Facebook
TwitterThe objective of this study was to compare the effect of diabetes and pathologies potentially related to diabetes on the risk of infection and death from COVID-19 among people from Highly-Developed-Country (HDC), including Italians, and immigrants from the High-Migratory-Pressure-Countries (HMPC). Among the population with diabetes, whose prevalence is known to be higher among immigrants, we compared the effect of body mass index among HDC and HMPC populations. A population-based cohort study was conducted, using population registries and routinely collected surveillance data. The population was stratified into HDC and HMPC, according to the place of birth; moreover, a focus was set on the South Asiatic population. Analyses restricted to the population with type-2 diabetes were performed. We reported incidence (IRR) and mortality rate ratios (MRR) and hazard ratios (HR) with 95% confidence interval (CI) to estimate the effect of diabetes on SARS-CoV-2 infection and COVID-19 mortality. Overall, IRR of infection and MRR from COVID-19 comparing HMPC with HDC group were 0.84 (95% CI 0.82–0.87) and 0.67 (95% CI 0.46–0.99), respectively. The effect of diabetes on the risk of infection and death from COVID-19 was slightly higher in the HMPC population than in the HDC population (HRs for infection: 1.37 95% CI 1.22–1.53 vs. 1.20 95% CI 1.14–1.25; HRs for mortality: 3.96 95% CI 1.82–8.60 vs. 1.71 95% CI 1.50–1.95, respectively). No substantial difference in the strength of the association was observed between obesity or other comorbidities and SARS-CoV-2 infection. Similarly for COVID-19 mortality, HRs for obesity (HRs: 18.92 95% CI 4.48–79.87 vs. 3.91 95% CI 2.69–5.69) were larger in HMPC than in the HDC population, but differences could be due to chance. Among the population with diabetes, the HMPC group showed similar incidence (IRR: 0.99 95% CI: 0.88–1.12) and mortality (MRR: 0.89 95% CI: 0.49–1.61) to that of HDC individuals. The effect of obesity on incidence was similar in both HDC and HMPC populations (HRs: 1.73 95% CI 1.41–2.11 among HDC vs. 1.41 95% CI 0.63–3.17 among HMPC), although the estimates were very imprecise. Despite a higher prevalence of diabetes and a stronger effect of diabetes on COVID-19 mortality in HMPC than in the HDC population, our cohort did not show an overall excess risk of COVID-19 mortality in immigrants.
Facebook
TwitterIt was estimated that around 30 percent of those aged 80 years and older who had COVID-19 in the United States from January 22 to May 30, 2020 died from the disease. Deaths due to COVID-19 are much higher among those with underlying health conditions such as cardiovascular disease, chronic lung disease, or diabetes. This statistic shows the percentage of people in the U.S. who had COVID-19 from January 22 to May 30, 2020 who died, by age.
For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The aimTo study the association of demographic, clinical, and laboratory factors and the use of glucose-lowering drugs and anti-coronavirus disease (COVID-19) vaccination with the COVID-19-related case fatality rate (CFR) in diabetes mellitus (DM) patients.MethodsThis study is a nationwide observational cohort study based on the data from the National Diabetes Register (NDR) that is the database containing online clinical information about the population with DM. The outcomes (death or recovery) for COVID-19 were registered in 235,248 patients with DM [type 1 diabetes mellitus (T1DM), n = 11,058; type 2 diabetes mellitus (T2DM), n = 224,190] from March 20, 2020, until November 25, 2021. The unadjusted odds ratio (OR) and 95% confidence interval (CI) were used to estimate the risk factors for CFR. Then the ranging of significant factors was performed and the most vulnerable groups of factors for the lethal outcome were chosen.ResultsThe CFR due to COVID-19 was 8.1% in T1DM and 15.3% in T2DM. Increased CFR was associated with the male population [OR = 1.25 (95% CI: 1.09–1.44) in T1DM and 1.18 (95% CI: 1.15–1.21) in T2DM], age ≥65 years [OR = 4.44 (95% CI: 3.75–5.24) in T1DM and 3.18 (95% CI: 3.09–3.26) in T2DM], DM duration ≥10 years [OR = 2.46 (95% CI: 2.06–2.95) in T1DM and 2.11 (95% CI: 2.06–2.16) in T2DM], body mass index (BMI) ≥30 kg/m2 [OR = 1.95 (95% CI: 1.52–2.50)] in T1DM, HbA1c ≥7% [OR = 1.35 (95% CI: 1.29–1.43)] in T2DM. The atherosclerotic cardiovascular disease (ASCVD) and chronic kidney disease (CKD) were associated with higher CFR in T1DM but not in T2DM. The pre-COVID-19 glucose-lowering therapy in T2DM was differently associated with CFR (OR): 0.61 (95% CI: 0.59–0.62) for metformin, 0.59 (95% CI: 0.57–0.61) for dipeptidyl peptidase-4 inhibitors (DPP-4 inhibitors), 0.46 (95% CI: 0.44–0.49) for sodium-glucose co-transporter-2 (SGLT2) inhibitors, 0.38 (95% CI: 0.29–0.51) for glucagon-like peptide-1 receptor agonists (arGLP-1), 1.34 (95% CI: 1.31–1.37) for sulfonylurea (SU), and 1.47 (95% CI: 1.43–1.51) for insulin. Anti-COVID-19 vaccination was associated with a lower fatality risk in both DM types: OR = 0.07 (95% CI: 0.03–0.20) in T1DM and OR = 0.19 (95% CI: 0.17–0.22) in T2DM.ConclusionsThe results of our study suggest that increased COVID-19-related fatality risk in both T1DM and T2DM patients associated with the male population, older age, longer DM duration, and absence of anti-COVID-19 vaccination. In T2DM, pre-COVID-19 glucose-lowering therapy with metformin, DPP-4 inhibitors, SGLT2 inhibitors, and arGLP-1 had a positive effect on the risk of death. The most vulnerable combination of risk factors for lethal outcome in both DM types was vaccine absence + age ≥65 years + DM duration ≥10 years.
