The raster datasets in this data release are maps of soil surface properties that were used in analyzing different approaches for digital soil mapping. They include maps of soil pH, electrical conductivity, soil organic matter, and soil summed fine and very fine sand contents that were created using both 2D and 3D modeling strategies. For each property a map was created using both 2D and 3D approaches to compare the mapped results.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Summary
This repository contains images, 3D animated spaces, 2D perceptual maps with GMM, and mimicry ring lists for heliconiine butterflies complementing the analyses presented in this research paper: "Doré et al., 2025 - Perceptual maps reveal rampant convergence in butterfly wing patterns across the Neotropics. in prep.".
Abstract
In 1879, Fritz Müller formulated the first mathematical evolutionary model to explain mutualistic mimicry between coexisting defended prey. Yet, the degree to which local mimicry drives the structure of prey aposematic signals at continental scale remains unclear, because the perception of pattern similarity has never been assessed at large spatial scale. Here, we implement a Citizen Science survey to quantify and analyze the structure of perceived variation in the wing patterns of heliconiine butterflies (Nymphalidae: Heliconiini) throughout the entire Neotropics. Despite a continuum of perceived wing patterns at the continental scale, we show that the convergence of sympatric species into discrete mimicry rings is ubiquitous among communities. These results expand Müller’s historical predictions by supporting the rampant convergence of prey signals across an entire continent.
Contents
This repository contains three folders:
"3D_maps" contains the animated 3D perceptual spaces of heliconiine wing patterns for the Citizen Science dataset (N = 432) and the Local reference for the five local communities highlighted in the article.
"Clustering" contains the 2D perceptual maps and associated lists of mimicry rings built for each of the five local communities, for different level of clustering from GMM (K from 5 to 10).
"Images" contains the 432 images of dorsal wing patterns of heliconiine butterflies used in the online survey (https://memometic.cleverapps.io/) designed for this study.
How to cite
Please cite this research article as:
Doré, M., Pérochon, E., Aubier, T.G., Le Poul, Y., Joron, M., Elias, M., 2025. Perceptual maps reveal rampant convergence in butterfly wing patterns across the Neotropics. in prep. https://doi.org/TBA
Associated ressources
The source codes for the analyses carried out in the study are available on GitHub. The occurrences data and distribution maps used in this study are publicly available from Zenodo: Occurrences data at https://doi.org/10.5281/zenodo.10906853; Distribution maps at https://doi.org/10.5281/zenodo.10903661.
The online Citizen Science survey on the perception of mimicry in wing color patterns of heliconiine butterflies is temporary available at https://memometic.cleverapps.io/.Source code for the online Citizen Science survey are accessible on GitHub.
https://www.promarketreports.com/privacy-policyhttps://www.promarketreports.com/privacy-policy
The global 3D mapping and modeling market is expected to grow significantly in the next few years as demand increases for detailed and accurate representations of physical environments in three-dimensional space. Estimated to be valued at USD 38.62 billion in the year 2025, the market was expected to grow at a CAGR of 14.5% from 2025 to 2033 and was estimated to reach an amount of USD 90.26 billion by the end of 2033. The high growth rate is because of improvement in advanced technologies with the development of high-resolution sensors and methods of photogrammetry that make possible higher-resolution realistic and immersive 3D models.Key trends in the market are the adoption of virtual and augmented reality (VR/AR) applications, 3D mapping with smart city infrastructure, and increased architecture, engineering, and construction utilization of 3D models. Other factors are driving the growing adoption of cloud-based 3D mapping and modeling solutions. The solutions promise scalability, cost-effectiveness, and easy access to 3D data, thus appealing to business and organizations of all sizes. Recent developments include: Jun 2023: Nomoko (Switzerland), a leading provider of real-world 3D data technology, announced that it has joined the Overture Maps Foundation, a non-profit organization committed to fostering collaboration and innovation in the geospatial domain. Nomoko will collaborate with Meta, Amazon Web Services (AWS), TomTom, and Microsoft, to create interoperable, accessible 3D datasets, leveraging its real-world 3D modeling capabilities., May 2023: The Sanborn Map Company (Sanborn), an authority in 3D models, announced the development of a powerful new tool, the Digital Twin Base Map. This innovative technology sets a new standard for urban analysis, implementation of Digital Cities, navigation, and planning with a fundamental transformation from a 2D map to a 3D environment. The Digital Twin Base Map is a high-resolution 3D map providing unprecedented detail and accuracy., Feb 2023: Bluesky Geospatial launched the MetroVista, a 3D aerial mapping program in the USA. The service employs a hybrid imaging-Lidar airborne sensor to capture highly detailed 3D data, including 360-degree views of buildings and street-level features, in urban areas to create digital twins, visualizations, and simulations., Feb 2023: Esri, a leading global provider of geographic information system (GIS), location intelligence, and mapping solutions, released new ArcGIS Reality Software to capture the world in 3D. ArcGIS Reality enables site, city, and country-wide 3D mapping for digital twins. These 3D models and high-resolution maps allow organizations