Digitized from USGS 1:24,000-scale Digital Raster Graphics (scanned topographic maps) by the West Virginia Department of Environmental Protection. First published January 2002, updated with Census 2000 attribute data and re-published March 2005. Scale: 1:24000. Attribute Information includes Federal Information Processing Standards (FIPS) codes and 2000 Census data.Coordinate System: NAD_1983_UTM_Zone_17N
The Unpublished Digital Surficial Geologic Map of New River Gorge National River, West Virginia is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (ners_geology.gdb), a 10.1 ArcMap (.MXD) map document (ners_geology.mxd), individual 10.1 layer (.LYR) files for each GIS data layer, an ancillary map information (.PDF) document (neri_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.TXT) and FAQ (.HTML) formats, and a GIS readme file (ners_gis_readme.pdf). Please read the ners_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O’Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: West Virginia University and West Virginia Geological and Economic Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (ners_metadata_faq.html; available at http://nrdata.nps.gov/geology/gri_data/gis/neri/ners_metadata_faq.html). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:48,000 and United States National Map Accuracy Standards features are within (horizontally) 24.4 meters or 80 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 17N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of New River Gorge National River.
Multiple GIS maps with oil, gas, coal, and other data for West Virginia; some maps include bordering states. Useful for finding information about sections of the Appalachian Basin.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
1968 geological map of West Virginia. Also includes separate fold and fault coverages from the same map. In 1968 the West Virginia Geological and Economic Survey (WVGES) published a State Geologic Map. The topographic base was compiled from Army Map Service 1:250,000 scale map sheets. In 1998 the WV Division of Environmental Protection (WVDEP) scanned the hardcopy geologic maps at 300 dpi, 8-bit color, and then georeferenced them. Rock unit boundaries were digitized off the images and attributed by WVDEP. The USGS-Water Resources Division later revised the attributes of large water bodies and referenced the datum to NAD83.TEST
The Digital Geologic Map of Chesapeake and Ohio Canal National Historical Park and Vicinity, District of Columbia, Virginia, Maryland and West Virginia is composed of GIS data layers complete with ArcMap 9.3 layer (.LYR) files, two ancillary GIS tables, a Map PDF document with ancillary map text, figures and tables, a FGDC metadata record and a 9.3 ArcMap (.MXD) Document that displays the digital map in 9.3 ArcGIS. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey and Maryland Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation sections(s) of this metadata record (choh_metadata.txt; available at http://nrdata.nps.gov/choh/nrdata/geology/gis/choh_metadata.xml). All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.1. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data is available as a 9.3 personal geodatabase (choh_geology.mdb), and as shapefile (.SHP) and DBASEIV (.DBF) table files. The GIS data projection is NAD83, UTM Zone 18N. The data is within the area of interest of Chesapeake and Ohio Canal National Historical Park, as well as Antietam National Battlefield, Harpers Ferry National Historical Park, and George Washington Memorial Parkway.
The Digital Surficial Geologic-GIS Map of Gauley River National Recreation Area, West Virginia is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (gari_surficial_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (gari_surficial_geology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (gari_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (gari_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (gari_surficial_geology_metadata_faq.pdf). Please read the gari_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: West Virginia Geological and Economic Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (gari_surficial_geology_metadata.txt or gari_surficial_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:12,000 and United States National Map Accuracy Standards features are within (horizontally) 10.2 meters or 33.3 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in Google Earth, ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
This ArcGIS StreetMap Premium North America 2022 Release 4 map (based on HERE 2022 Q3 vintage) is designed for use in ArcGIS Pro and contains data for West Virginia supporting map display, geocoding and routing.
Note: Only the latest version of the map is available for download. See the
Pro map coverage and click on the map to access details
(including file size, updated date, and data source).