Facebook
TwitterThis study at Eka Kotebe Hospital in Addis Ababa, Ethiopia, examined the impact of diabetes on COVID-19 mortality. We conducted a matched-retrospective cohort study of consecutive patients admitted with COVID-19. We compared severity markers and outcomes to determine the risk of death in patients with diabetes compared to matched controls. We used descriptive statistics, chi-square, and Poisson regression. In a univariate comparison, a p-value less than 0.05 was considered significant. Ethics approval was obtained from the Eka Kotebe Hospital Institutional Ethics Committee. The study involved 284 patients, with a 1:1 proportion of diabetics and non-diabetics. Results showed that diabetic patients had a higher number of severe and critical cases but did not have a higher mortality rate. Mortality was associated with malignancy, HIV, and a lymphocyte count <1000/µL.
Facebook
TwitterIt was estimated that around 20 percent of those with underlying health conditions who had COVID-19 in the United States from January 22 to May 30, 2020 died from the disease, compared to just 2 percent of COVID-patients without underlying health conditions. Underlying health conditions such as cardiovascular disease, chronic lung disease, or diabetes greatly increase the chance of death due to COVID-19. This statistic shows the percentage of people in the U.S. who had COVID-19 from January 22 to May 30, 2020 with and without underlying health conditions who died, by age.
For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundDiabetes mellitus (DM) is one of the most frequent comorbidities in patients suffering from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with a higher rate of severe course of coronavirus disease (COVID-19). However, data about post-COVID-19 syndrome (PCS) in patients with DM are limited.MethodsThis multicenter, propensity score-matched study compared long-term follow-up data about cardiovascular, neuropsychiatric, respiratory, gastrointestinal, and other symptoms in 8,719 patients with DM to those without DM. The 1:1 propensity score matching (PSM) according to age and sex resulted in 1,548 matched pairs.ResultsDiabetics and nondiabetics had a mean age of 72.6 ± 12.7 years old. At follow-up, cardiovascular symptoms such as dyspnea and increased resting heart rate occurred less in patients with DM (13.2% vs. 16.4%; p = 0.01) than those without DM (2.8% vs. 5.6%; p = 0.05), respectively. The incidence of newly diagnosed arterial hypertension was slightly lower in DM patients as compared to non-DM patients (0.5% vs. 1.6%; p = 0.18). Abnormal spirometry was observed more in patients with DM than those without DM (18.8% vs. 13; p = 0.24). Paranoia was diagnosed more frequently in patients with DM than in non-DM patients at follow-up time (4% vs. 1.2%; p = 0.009). The incidence of newly diagnosed renal insufficiency was higher in patients suffering from DM as compared to patients without DM (4.8% vs. 2.6%; p = 0.09). The rate of readmission was comparable in patients with and without DM (19.7% vs. 18.3%; p = 0.61). The reinfection rate with COVID-19 was comparable in both groups (2.9% in diabetics vs. 2.3% in nondiabetics; p = 0.55). Long-term mortality was higher in DM patients than in non-DM patients (33.9% vs. 29.1%; p = 0.005).ConclusionsThe mortality rate was higher in patients with DM type II as compared to those without DM. Readmission and reinfection rates with COVID-19 were comparable in both groups. The incidence of cardiovascular symptoms was higher in patients without DM.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IntroductionDuring the Omicron infection wave, diabetic patients are susceptible to COVID-19, which is linked to a poor prognosis. However, research on the real-world effectiveness and safety of Azvudine, a common medication for COVID-19, is insufficient in those with pre-existing diabetes.MethodsIn this retrospective study, we included 32,864 hospitalized COVID-19 patients from 9 hospitals in Henan Province. Diabetic patients were screened and divided into the Azvudine group and the control group, via 1:1 propensity score matching. The primary outcome was all-cause mortality, and the secondary outcome was composite disease progression. Laboratory abnormal results were used for safety evaluation.ResultsA total of 1,417 patients receiving Azvudine and 1,417 patients receiving standard treatment were ultimately included. Kaplan−Meier curves suggested that all-cause mortality (P = 0.0026) was significantly lower in the Azvudine group than in the control group, but composite disease progression did not significantly differ (P = 0.1). Cox regression models revealed Azvudine treatment could reduce 26% risk of all-cause mortality (95% CI: 0.583-0.942, P = 0.015) versus controls, and not reduce the risk of composite disease progression (HR: 0.91, 95% CI: 0.750-1.109, P = 0.355). The results of subgroup analysis and three sensitivity analyses were consistent with the previous findings. Safety analysis revealed that the incidence rates of most adverse events were similar between the two groups.ConclusionIn this study, Azvudine demonstrated good efficacy in COVID-19 patients with diabetes, with a lower all-cause mortality rate. Additionally, the safety was favorable. This study may provide a new strategy for the antiviral management of COVID-19 patients with diabetes.
