Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.
The difficulties of death figures
This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.
Where are these numbers coming from?
The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.
The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.
In the Cook Islands in 2024, the population decreased by about 2.24 percent compared to the previous year, making it the country with the highest population decline rate in 2024. Of the 20 countries with the highest rate of population decline, the majority are island nations, where emigration rates are high (especially to Australia, New Zealand, and the United States), or they are located in Eastern Europe, which suffers from a combination of high emigration rates and low birth rates.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This is a dataset of the most highly populated city (if applicable) in a form easy to join with the COVID19 Global Forecasting (Week 1) dataset. You can see how to use it in this kernel
There are four columns. The first two correspond to the columns from the original COVID19 Global Forecasting (Week 1) dataset. The other two is the highest population density, at city level, for the given country/state. Note that some countries are very small and in those cases the population density reflects the entire country. Since the original dataset has a few cruise ships as well, I've added them there.
Thanks a lot to Kaggle for this competition that gave me the opportunity to look closely at some data and understand this problem better.
Summary: I believe that the square root of the population density should relate to the logistic growth factor of the SIR model. I think the SEIR model isn't applicable due to any intervention being too late for a fast-spreading virus like this, especially in places with dense populations.
After playing with the data provided in COVID19 Global Forecasting (Week 1) (and everything else online or media) a bit, one thing becomes clear. They have nothing to do with epidemiology. They reflect sociopolitical characteristics of a country/state and, more specifically, the reactivity and attitude towards testing.
The testing method used (PCR tests) means that what we measure could potentially be a proxy for the number of people infected during the last 3 weeks, i.e the growth (with lag). It's not how many people have been infected and recovered. Antibody or serology tests would measure that, and by using them, we could go back to normality faster... but those will arrive too late. Way earlier, China will have experimentally shown that it's safe to go back to normal as soon as your number of newly infected per day is close to zero.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F197482%2F429e0fdd7f1ce86eba882857ac7a735e%2Fcovid-summary.png?generation=1585072438685236&alt=media" alt="">
My view, as a person living in NYC, about this virus, is that by the time governments react to media pressure, to lockdown or even test, it's too late. In dense areas, everyone susceptible has already amble opportunities to be infected. Especially for a virus with 5-14 days lag between infections and symptoms, a period during which hosts spread it all over on subway, the conditions are hopeless. Active populations have already been exposed, mostly asymptomatic and recovered. Sensitive/older populations are more self-isolated/careful in affluent societies (maybe this isn't the case in North Italy). As the virus finishes exploring the active population, it starts penetrating the more isolated ones. At this point in time, the first fatalities happen. Then testing starts. Then the media and the lockdown. Lockdown seems overly effective because it coincides with the tail of the disease spread. It helps slow down the virus exploring the long-tail of sensitive population, and we should all contribute by doing it, but it doesn't cause the end of the disease. If it did, then as soon as people were back in the streets (see China), there would be repeated outbreaks.
Smart politicians will test a lot because it will make their condition look worse. It helps them demand more resources. At the same time, they will have a low rate of fatalities due to large denominator. They can take credit for managing well a disproportionally major crisis - in contrast to people who didn't test.
We were lucky this time. We, Westerners, have woken up to the potential of a pandemic. I'm sure we will give further resources for prevention. Additionally, we will be more open-minded, helping politicians to have more direct responses. We will also require them to be more responsible in their messages and reactions.
After entering Italy, the coronavirus (COVID-19) spread fast. The strict lockdown implemented by the government during the Spring 2020 helped to slow down the outbreak. However, in the following months the country had to face four new harsh waves of contagion. As of January 1, 2025, 198,638 deaths caused by COVID-19 were reported by the authorities, of which approximately 48.7 thousand in the region of Lombardy, 20.1 thousand in the region of Emilia-Romagna, and roughly 17.6 thousand in Veneto, the regions mostly hit. The total number of cases reported in the country reached over 26.9 million. The north of the country was mostly hit, and the region with the highest number of cases was Lombardy, which registered almost 4.4 million of them. The north-eastern region of Veneto counted about 2.9 million cases. Italy's death toll was one of the most tragic in the world. In the last months, however, the country saw the end to this terrible situation: as of November 2023, 85 percent of the total Italian population was fully vaccinated. For a global overview, visit Statista's webpage exclusively dedicated to coronavirus, its development, and its impact.