Correlation of flows at pairs of streamgages were evaluated using a Spearman’s rho correlation coefficient to better identify gages that can be used as index gages to estimate daily flow at ungaged stream sites in West Virginia. Correlation maps were developed for each candidate index streamgage using ordinary kriging, and have been compiled as grids. Sets of grids were developed for correlation of daily flows of streamgages on unregulated streams in and near (within 50 miles of) West Virginia that were operated during the 1930-2011 water years for: (1) complete water years for the entire period of record (1930-2011), (2) October-December for the entire period of record, (3) January-March for the entire period of record, (4) April-June for the entire period of record, (5) July-September for the entire period of record, (6) complete water years for 1963-1969, (7) complete water years for 1970-1979, and (8) complete water years for 1992-2011. Details of analytical approach, results, discussion, and limitations are contained in U.S. Geological Survey Scientific Investigations Report 2014-5061.at https://pubs.usgs.gov/sir/2014/5061/
The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk classifications used are the 1-percent-annual-chance flood event, the 0.2-percent-annual- chance flood event, and areas of minimal flood risk. The DFIRM Database is derived from Flood Insurance Studies (FISs), previously published Flood Insurance Rate Maps (FIRMs), flood hazard analyses performed in support of the FISs and FIRMs, and new mapping data, where available. The FISs and FIRMs are published by the Federal Emergency Management Agency (FEMA). In addition to the preceding, required text, the Abstract should also describe the projection and coordinate system as well as a general statement about horizontal accuracy.
The Unpublished Digital Bedrock Geologic Map of New River Gorge National River and Vicinity, West Virginia is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (neri_geology.gdb), a 10.1 ArcMap (.MXD) map document (neri_geology.mxd), individual 10.1 layer (.LYR) files for each GIS data layer, an ancillary map information (.PDF) document (neri_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.TXT) and FAQ (.HTML) formats, and a GIS readme file (neri_gis_readme.pdf). Please read the neri_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O’Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: West Virginia Geological and Economic Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (neri_metadata_faq.html; available at http://nrdata.nps.gov/geology/gri_data/gis/neri/neri_metadata_faq.html). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 17N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of New River Gorge National River.
The Unpublished Digital Surficial Geologic Map of Bluestone National Scenic River and Vicinity, West Virginia is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (blus_geology.gdb), a 10.1 ArcMap (.MXD) map document (blus_geology.mxd), individual 10.1 layer (.LYR) files for each GIS data layer, an ancillary map information (.PDF) document (blue_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.TXT) and FAQ (.HTML) formats, and a GIS readme file (blus_gis_readme.pdf). Please read the blus_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: West Virginia University and West Virginia Geological and Economic Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (blus_metadata_faq.html; available at http://nrdata.nps.gov/geology/gri_data/gis/blue/blus_metadata_faq.html). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:12,000 and United States National Map Accuracy Standards features are within (horizontally) 6.1 meters or 20 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.2. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 17N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Bluestone National Scenic River.
From the site: “A Digital Raster Graphic (DRG) is a scanned image of a U.S. Geological Survey (USGS) topographic map. An unclipped scanned image includes all marginal information, while a clipped or seamless scanned image clips off the collar information. DRGs may be used as a source or background layer in a geographic information system, as a means to perform quality assurance on other digital products, and as a source for the collection and revision of digital line graph data. The DRGs also can be merged with other digital data (e.g., digital elevation model or digital orthophotoquad data), to produce a hybrid digital file.
The output resolution of a DRG varies from 250 to 500 dots per inch. The horizontal positional accuracy of the DRG matches the accuracy of the published source map. To be consistent with other USGS digital data, the image is cast on the UTM projection, and therefore, will not always be consistent with the credit note on the image collar. Only the area inside the map neatline is georeferenced, so minor distortion of the text may occur in the map collar. Refer to the scanned map collar or online Map List for the currentness of the DRG.”
Feature Class generated showing the physical locations of all West Virginia Division of Highways (WVDOH) Facilities including, County Headquarters, District Headquarters, Substations, Sections, Equipment Shops, Stockpiles, Bridge Departments, Storage Lots, Sign Shops, Heavy Maintenance Facilities, and Equipment Shops as illustrated in the Fuel Sites Map. Information included in this dataset is Facility Name, Facility Address, facility City, State, Zip Code, County, Facility Phone and Fax Numbers, District, Fuel Types(If available), Facility Type, Headquarters, Lat and Long Coordinates, Th This feature is in the NAD_1983_UTM_Zone_17N coordinate system. Data is updated as needed when new data becomes available or facility has changed. Data is current as of and November 2021.