Facebook
TwitterIt was estimated that around 6 percent of males and 4.8 percent of females who had COVID-19 in the United States from January 22 to May 30, 2020 died from the disease. Deaths due to COVID-19 are much higher among those with underlying health conditions such as cardiovascular disease, chronic lung disease, or diabetes. This statistic shows the percentage of people in the U.S. who had COVID-19 from January 22 to May 30, 2020 who died, by gender.
For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.
Facebook
TwitterBy Valtteri Kurkela [source]
The dataset is constantly updated and synced hourly to ensure up-to-date information. With over several columns available for analysis and exploration purposes, users can extract valuable insights from this extensive dataset.
Some of the key metrics covered in the dataset include:
Vaccinations: The dataset covers total vaccinations administered worldwide as well as breakdowns of people vaccinated per hundred people and fully vaccinated individuals per hundred people.
Testing & Positivity: Information on total tests conducted along with new tests conducted per thousand people is provided. Additionally, details on positive rate (percentage of positive Covid-19 tests out of all conducted) are included.
Hospital & ICU: Data on ICU patients and hospital patients are available along with corresponding figures normalized per million people. Weekly admissions to intensive care units and hospitals are also provided.
Confirmed Cases: The number of confirmed Covid-19 cases globally is captured in both absolute numbers as well as normalized values representing cases per million people.
5.Confirmed Deaths: Total confirmed deaths due to Covid-19 worldwide are provided with figures adjusted for population size (total deaths per million).
6.Reproduction Rate: The estimated reproduction rate (R) indicates the contagiousness of the virus within a particular country or region.
7.Policy Responses: Besides healthcare-related metrics, this comprehensive dataset includes policy responses implemented by countries or regions such as lockdown measures or travel restrictions.
8.Other Variables of InterestThe data encompasses various socioeconomic factors that may influence Covid-19 outcomes including population density,membership in a continent,gross domestic product(GDP)per capita;
For demographic factors: -Age Structure : percentage populations aged 65 and older,aged (70)older,median age -Gender-specific factors: Percentage of female smokers -Lifestyle-related factors: Diabetes prevalence rate and extreme poverty rate
- Excess Mortality: The dataset further provides insights into excess mortality rates, indicating the percentage increase in deaths above the expected number based on historical data.
The dataset consists of numerous columns providing specific information for analysis, such as ISO code for countries/regions, location names,and units of measurement for different parameters.
Overall,this dataset serves as a valuable resource for researchers, analysts, and policymakers seeking to explore various aspects related to Covid-19
Introduction:
Understanding the Basic Structure:
- The dataset consists of various columns containing different data related to vaccinations, testing, hospitalization, cases, deaths, policy responses, and other key variables.
- Each row represents data for a specific country or region at a certain point in time.
Selecting Desired Columns:
- Identify the specific columns that are relevant to your analysis or research needs.
- Some important columns include population, total cases, total deaths, new cases per million people, and vaccination-related metrics.
Filtering Data:
- Use filters based on specific conditions such as date ranges or continents to focus on relevant subsets of data.
- This can help you analyze trends over time or compare data between different regions.
Analyzing Vaccination Metrics:
- Explore variables like total_vaccinations, people_vaccinated, and people_fully_vaccinated to assess vaccination coverage in different countries.
- Calculate metrics such as people_vaccinated_per_hundred or total_boosters_per_hundred for standardized comparisons across populations.