As of March 10, 2023, the death rate from COVID-19 in the state of New York was 397 per 100,000 people. New York is one of the states with the highest number of COVID-19 cases.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Coronavirus infection is currently the most important health topic. It surely tested and continues to test to the fullest extent the healthcare systems around the world. Although big progress is made in handling this pandemic, a tremendous number of questions are needed to be answered. I hereby present to you the local Bulgarian COVID-19 dataset with some context. It could be used as a comparator because it stands out compared to other countries and deserves analysis.
Context for Bulgarian population: Population - 6 948 445 Median age - 44.7 years Aged >65 - 20.801 % Aged >70 - 13.272%
Summary of the results: - first pandemic wave was weak, probably because of the early state of emergency (5 days after the first confirmed case). Whether this was a good decision or it was too early and just postpone the inevitable is debatable. -healthcare system collapses (probably due to delayed measures) in the second and third waves which resulted in Bulgaria gaining the top ranks for mortality and morbidity tables worldwide and in the EU. - low percentage of vaccinated people results in a prolonged epidemic and delaying the lifting of the preventive measures.
Some of the important moments that should be considered when interpreting the data: 08.03.2020 - Bulgaria confirmed its first two cases. The government issued a nationwide ban on closed-door public events (first lockdown); 13.03.2020- after 16 reported cases in one day, Bulgaria declared a state of emergency for one month until 13.04.2020. Schools, shopping centres, cinemas, restaurants, and other places of business were closed. All sports events were suspended. Only supermarkets, food markets, pharmacies, banks, and gas stations remain open. 03.04.2020 - The National Assembly approved the government's proposal to extend the state of emergency by one month until 13.05.2020; 14.05.2020 - the national emergency was lifted, and in its place was declared a state of an emergency epidemic situation. Schools and daycares remain closed, as well as shopping centers and indoor restaurants; 18.05.2020 - Shopping malls and fitness centers opened; 01.06.2020 - Restaurants and gaming halls opened; 10.07.2020 - discos and bars are closed, the sports events are without an audience; 29.10.2020 - High school and college students are transitioning to online learning; 27.11.2020 - the whole education is online, restaurants, nightclubs, bars, and discos are closed (second lockdown 27.11 - 21.12); 05.12.2020 - the 14-day mortality rate is the highest in the world; 16.01.2021 - some of the students went back to school; 01.03.2021 - restaurants and casinos opened; 22.03.2021 - restaurants, shopping malls, fitness centers, and schools are closed (third lockdown for 10 days - 22.03 - 31.03); 19.04.2021 - children daycare facilities, fitness centers, and nightclubs are opened;
This dataset consists of 447 rows with 29 columns and covers the period 08.03.2020 - 28.05.2021. In the beginning, there are some missing values until the proper statistical report was established.
A publication proposal is sent to anyone who wishes to collaborate. Based on the results and the value of the findings and the relevance of the topic it is expected to publish: - in a local journal (guaranteed); - in a SCOPUS journal (highly probable); - in an IF journal (if the results are really insightful).
The topics could be, but not limited to: - descriptive analysis of the pandemic outbreak in the country; - prediction of the pandemic or the vaccination rate; - discussion about the numbers compared to other countries/world; - discussion about the government decisions; - estimating cut-off values for step-down or step-up of the restrictions.
If you find an error, have a question, or wish to make a suggestion, I encourage you to reach me.
The coronavirus pandemic had a significant impact on luggage sales value in the United States. In 2020, U.S. retail luggage sales declined by 59.7 percent in comparison to the previous year.
COVID-19 impact on luggage sales
The coronavirus (COVID-19) pandemic, commencing at the beginning of spring 2020, changed the way consumers shopped and travelled almost immediately. In an attempt to control the spread of the pandemic, several governments across the globe put in place strict shopping rules, curfews, and travel bans. In the United States, 77 percent of consumers reported that they stayed at home more, and 56 percent states they travelled less. It is due to these reasons why luggage sales during the pandemic dropped. Backpacks and handbags can be used in other more casual situations compared to luggage, which is primarily used during travel. In 2020, the global luggage market was valued at only 16 billion U.S. dollars, a steep decrease from the previous year.