Digitized from USGS 1:24,000-scale Digital Raster Graphics (scanned topographic maps) by the West Virginia Department of Environmental Protection. WVGISTC dissolved county boundaries to create the state boundary. Published May 2002.Coordinate System: Lat/Long NAD 1983,UTM NAD 1983
Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information
The Community of Interest Map Collection Project aims to collect COI maps submitted to legislative and congressional redistricting bodies and organizations during the 2021 redistricting cycle.
REQUIRED: A brief narrative summary of the data set.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This DEM dataset comes from Ross et al., 2016 (ES&T) and represents a pre-mining DEM for much of west-virginia. The majority of the map was generated before 1970.
The mapped area boundary, flood inundation extents, and depth rasters were created to provide an estimated extent of flood inundation along the Greenbrier River within the community of Alderson, West Virginia. These geospatial data include the following items: 1. greenbrier_ald_bnd; shapefile containing the polygon showing the mapped area boundary for the Greenbrier River flood maps, 2. greenbrier_ald_hwm; shapefile containing high-water mark points, 3. polygon_greenbrier_ald_hwm; shapefile containing mapped extent of flood inundation, derived from the water-surface elevation surveyed at high-water marks, 4. depth_hwm; raster file for the flood depths derived from the water-surface elevation surveyed at high-water marks, 5. polygon_greenbrier_ald_dem; shapefile containing mapped extent of flood inundation, derived from the height above ground recorded at high-water marks and the digital elevation model (DEM) raster, 6. depth_dem; raster file for the flood depths derived from the height above ground recorded at high-water marks and the digital elevation model raster. The upstream and downstream mapped area extent is limited to the upstream-most and downstream-most high-water mark locations. In areas of uncertainty of flood extent, the mapped area boundary is lined up with the flood inundation polygon extent. The mapped area boundary polygon was used to extract the final flood inundation polygon and depth raster from the water-surface elevation raster file. Depth raster files were created using the "Topo to Raster" tool in ArcMap (ESRI, 2012). For this study two sets of inundation layers were generated for each reach. One raster file showing flood depths, "depth_hwm", was created by using high-water mark water-surface elevation values on the land surface and a digital elevation model. However, differences in elevation between the surveyed water-surface elevation values at HWM’s and the land-surface elevation from the digital elevation model data provided uncertainty in the inundation extent of the generated layers. Often times elevation differences of +/- 20 feet were noticed between the surveyed elevation from a HWM on the land surface and the digital elevation model land-surface elevation. Due to these elevation differences, we incorporated a second method of interpolating the water-surface layer. The recorded height above ground value from the surveyed HWM was added to the digital elevation model land-surface elevation at that point. This created a new water-surface elevation value to be used with the “Topo to Raster” interpolation method to create a second depth raster, "depth_dem". Both sets of inundation layers are provided.
A statewide inventory (www.mapWV.gov/trails) of over 5,000 miles of recreational trails accessible to the public in West Virginia. The WV GIS Technical Center at West Virginia University and Rahall Transportation Institute at Marshall University were funded by the WV Division of Highways to inventory, collect, attribute, and integrate all publicly accessible recreational trails in West Virginia. This effort to create a comprehensive statewide trails database was coordinated by the Division of Highway's State Trail Coordinator, Bill Robinson, and GIS Section Head, Hussein Elkhansa. New trail data is updated as it becomes available. Data last updated: August 28, 2021.The data can be viewed on the WV Trail Inventory online map application( https://www.mapwv.gov/trails/) ail users are encouraged to use this interactive mapping tool to report misting trails or corrections.Coordinate System: NAD_1983_UTM_ZOne_17N.Supplemental Information: Anyone wishing to submit GIS/GPS updates for this dataset should contact Kurt Donaldson at the WVGISTC via EMAIL @ kurt.donaldson@mail.wvu.edu
Digitized from USGS 1:24,000-scale Digital Raster Graphics (scanned topographic maps) by the West Virginia Department of Environmental Protection. First published January 2002, updated with Census 2000 attribute data and re-published March 2005. Scale: 1:24000. Attribute Information includes Federal Information Processing Standards (FIPS) codes and 2000 Census data.Coordinate System: NAD_1983_UTM_Zone_17N