Investigating Testing Information:
- Examine columns such as total_tests, new_tests, and tests_per_case to understand testing efforts in various countries.
- Calculate rates like tests_per_case to assess testing efficiency or identify changes in testing strategies over time.
Exploring Hospitalization and ICU Data:
- Analyze variables like hosp_patients, icu_patients, and hospital_beds_per_thousand to understand healthcare systems' strain.
- Calculate rates like icu_patients_per_million or hosp_patients_per_million for cross-country comparisons.
Assessing Covid-19 Cases and Deaths:
- Analyze variables like total_cases, new_ca...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Cardiovascular diseases (CVDs) continue to be the leading cause of death worldwide. Over the past couple of years and with the surge of the COVID-19 pandemic, mortality from CVDs has been slightly overshadowed by those due to COVID-19, although it was during the peak of the pandemic. In the present study, patients with CVDs (CVDs; n = 41,883) were analyzed to determine which comorbidities had the largest impact on overall patient mortality due to their association with both diseases (n = 3,637). Obesity, hypertension, and diabetes worsen health in patients diagnosed positive for COVID-19. Hence, they were included in the overview of all patients with CVD. Our findings showed that 1,697 deaths were attributable to diabetes (p < 0.001) and 987 deaths to obesity (p < 0.001). Lastly, 2,499 deaths were attributable to hypertension (p < 0.001). Using logistic regression modeling, we found that diabetes (OR: 1.744, p < 0.001) and hypertension (OR: 2.179, p < 0.001) significantly affected the mortality rate of patients. Hence, having a CVD diagnosis, with hypertension and/or diabetes, seems to increase the likelihood of complications, leading to death in patients diagnosed positive for COVID-19.
Facebook
TwitterProvisional death counts of diabetes, coronavirus disease 2019 (COVID-19) and other select causes of death, by month, sex, and age.
Facebook
TwitterParticipants A total of 203 patients with type 2 diabetes mellitus who attended nine primary care areas in four Cuban provinces belonging to different regions of the country (Pinar del Río, La Habana, Ciego de Ávila and Santiago de Cuba) participated in the study. Participants were selected by non-probabilistic sampling based on the following inclusion criteria: 1. have a diagnosis of type 2 DM according to the World Health Organization criteria, 2. be older than 18 years old, 3. be patients of the health care areas mentioned above, and 4. be willing to participate in the study and to sign the informed consent form. Patients with mental illness, cognitive deficit (dementia, psychosis or mental disability) or other apparent condition that prevents understanding and completion of the questionnaire were excluded. Although retrospective data on infection rates in diabetic patients suggest that people with type 1 DM are at higher risk for infectious diseases in general, and death rates are similar to those of people with type 2 DM,this study focused on the latterfortwo main reasons. First, patients with type 1 DM are mostly children and young people and the prevalence of this type of diabetes is lower compared to type 2 DM, which leads to a lower number of patients seen in consultation and primary health care. Second, the study was conducted in the context of the COVID-19 pandemic and patients with type 2 DM were the most accessible population to be surveyed by the research team in primary care areas. The minimum sample size was calculated with the Soper software package for a multiple regression study, according to the desired probability level (α=0.05), the number of predictors in the model (18 predictors), the anticipated effect size (f2=0.15) and the desired statistical power level (1- β=0.80). The software suggested a minimum number of 118 participants; however, the final number was higher than the minimum required. Instruments Socio-demographic and health information A questionnaire was developed specifically for this study, where participants were asked to provide information about their sex, age, educational level, type of work, cohabitation, marital status, presence of chronic complications, presence of comorbidities, family or friends infected with COVID-19, and time since diagnosis with DM. Concern about COVID-19 contagion We used the COVID-19 contagion concern scale (PRECOVID-19) originally developed for the general population, which assesses worry about becoming infected with COVID-19 and its impact on people’s mood and ability to perform daily activities. In this study we used the version validated for Cuban patients with diabetes, which consists of 5 items. All items have 4 Likert-type response options, ranging from 1=never or rarely to 4=almost all the time. The PRE-COVID-19 has a unidimensional structure, where the total score is calculated by adding the scores of each of the 5 items. Higher scores indicate greater concern about becoming infected with COVID19. The reliability of the PRE-COVID-19 for this study was very good (ω=0.91). Blood glucose level Fasting blood glucose values were obtained from the patients’ clinical histories and from blood tests performed in the last three months in laboratories equipped for this purpose. Based on this, poor glycemic control was determined as fasting blood glucose greaterthan or equal to 7 mmol/L (126 mg/dl) in the last three months and good control as figures below this value. The criterion based on glycosylated hemoglobin (HbA1c) could not be used because it is not a test regularly available in the primary health care system where the survey was applied. Other control criteria using continuous glucose monitoring systems were not possible either, as they are not generally available for patients with DM living in Cuba. Procedure The questionnaire was applied by properly trained researchers, who complied with strict COVID-19 prevention health protocols, between the months of January and April 2021. The questionnaire was administered during patients’ visits to primary care centers or in their homes. During this period of time, the fight against COVID-19 in Cuba suffered some setbacks, characterized by an increase in the number of infected people, even higherthan that observed during the first stage of the disease, in 2020. Thus, during those dates, more than 64,414 positive diagnoses and 384 deaths were reported in the country. Participation was voluntary and without any financial compensation. Participants signed the informed consent form and were informed that they could withdraw from the study at any time. Similarly, the reliability of the data was guaranteed. The study protocol was approved by the Ethics Committee of theUniversidad Privada delNorte in Peru (registration number: 20213002). Data Analysis The frequencies and percentages of the categorical variables included in the model were examined. In the case of the outcome variable (concern about...