The global luggage market
As more of the population gets vaccinated and adheres to preventative measures, governments worldwide begin opening up non-essential retail stores and their borders. Samsonite, the world’s leading luggage producer, had a steep decrease in revenue during the pandemic. In 2020, their revenue was down by more than 50 percent compared to the previous year. Fortunately, this trend is not expected to continue as consumers are itching to go travelling and shopping again. In fact, the global luggage market is expected to take advantage of this. Celebrities such as Harry Styles and Tyler, the Creator are already showing off luggage as part of their personal style in this post-pandemic era. By 2024, the global luggage market is expected to fully recover, and to exceed pre-pandemic values.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundDecades of steady improvements in life expectancy in Europe slowed down from around 2011, well before the COVID-19 pandemic, for reasons which remain disputed. We aimed to assess how changes in risk factors and cause-specific death rates in different European countries related to changes in life expectancy in those countries before and during the COVID-19 pandemic.MethodsWe used data and methods from the Global Burden of Diseases, Injuries, and Risk Factors Study 2021 to compare changes in life expectancy at birth, causes of death, and population exposure to risk factors in 16 European Economic Area countries (Austria, Belgium, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, the Netherlands, Norway, Portugal, Spain, and Sweden) and the four UK nations (England, Northern Ireland, Scotland, and Wales) for three time periods: 1990–2011, 2011–19, and 2019–21. Changes in life expectancy and causes of death were estimated with an established life expectancy cause-specific decomposition method, and compared with summary exposure values of risk factors for the major causes of death influencing life expectancy.FindingsAll countries showed mean annual improvements in life expectancy in both 1990–2011 (overall mean 0·23 years [95% uncertainty interval [UI] 0·23 to 0·24]) and 2011–19 (overall mean 0·15 years [0·13 to 0·16]). The rate of improvement was lower in 2011–19 than in 1990–2011 in all countries except for Norway, where the mean annual increase in life expectancy rose from 0·21 years (95% UI 0·20 to 0·22) in 1990–2011 to 0·23 years (0·21 to 0·26) in 2011–19 (difference of 0·03 years). In other countries, the difference in mean annual improvement between these periods ranged from –0·01 years in Iceland (0·19 years [95% UI 0·16 to 0·21] vs 0·18 years [0·09 to 0·26]), to –0·18 years in England (0·25 years [0·24 to 0·25] vs 0·07 years [0·06 to 0·08]). In 2019–21, there was an overall decrease in mean annual life expectancy across all countries (overall mean –0·18 years [95% UI –0·22 to –0·13]), with all countries having an absolute fall in life expectancy except for Ireland, Iceland, Sweden, Norway, and Denmark, which showed marginal improvement in life expectancy, and Belgium, which showed no change in life expectancy. Across countries, the causes of death responsible for the largest improvements in life expectancy from 1990 to 2011 were cardiovascular diseases and neoplasms. Deaths from cardiovascular diseases were the primary driver of reductions in life expectancy improvements during 2011–19, and deaths from respiratory infections and other COVID-19 pandemic-related outcomes were responsible for the decreases in life expectancy during 2019–21. Deaths from cardiovascular diseases and neoplasms in 2019 were attributable to high systolic blood pressure, dietary risks, tobacco smoke, high LDL cholesterol, high BMI, occupational risks, high alcohol use, and other risks including low physical activity. Exposure to these major risk factors differed by country, with trends of increasing exposure to high BMI and decreasing exposure to tobacco smoke observed in all countries during 1990–2021.InterpretationThe countries that best maintained improvements in life expectancy after 2011 (Norway, Iceland, Belgium, Denmark, and Sweden) did so through better maintenance of reductions in mortality from cardiovascular diseases and neoplasms, underpinned by decreased exposures to major risks, possibly mitigated by government policies. The continued improvements in life expectancy in five countries during 2019–21 indicate that these countries were better prepared to withstand the COVID-19 pandemic. By contrast, countries with the greatest slowdown in life expectancy improvements after 2011 went on to have some of the largest decreases in life expectancy in 2019–21. These findings suggest that government policies that improve population health also build resilience to future shocks. Such policies include reducing population exposure to major upstream risks for cardiovascular diseases and neoplasms, such as harmful diets and low physical activity, tackling the commercial determinants of poor health, and ensuring access to affordable health services.
