of Open-Source Projects: A Case Study of the PyPI Ecosystem **Note:** link to data artifacts is already included in the paper. Link to the code will be included in the Camera Ready version as well. Content description =================== - **ghd-0.1.0.zip** - the code archive. This code produces the dataset files described below - **settings.py** - settings template for the code archive. - **dataset_minimal_Jan_2018.zip** - the minimally sufficient version of the dataset. This dataset only includes stats aggregated by the ecosystem (PyPI) - **dataset_full_Jan_2018.tgz** - full version of the dataset, including project-level statistics. It is ~34Gb unpacked. This dataset still doesn't include PyPI packages themselves, which take around 2TB. - **build_model.r, helpers.r** - R files to process the survival data (`survival_data.csv` in **dataset_minimal_Jan_2018.zip**, `common.cache/survival_data.pypi_2008_2017-12_6.csv` in **dataset_full_Jan_2018.tgz**) - **Interview protocol.pdf** - approximate protocol used for semistructured interviews. - LICENSE - text of GPL v3, under which this dataset is published - INSTALL.md - replication guide (~2 pages)
Replication guide ================= Step 0 - prerequisites ---------------------- - Unix-compatible OS (Linux or OS X) - Python interpreter (2.7 was used; Python 3 compatibility is highly likely) - R 3.4 or higher (3.4.4 was used, 3.2 is known to be incompatible) Depending on detalization level (see Step 2 for more details): - up to 2Tb of disk space (see Step 2 detalization levels) - at least 16Gb of RAM (64 preferable) - few hours to few month of processing time Step 1 - software ---------------- - unpack **ghd-0.1.0.zip**, or clone from gitlab: git clone https://gitlab.com/user2589/ghd.git git checkout 0.1.0 `cd` into the extracted folder. All commands below assume it as a current directory. - copy `settings.py` into the extracted folder. Edit the file: * set `DATASET_PATH` to some newly created folder path * add at least one GitHub API token to `SCRAPER_GITHUB_API_TOKENS` - install docker. For Ubuntu Linux, the command is `sudo apt-get install docker-compose` - install libarchive and headers: `sudo apt-get install libarchive-dev` - (optional) to replicate on NPM, install yajl: `sudo apt-get install yajl-tools` Without this dependency, you might get an error on the next step, but it's safe to ignore. - install Python libraries: `pip install --user -r requirements.txt` . - disable all APIs except GitHub (Bitbucket and Gitlab support were not yet implemented when this study was in progress): edit `scraper/init.py`, comment out everything except GitHub support in `PROVIDERS`. Step 2 - obtaining the dataset ----------------------------- The ultimate goal of this step is to get output of the Python function `common.utils.survival_data()` and save it into a CSV file: # copy and paste into a Python console from common import utils survival_data = utils.survival_data('pypi', '2008', smoothing=6) survival_data.to_csv('survival_data.csv') Since full replication will take several months, here are some ways to speedup the process: ####Option 2.a, difficulty level: easiest Just use the precomputed data. Step 1 is not necessary under this scenario. - extract **dataset_minimal_Jan_2018.zip** - get `survival_data.csv`, go to the next step ####Option 2.b, difficulty level: easy Use precomputed longitudinal feature values to build the final table. The whole process will take 15..30 minutes. - create a folder `
Facebook
TwitterAs described in the README.md file, the GitHub repository PRTR_transfers are Python scripts written to run a data-centric and chemical-centric framework for tracking EoL chemical flow transfers, identifying potential EoL exposure scenarios, and performing Chemical Flow Analysis (CFA). Also, the created Extract, Transform, and Load (ETL) pipeline leverages publicly-accessible Pollutant Release and Transfer Register (PRTR) systems belonging to Organization for Economic Cooperation and Development (OECD) member countries. The Life Cycle Inventory (LCI) data obtained by the ETL is stored in a Structured Query Language (SQL) database called PRTR_transfers that could be connected to Machine Learning Operations (MLOps) in production environments, making the framework scalable for real-world applications. The data ingestion pipeline can supply data at an annual rate, ensuring labeled data can be ingested into data-driven models if retraining is needed, especially to face problems like data and concept drift that could drastically affect the performance of data-driven models. Also, it describes the Python libraries required for running the code, how to use it, the obtained outputs files after running the Python script, and how to obtain all manuscript figures (file Manuscript Figures-EDA.ipynb) and results. This dataset is associated with the following publication: Hernandez-Betancur, J.D., G.J. Ruiz-Mercado, and M. MartÃn. Tracking end-of-life stage of chemicals: A scalable data-centric and chemical-centric approach. Resources, Conservation and Recycling. Elsevier Science BV, Amsterdam, NETHERLANDS, 196: 107031, (2023).
Facebook
TwitterpolyOne Data Set
The data set contains 100 million hypothetical polymers each with 29 predicted properties using machine learning models. We use PSMILES strings to represent polymer structures, see here and here. The polymers are generated by decomposing previously synthesized polymers into unique chemical fragments. Random and enumerative compositions of these fragments yield 100 million hypothetical PSMILES strings. All PSMILES strings are chemically valid polymers but, mostly, have never been synthesized before. More information can be found in the paper. Please note the license agreement in the LICENSE file.
Full data set including the properties
The data files are in Apache Parquet format. The files start with `polyOne_*.parquet`.
I recommend using dask (`pip install dask`) to load and process the data set. Pandas also works but is slower.
Load sharded data set with dask
```python
import dask.dataframe as dd
ddf = dd.read_parquet("*.parquet", engine="pyarrow")
```
For example, compute the description of data set
```python
df_describe = ddf.describe().compute()
df_describe
```
PSMILES strings only
Facebook
TwitterThe EPA GitHub repository PAU4ChemAs as described in the README.md file, contains Python scripts written to build the PAU dataset modules (technologies, capital and operating costs, and chemical prices) for tracking chemical flows transfers, releases estimation, and identification of potential occupation exposure scenarios in pollution abatement units (PAUs). These PAUs are employed for on-site chemical end-of-life management. The folder datasets contains the outputs for each framework step. The Chemicals_in_categories.csv contains the chemicals for the TRI chemical categories. The EPA GitHub repository PAU_case_study as described in its readme.md entry, contains the Python scripts to run the manuscript case study for designing the PAUs, the data-driven models, and the decision-making module for chemicals of concern and tracking flow transfers at the end-of-life stage. The data was obtained by means of data engineering using different publicly-available databases. The properties of chemicals were obtained using the GitHub repository Properties_Scraper, while the PAU dataset using the repository PAU4Chem. Finally, the EPA GitHub repository Properties_Scraper contains a Python script to massively gather information about exposure limits and physical properties from different publicly-available sources: EPA, NOAA, OSHA, and the institute for Occupational Safety and Health of the German Social Accident Insurance (IFA). Also, all GitHub repositories describe the Python libraries required for running their code, how to use them, the obtained outputs files after running the Python script modules, and the corresponding EPA Disclaimer. This dataset is associated with the following publication: Hernandez-Betancur, J.D., M. Martin, and G.J. Ruiz-Mercado. A data engineering framework for on-site end-of-life industrial operations. JOURNAL OF CLEANER PRODUCTION. Elsevier Science Ltd, New York, NY, USA, 327: 129514, (2021).