Facebook
TwitterAs of March 10, 2023, the state with the highest rate of COVID-19 cases was Rhode Island followed by Alaska. Around 103.9 million cases have been reported across the United States, with the states of California, Texas, and Florida reporting the highest numbers of infections.
From an epidemic to a pandemic The World Health Organization declared the COVID-19 outbreak as a pandemic on March 11, 2020. The term pandemic refers to multiple outbreaks of an infectious illness threatening multiple parts of the world at the same time; when the transmission is this widespread, it can no longer be traced back to the country where it originated. The number of COVID-19 cases worldwide is roughly 683 million, and it has affected almost every country in the world.
The symptoms and those who are most at risk Most people who contract the virus will suffer only mild symptoms, such as a cough, a cold, or a high temperature. However, in more severe cases, the infection can cause breathing difficulties and even pneumonia. Those at higher risk include older persons and people with pre-existing medical conditions, including diabetes, heart disease, and lung disease. Those aged 85 years and older have accounted for around 27 percent of all COVID deaths in the United States, although this age group makes up just two percent of the total population
Facebook
TwitterHeart conditions were the most common causes of death in Mexico in 2023. During that period, more than ******* people died in the North American country as a result from said conditions. Diabetes mellitus ranked second, with over ******* deaths registered that year. Obesity in MexicoObesity and being overweight can worsen many risk factors for developing heart conditions, prediabetes, type 2 diabetes, and gestational diabetes, which in the case of a COVID-19 infection can lead to a severe course of the disease. In 2020, Mexico was reported as having one of the largest overweight and/or obese population in Latin America, with ** percent of people in the country having a body mass index higher than 25. In 2022, obesity was announced as being one of the most common illnesses experienced in Mexico, with over ******* cases estimated. In a decade from now, it is predicted that about *** million children in Mexico will suffer from obesity. If estimations are correct, this North American country will belong to the world’s top 10 countries with the most obese children in 2030. Physical activity in MexicoIt is not only a matter of food intake. A 2023 survey found, for instance, that only **** percent of Mexican population practiced sports and physical activities in their free time, a figure that has decreased in comparison to 2013. Less than ** percent of the physically active Mexicans practice sports for fun. However, the vast majority were motivated by health reasons.
Facebook
TwitterBackground: Severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) Delta variant (B.1.617.2) has been responsible for the current increase in Coronavirus disease 2019 (COVID-19) infectivity rate worldwide. We compared the impact of the Delta variant and non-Delta variant on the COVID-19 outcomes in patients from Yogyakarta and Central Java provinces, Indonesia.Methods: In this cross-sectional study, we ascertained 161 patients, 69 with the Delta variant and 92 with the non-Delta variant. The Illumina MiSeq next-generation sequencer was used to perform the whole-genome sequences of SARS-CoV-2.Results: The mean age of patients with the Delta variant and the non-Delta variant was 27.3 ± 20.0 and 43.0 ± 20.9 (p = 3 × 10−6). The patients with Delta variant consisted of 23 males and 46 females, while the patients with the non-Delta variant involved 56 males and 36 females (p = 0.001). The Ct value of the Delta variant (18.4 ± 2.9) was significantly lower than that of the non-Delta variant (19.5 ± 3.8) (p = 0.043). There was no significant difference in the hospitalization and mortality of patients with Delta and non-Delta variants (p = 0.80 and 0.29, respectively). None of the prognostic factors were associated with the hospitalization, except diabetes with an OR of 3.6 (95% CI = 1.02–12.5; p = 0.036). Moreover, the patients with the following factors have been associated with higher mortality rate than the patients without the factors: age ≥65 years, obesity, diabetes, hypertension, and cardiovascular disease with the OR of 11 (95% CI = 3.4–36; p = 8 × 10−5), 27 (95% CI = 6.1–118; p = 1 × 10−5), 15.6 (95% CI = 5.3–46; p = 6 × 10−7), 12 (95% CI = 4–35.3; p = 1.2 × 10−5), and 6.8 (95% CI = 2.1–22.1; p = 0.003), respectively. Multivariate analysis showed that age ≥65 years, obesity, diabetes, and hypertension were the strong prognostic factors for the mortality of COVID-19 patients with the OR of 3.6 (95% CI = 0.58–21.9; p = 0.028), 16.6 (95% CI = 2.5–107.1; p = 0.003), 5.5 (95% CI = 1.3–23.7; p = 0.021), and 5.8 (95% CI = 1.02–32.8; p = 0.047), respectively.Conclusions: We show that the patients infected by the SARS-CoV-2 Delta variant have a lower Ct value than the patients infected by the non-Delta variant, implying that the Delta variant has a higher viral load, which might cause a more transmissible virus among humans. However, the Delta variant does not affect the COVID-19 outcomes in our patients. Our study also confirms that older age and comorbidity increase the mortality rate of patients with COVID-19.