Between the beginning of January 2020 and June 14, 2023, of the 1,134,641 deaths caused by COVID-19 in the United States, around 307,169 had occurred among those aged 85 years and older. This statistic shows the number of coronavirus disease 2019 (COVID-19) deaths in the U.S. from January 2020 to June 2023, by age.
Rank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global antiviral face masks market size is projected to grow significantly from $2.5 billion in 2023 to reach $5.6 billion by 2032, at a compound annual growth rate (CAGR) of 9.1%. The primary growth factor driving this market is the increasing awareness and need for infection control, particularly in the wake of pandemics such as COVID-19. The adoption of antiviral face masks has surged due to heightened concerns over personal hygiene and public health, which has led to an unprecedented demand.
One of the principal growth drivers of the antiviral face masks market is the heightened awareness about airborne diseases and the increasing frequency of pandemics. The COVID-19 pandemic served as a stark reminder of the need for protective health measures, pushing both governments and individuals to prioritize infection control. The effectiveness of antiviral face masks in mitigating the spread of viruses has been widely recognized, leading to increased adoption not only in healthcare settings but also among the general public. Moreover, the growing geriatric population, which is more susceptible to infections, further amplifies the demand for antiviral face masks.
Technological advancements in antiviral face masks also serve as a significant growth factor. Innovations in materials and mask design have led to the development of masks that offer enhanced protection and comfort. For instance, masks with antimicrobial coatings and multi-layered structures are now available, providing better filtration and longer usage duration. The integration of nanotechnology and the incorporation of self-disinfecting materials are not only improving the efficacy of these masks but also driving market growth by attracting a more health-conscious consumer base.
Government regulations and initiatives aimed at controlling infectious diseases are also contributing to the market’s growth. Various governments have mandated the use of face masks in public spaces, especially during outbreaks of contagious diseases. Additionally, initiatives to stockpile antiviral face masks for emergency preparedness are boosting market demand. Public health campaigns and subsidies for mask manufacturers further facilitate market expansion by ensuring a steady supply and affordability of high-quality antiviral face masks.
Regionally, the Asia Pacific market is expected to witness the highest growth, driven by its large population and the frequent outbreaks of infectious diseases in the region. North America and Europe are also significant markets due to the well-established healthcare infrastructure and high awareness levels among the population. In contrast, the Middle East & Africa and Latin America are emerging markets with considerable growth potential, given the increasing investments in healthcare infrastructure and rising awareness about personal protection and hygiene.
The antiviral face masks market can be segmented by product type into disposable and reusable masks. Disposable masks dominate the market due to their convenience and widespread use in healthcare settings. These masks, often made of polypropylene, offer high filtration efficiency and are designed for single use, reducing the risk of contamination. Their affordability and ease of use make them a popular choice among consumers who prefer the convenience of disposing of masks after each use. The COVID-19 pandemic saw an exponential increase in the demand for disposable masks, and this trend is likely to continue due to ongoing health concerns.
Reusable masks, on the other hand, are gaining traction due to their environmental benefits and cost-effectiveness over the long term. These masks are typically made from materials such as cotton or polyester and are designed to be washed and reused multiple times. Innovations in reusable masks, such as the incorporation of antiviral coatings and advanced filtration layers, have enhanced their protective capabilities, making them a viable alternative to disposable masks. Consumers concerned about sustainability and environmental impact are increasingly opting for reusable masks.
Both types of masks have their own set of advantages and specific use cases. While disposable masks are preferred in medical and high-risk environments due to their high level of protection and single-use nature, reusable masks are more popular among the general public for everyday use. The choice between disposable and reusable masks often comes down to the balance between convenience, cost, and environmental impact, wit
As of November 11, 2022, almost 96.8 million confirmed cases of COVID-19 had been reported by the World Health Organization (WHO) for the United States. The pandemic has impacted all 50 states, with vast numbers of cases recorded in California, Texas, and Florida.
The coronavirus in the U.S. The coronavirus hit the United States in mid-March 2020, and cases started to soar at an alarming rate. The country has performed a high number of COVID-19 tests, which is a necessary step to manage the outbreak, but new coronavirus cases in the U.S. have spiked several times since the pandemic began, most notably at the end of 2022. However, restrictions in many states have been eased as new cases have declined.