Facebook
TwitterAs of March 10, 2023, the state with the highest number of COVID-19 cases was California. Almost 104 million cases have been reported across the United States, with the states of California, Texas, and Florida reporting the highest numbers.
From an epidemic to a pandemic The World Health Organization declared the COVID-19 outbreak a pandemic on March 11, 2020. The term pandemic refers to multiple outbreaks of an infectious illness threatening multiple parts of the world at the same time. When the transmission is this widespread, it can no longer be traced back to the country where it originated. The number of COVID-19 cases worldwide has now reached over 669 million.
The symptoms and those who are most at risk Most people who contract the virus will suffer only mild symptoms, such as a cough, a cold, or a high temperature. However, in more severe cases, the infection can cause breathing difficulties and even pneumonia. Those at higher risk include older persons and people with pre-existing medical conditions, including diabetes, heart disease, and lung disease. People aged 85 years and older have accounted for around 27 percent of all COVID-19 deaths in the United States, although this age group makes up just two percent of the U.S. population
Facebook
TwitterIn 2023, the leading causes of death in Canada were malignant neoplasms (cancer) and diseases of the heart. Together, these diseases accounted for around ** percent of all deaths in Canada that year. COVID-19 was the sixth leading cause of death in Canada in 2023 with *** percent of deaths. The leading causes of death in Canada In 2023, around ****** people in Canada died from cancer, making it by far the leading cause of death in the country. In comparison, an estimated ****** people died from diseases of the heart, while ****** died from accidents. In 2023, the death rate for diabetes mellitus was **** per 100,000 population, making it the seventh leading cause of death. Diabetes is a growing problem in Canada, with around ***** percent of the population diagnosed with the disease as of 2023. What is the deadliest form of cancer in Canada? In Canada, lung and bronchus cancer account for the largest share of cancer deaths, followed by colorectal cancer. In 2023, the death rate for lung and bronchus cancer was **** per 100,000 population, compared to **** deaths per 100,000 population for colorectal cancer. However, although lung and bronchus cancer are the deadliest cancers for both men and women in Canada, breast cancer is the second-deadliest cancer among women, accounting for **** percent of all cancer deaths. Colorectal cancer is the second most deadly cancer among men in Canada, followed by prostate cancer. In 2023, colorectal cancer accounted for around **** percent of all cancer deaths among men in Canada, while prostate cancer was responsible for **** percent of such deaths.
Facebook
TwitterBackgroundThe Omicron variant of SARS-CoV-2 is more highly infectious and transmissible than prior variants of concern. It was unclear which factors might have contributed to the alteration of COVID-19 cases and deaths during the Delta and Omicron variant periods. This study aimed to compare the COVID-19 average weekly infection fatality rate (AWIFR), investigate factors associated with COVID-19 AWIFR, and explore the factors linked to the increase in COVID-19 AWIFR between two periods of Delta and Omicron variants.Materials and methodsAn ecological study has been conducted among 110 countries over the first 12 weeks during two periods of Delta and Omicron variant dominance using open publicly available datasets. Our analysis included 102 countries in the Delta period and 107 countries in the Omicron period. Linear mixed-effects models and linear regression models were used to explore factors associated with the variation of AWIFR over Delta and Omicron periods.FindingsDuring the Delta period, the lower AWIFR was witnessed in countries with better government effectiveness index [β = −0.762, 95% CI (−1.238)–(−0.287)] and higher proportion of the people fully vaccinated [β = −0.385, 95% CI (−0.629)–(−0.141)]. In contrast, a higher burden of cardiovascular diseases was positively associated with AWIFR (β = 0.517, 95% CI 0.102–0.932). Over the Omicron period, while years lived with disability (YLD) caused by metabolism disorders (β = 0.843, 95% CI 0.486–1.2), the proportion of the population aged older than 65 years (β = 0.737, 95% CI 0.237–1.238) was positively associated with poorer AWIFR, and the high proportion of the population vaccinated with a booster dose [β = −0.321, 95% CI (−0.624)–(−0.018)] was linked with the better outcome. Over two periods of Delta and Omicron, the increase in government effectiveness index was associated with a decrease in AWIFR [β = −0.438, 95% CI (−0.750)–(−0.126)]; whereas, higher death rates caused by diabetes and kidney (β = 0.472, 95% CI 0.089–0.855) and percentage of population aged older than 65 years (β = 0.407, 95% CI 0.013–0.802) were associated with a significant increase in AWIFR.ConclusionThe COVID-19 infection fatality rates were strongly linked with the coverage of vaccination rate, effectiveness of government, and health burden related to chronic diseases. Therefore, proper policies for the improvement of vaccination coverage and support of vulnerable groups could substantially mitigate the burden of COVID-19.
Facebook
TwitterAccording to WHO Coronavirus disease (COVID-19) is an infectious disease caused by a newly discovered coronavirus. Most people infected with the COVID-19 virus will experience mild to moderate respiratory illness and recover without requiring special treatment. Older people and those with underlying medical problems like cardiovascular disease, diabetes, chronic respiratory disease, and cancer are more likely to develop serious illnesses.
Johns Hopkins University has made an excellent dashboard for tracking the spread of COVID-19. Data is extracted from the Johns Hopkins Github repository associated and made available here.
This dataset has daily level information on the number of confirmed cases, deaths and recovery cases from 2019 novel coronavirus. Please note that this is a time series data and so the number of cases on any given day is the cumulative number. The data is available from 22 Jan, 2020 and updated regularly. Github repository of this clean dataset is here
Filename is covid-19_cleaned_data.csv(updated) - Province/State- Province/State of the observations - Country/Region-Country of observations - Date- Last update - Confirmed - Cumulative number of confirmed cases till that date - Recovered - Cumulative number of recovered till that date - Deaths- Cumulative number of deaths till that date - Lat and Long - Coordinates
Some insights could be 1. Mortality rate over time 2. Exponential growth 3. Changes in the number of affected cases over time 4. The latest number of affected cases
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Overview
The COVID-19 Patient Recovery Dataset is a synthetic collection of anonymized records for around 70,000 COVID-19 patients. It aims to assist with classification tasks in machine learning and epidemiological research. The dataset includes detailed clinical and demographic information, such as symptoms, existing health issues, vaccination status, COVID-19 variants, treatment details, and outcomes related to recovery or mortality. This dataset is great for predicting patient recovery (recovered), mortality (death), disease severity (severity), or the need for intensive care (icu_admission) using algorithms like Logistic Regression, Random Forest, XGBoost, or Neural Networks. It also allows for exploratory data analysis (EDA), statistical modeling, and time-series studies to find patterns in COVID-19 outcomes.
The data is synthetic and reflects realistic trends found in public health data, based on sources like WHO reports. It ensures privacy and follows ethical guidelines. Dates are provided in Excel serial format, meaning 44447 corresponds to September 8, 2021, and can be converted to standard dates using Python’s datetime or Excel. With 70,000 records and 28 columns, this dataset serves as a valuable resource for data scientists, researchers, and students interested in health-related machine learning or pandemic trends.
Data Source and Collection
Source: Synthetic data based on public health patterns from sources like the World Health Organization (WHO). It includes placeholder URLs.
Collection Period: Simulated from early 2020 to mid-2022, covering the Alpha, Delta, and Omicron waves.
Number of Records: 70,000.
File Format: CSV, which works with Pandas, R, Excel, and more.
Data Quality Notes:
About 5% of the values are missing in fields like symptoms_2, symptoms_3, treatment_given_2, and date.
There are rare inconsistencies, such as between recovery/death flags and dates, which may need some preprocessing.
Unique, anonymized patient IDs.
| Column Name | Data Type |
|---|---|
| patient_id | String |
| country | String |
| region/state | String |
| date_reported | Integer |
| age | Integer |
| gender | String |
| comorbidities | String |
| symptoms_1 | String |
| symptoms_2 | String |
| symptoms_3 | String |
| severity | String |
| hospitalized | Integer |
| icu_admission | Integer |
| ventilator_support | Integer |
| vaccination_status | String |
| variant | String |
| treatment_given_1 | String |
| treatment_given_2 | String |
| days_to_recovery | Integer |
| recovered | Integer |
| death | Integer |
| date_of_recovery | Integer |
| date_of_death | Integer |
| tests_conducted | Integer |
| test_type | String |
| hospital_name | String |
| doctor_assigned | String |
| source_url | String |
Key Column Details
patient_id: Unique identifier (e.g., P000001).