The origin of the coronavirus In December 2019, officials in Wuhan, China, were the first to report cases of pneumonia with an unknown cause. A new human coronavirus – SARS-CoV-2 – has since been discovered, and COVID-19 is the infectious disease it causes. All available evidence to date suggests that COVID-19 is a zoonotic disease, which means it can spread from animals to humans. The WHO says transmission is likely to have happened through an animal that is handled by humans. Researchers do not support the theory that the virus was developed in a laboratory.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Age-standardised mortality rates for deaths involving coronavirus (COVID-19), non-COVID-19 deaths and all deaths by vaccination status, broken down by age group.
According to latest figures, the Chinese population decreased by 1.39 million to around 1.408 billion people in 2024. After decades of rapid growth, China arrived at the turning point of its demographic development in 2022, which was earlier than expected. The annual population decrease is estimated to remain at moderate levels until around 2030 but to accelerate thereafter. Population development in China China had for a long time been the country with the largest population worldwide, but according to UN estimates, it has been overtaken by India in 2023. As the population in India is still growing, the country is very likely to remain being home of the largest population on earth in the near future. Due to several mechanisms put into place by the Chinese government as well as changing circumstances in the working and social environment of the Chinese people, population growth has subsided over the past decades, displaying an annual population growth rate of -0.1 percent in 2024. Nevertheless, compared to the world population in total, China held a share of about 17 percent of the overall global population in 2024. China's aging population In terms of demographic developments, the birth control efforts of the Chinese government had considerable effects on the demographic pyramid in China. Upon closer examination of the age distribution, a clear trend of an aging population becomes visible. In order to curb the negative effects of an aging population, the Chinese government abolished the one-child policy in 2015, which had been in effect since 1979, and introduced a three-child policy in May 2021. However, many Chinese parents nowadays are reluctant to have a second or third child, as is the case in most of the developed countries in the world. The number of births in China varied in the years following the abolishment of the one-child policy, but did not increase considerably. Among the reasons most prominent for parents not having more children are the rising living costs and costs for child care, growing work pressure, a growing trend towards self-realization and individualism, and changing social behaviors.
The statistic shows the total population of India from 2019 to 2029. In 2023, the estimated total population in India amounted to approximately 1.43 billion people.
Total population in India
India currently has the second-largest population in the world and is projected to overtake top-ranking China within forty years. Its residents comprise more than one-seventh of the entire world’s population, and despite a slowly decreasing fertility rate (which still exceeds the replacement rate and keeps the median age of the population relatively low), an increasing life expectancy adds to an expanding population. In comparison with other countries whose populations are decreasing, such as Japan, India has a relatively small share of aged population, which indicates the probability of lower death rates and higher retention of the existing population.
With a land mass of less than half that of the United States and a population almost four times greater, India has recognized potential problems of its growing population. Government attempts to implement family planning programs have achieved varying degrees of success. Initiatives such as sterilization programs in the 1970s have been blamed for creating general antipathy to family planning, but the combined efforts of various family planning and contraception programs have helped halve fertility rates since the 1960s. The population growth rate has correspondingly shrunk as well, but has not yet reached less than one percent growth per year.
As home to thousands of ethnic groups, hundreds of languages, and numerous religions, a cohesive and broadly-supported effort to reduce population growth is difficult to create. Despite that, India is one country to watch in coming years. It is also a growing economic power; among other measures, its GDP per capita was expected to triple between 2003 and 2013 and was listed as the third-ranked country for its share of the global gross domestic product.