country: Reporting country (e.g., India, USA, Brazil, Germany, China, Pakistan, South Africa, UK).
region/state: Sub-national region (e.g., Sindh, California, São Paulo, Beijing).
date_reported, date_of_recovery, date_of_death: Excel serial dates (convert using datetime(1899,12,30) + timedelta(days=value)).
age: Patient age (1–100 years).
gender: Male or Female.
comorbidities: Pre-existing conditions (e.g., Diabetes, Hypertension, Cancer, Heart Disease, Asthma, None).
symptoms_1, symptoms_2, symptoms_3: Reported symptoms (e.g., Cough, Fever, Fatigue, Loss of Smell, Sore Throat, or empty).
severity: Case severity (Mild, Moderate, Severe, Critical).
hospitalized, icu_admission, ventilator_support: Binary (1 = Yes, 0 = No).
vaccination_status: None, Partial, Full, or Booster.
variant: COVID-19 variant (Omicron, Delta, Alpha).
treatment_given_1, treatment_given_2: Treatments administered (e.g., Antibiotics, Remdesivir, Oxygen, Steroids, Paracetamol, or empty).
days_to_recovery: Days from report to recovery (5–30, or empty if not recovered).
recovered, death: Binary outcomes (1 = Yes, 0 = No; generally mutually exclusive).
tests_conducted: Number of tests (1–5).
test_type: PCR or Antigen.
hospital_name: Fictional hospital (e.g., Aga Khan, Mayo Clinic, NHS Trust).
doctor_assigned: Fictional doctor name (e.g., Dr. Smith, Dr. Müller).
source_url: Placeholder.
Summary Statistics
Total Patients: 70,000.
Age: Mean ~50 years, Min 1, Max 100, evenly distributed.
Gender: ~50% Male, ~50% Female.
Top Countries: USA (20%), India (18%), Brazil (15%), China (12%), Germany (10%).
Comorbidities: Diabetes (25%), Hypertension (20%), Cancer (15%), Heart Disease (15%), Asthma (10%), None (15%).
Severity: Mild (60%), Moderate (25%), Severe (10%), Critical (5%).
Recovery Rate: ~60% recovered (recovered=1), ~30% deceased (death=1), ~10% unresolved (both 0).
Vaccination: None (40%), Full (30%), Partial (15%), Booster (15%).
Variants: Omicron (50%), Delt...
Facebook
TwitterThe objective of this study was to compare the effect of diabetes and pathologies potentially related to diabetes on the risk of infection and death from COVID-19 among people from Highly-Developed-Country (HDC), including Italians, and immigrants from the High-Migratory-Pressure-Countries (HMPC). Among the population with diabetes, whose prevalence is known to be higher among immigrants, we compared the effect of body mass index among HDC and HMPC populations. A population-based cohort study was conducted, using population registries and routinely collected surveillance data. The population was stratified into HDC and HMPC, according to the place of birth; moreover, a focus was set on the South Asiatic population. Analyses restricted to the population with type-2 diabetes were performed. We reported incidence (IRR) and mortality rate ratios (MRR) and hazard ratios (HR) with 95% confidence interval (CI) to estimate the effect of diabetes on SARS-CoV-2 infection and COVID-19 mortality. Overall, IRR of infection and MRR from COVID-19 comparing HMPC with HDC group were 0.84 (95% CI 0.82–0.87) and 0.67 (95% CI 0.46–0.99), respectively. The effect of diabetes on the risk of infection and death from COVID-19 was slightly higher in the HMPC population than in the HDC population (HRs for infection: 1.37 95% CI 1.22–1.53 vs. 1.20 95% CI 1.14–1.25; HRs for mortality: 3.96 95% CI 1.82–8.60 vs. 1.71 95% CI 1.50–1.95, respectively). No substantial difference in the strength of the association was observed between obesity or other comorbidities and SARS-CoV-2 infection. Similarly for COVID-19 mortality, HRs for obesity (HRs: 18.92 95% CI 4.48–79.87 vs. 3.91 95% CI 2.69–5.69) were larger in HMPC than in the HDC population, but differences could be due to chance. Among the population with diabetes, the HMPC group showed similar incidence (IRR: 0.99 95% CI: 0.88–1.12) and mortality (MRR: 0.89 95% CI: 0.49–1.61) to that of HDC individuals. The effect of obesity on incidence was similar in both HDC and HMPC populations (HRs: 1.73 95% CI 1.41–2.11 among HDC vs. 1.41 95% CI 0.63–3.17 among HMPC), although the estimates were very imprecise. Despite a higher prevalence of diabetes and a stronger effect of diabetes on COVID-19 mortality in HMPC than in the HDC population, our cohort did not show an overall excess risk of COVID-19 mortality in immigrants.