In 2023, it was found that 22.4 percent of men in the United States participated in sports, exercise, and recreational activities daily, compared to only 19.9 percent of women. These statistics highlight a notable difference in the daily engagement of different genders in sporting activities. Other factors influencing this participation include socioeconomic status, age, disability, ethnicity, geography, personal interests, and societal expectations. These barriers can prevent individuals from having equal access to, and opportunities for, sport participation. What role does gender play in sports participation? Historically, many sports have been segregated by gender, with men and women participating in separate leagues and competitions. This segregation has led to a lack of opportunities for women and girls to participate in sports at the same level as men and boys. Additionally, societal attitudes and stereotypes about gender can discourage women and girls from participating in sports or limit their access to resources and support for their athletic pursuits. This often results in fewer women and girls participating in sports and a lack of representation of women and girls in leadership roles within the sports industry. However, in recent years, there has been an increased focus on promoting gender equality in sports and providing equal opportunities for men and women to participate in sports. This includes initiatives to increase funding and support for women's sports, as well as efforts to challenge gender stereotypes and discrimination in the athletic world. Impact of the COVID-19 pandemic on sports participation The COVID-19 pandemic led to many people spending more time at home due to lockdowns, remote work, and school closures. This resulted in many people having more time to engage in sports and other physical activities, as seen in the share of the U.S. population engaged in sports and exercise peaking in 2020. With gyms and sports facilities closed or with limited access, many people turned to home-based workouts and other activities. This included activities such as running, cycling, and strength training that could all be done at home with minimal equipment. Online classes and streaming services also saw an increase in usage during the pandemic, providing people with access to a wide range of workout options and fitness programs.
As of October 2024, there were 133.89 million full-time employees in the United States. This is a slight decrease from the previous month, when there were 134.15 million full-time employees. The impact COVID-19 on employment In December 2019, the COVID-19 virus began its spread across the globe. Since being classified as a pandemic, the virus caused a global health crisis that has taken the lives of millions of people worldwide. The COVID-19 pandemic changed many facets of society, most significantly, the economy. In the first years, many businesses across all industries were forced to shut down, with large numbers of employees being laid off. The economy continued its recovery in 2022 with the nationwide unemployment rate returning to a more normal 3.4 percent as of April 2023. Unemployment benefits Because so many people in the United States lost their jobs, record numbers of individuals applied for unemployment insurance for the first time. As an early response to this nation-wide upheaval, the government issued relief checks and extended the benefits paid by unemployment insurance. In May 2020, the amount of unemployment insurance benefits paid rose to 23.73 billion U.S. dollars. As of December 2022, this value had declined to 2.24 billion U.S. dollars.
Internet sales have played an increasingly significant role in retailing. In 2025, e-commerce accounted for over ***percent of retail sales worldwide. Forecasts indicate that by 2030, the online segment will make up ***percent of total global retail sales. Retail e-commerce Online shopping has grown steadily in popularity in recent years. In 2024, global e-commerce sales amounted to over ************ U.S. dollars, a figure expected to approach * trillion U.S. dollars by 2030. Digital development boomed during the COVID-19 pandemic, generating unprecedented e-commerce growth in various economies across the globe. This trend correlates strongly with the constantly improving online access, especially in "mobile-first" online communities, which have long struggled with traditional commercial fixed broadband connections due to financial or infrastructure constraints but enjoy the advantages of cheap mobile broadband connections. M-commerce on the rise The order share of online shopping via smartphones and tablets now outperforms traditional e-commerce via desktop computers. As such, e-retailers around the world have caught up in mobile e-commerce sales. Online shopping via smartphones is particularly prominent in Asia. By the end of 2023, South Korea was the top digital market based on the percentage of the population that had purchased something by phone, with nearly ** percent having made a weekly mobile purchase. Malaysia, UAE, and Turkey completed the top of the ranking.
The population of dogs kept as pets in the United Kingdom (UK) was estimated at **** million in 2024, which is an increase of around *** million from the previous year. Dog ownership in the UK As the population of dogs grew in the United Kingdom over the last decade, so did the share of dog-owning households in the UK. Between 2019/20 and 2021/22, the share of UK households owning a pet dog jumped from ** percent to around ** percent. This sudden increase could be attributed to the coronavirus pandemic and the resulting government-imposed quarantines that forced people to stay at home. UK households own pet dogs from various breeds. However, Labrador Retrievers were by far the most popular dog breed in the UK, with around ****** registrations in 2020. French Bulldogs were also equally popular with ****** registrations in that year. How much does it cost to own a dog in the UK? Consumer spending on pets and related products went up significantly in the United Kingdom between 2005 and 2020, with expenditure levels peaking at **** billion British pounds in 2020. The annual cost of keeping a pet dog in the UK amounted to an estimated ***** GBP as of 2022. Broken down by expense type, boarding for two weeks cost approximately *** GBP per year and is the costliest part of owning a pet dog, followed by pet insurance estimated at around *** GBP annually.
Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.
The difficulties of death figures
This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.
Where are these numbers coming from?
The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.