to analyze and interact with a digital world, accurately showing their locations and situations., Jan 2023: Strava, a subscription-based fitness platform, announced the acquisition of FATMAP, a 3D mapping platform, to integrate into its app. The acquisition adds FATMAP's mountain-focused maps to Strava's platform, combining with the data already within Strava's products, including city and suburban areas for runners and other fitness enthusiasts., Jan 2023: The 3D mapping platform FATMAP is acquired by Strava. FATMAP applies the concept of 3D visualization specifically for people who like mountain sports like skiing and hiking., Jan 2022: GeoScience Limited (the UK) announced receiving funding from Deep Digital Cornwall (DDC) to develop a new digital heat flow map. The DDC project has received grant funding from the European Regional Development Fund. This study aims to model the heat flow in the region's shallower geothermal resources to promote its utilization in low-carbon heating. GeoScience Ltd wants to create a more robust 3D model of the Cornwall subsurface temperature through additional boreholes and more sophisticated modeling techniques., Aug 2022: In order to create and explore the system's possibilities, CGTrader worked with the online retailer of dietary supplements Hello100. The system has the ability to scale up the generation of more models, and it has enhanced and improved Hello100's appearance on Amazon Marketplace.. Key drivers for this market are: The demand for 3D maps and models is growing rapidly across various industries, including architecture, engineering, and construction (AEC), manufacturing, transportation, and healthcare. Advances in hardware, software, and data acquisition techniques are making it possible to create more accurate, detailed, and realistic 3D maps and models. Digital twins, which are virtual representations of real-world assets or systems, are driving the demand for 3D mapping and modeling technologies for the creation of accurate and up-to-date digital representations.
. Potential restraints include: The acquisition and processing of 3D data can be expensive, especially for large-scale projects. There is a lack of standardization in the 3D mapping modeling industry, which can make it difficult to share and exchange data between different software and systems. There is a shortage of skilled professionals who are able to create and use 3D maps and models effectively.. Notable trends are: 3D mapping and modeling technologies are becoming essential for a wide range of applications, including urban planning, architecture, construction, environmental management, and gaming. Advancements in hardware, software, and data acquisition techniques are enabling the creation of more accurate, detailed, and realistic 3D maps and models. Digital twins, which are virtual representations of real-world assets or systems, are driving the demand for 3D mapping and modeling technologies for the creation of accurate and up-to-date digital representations..
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This work presents datasets that can be used for getting a good understanding of an essential geoscience content knowledge that describe earth's coordinate systems. This include coordinate system used for spherical/spheroidal earth with latitudes and longitudes and their subsequent transformations to 2d maps on a variety of media (paper as well as digital) using the process of map projections. The datasets include PDF documents that are embedded with 3d models, animations and mathematical equations. The dataset has separate PDF documents for geographic (for spherical earth) and projected (2d) coordinate systems. Additionally, the data set include individual 3d models that can be used in various digital systems (including apps) and the animations in mp4 format that can be watched on most of the modern digital devices.
DEEPEN stands for DE-risking Exploration of geothermal Plays in magmatic ENvironments. Part of the DEEPEN project involved developing and testing a methodology for a 3D play fairway analysis (PFA) for multiple play types (conventional hydrothermal, superhot EGS, and supercritical). This was tested using new and existing geoscientific exploration datasets at Newberry Volcano. This GDR submission includes images, data, and models related to the 3D favorability and uncertainty models and the 2D favorability and uncertainty maps. The DEEPEN PFA Methodology is based on the method proposed by Poux et al. (2020), which uses the Leapfrog Geothermal software with the Edge extension to conduct PFA in 3D. This method uses all available data to build a 3D geodata model which can be broken down into smaller blocks and analyzed with advanced geostatistical methods. Each data set is imported into a 3D model in Leapfrog and divided into smaller blocks. Conditional queries can then be used to assign each block an index value which conditionally ranks each block's favorability, from 0-5 with 5 being most favorable, for each model (e.g., lithologic, seismic, magnetic, structural). The values between 0-5 assigned to each block are referred to as index values. The final step of the process is to combine all the index models to create a favorability index. This involves multiplying each index model by a given weight and then summing the resulting values. The DEEPEN PFA Methodology follows this approach, but split up by the specific geologic components of each play type. These components are defined as follows for each magmatic play type: 1. Conventional hydrothermal plays in magmatic environments: Heat, fluid, and permeability 2. Superhot EGS plays: Heat, thermal insulation, and producibility (the ability to create and sustain fractures suitable for and EGS reservoir) 3. Supercritical plays: Heat, supercritical fluid, pressure seal, and producibility (the proper permeability and pressure conditions to allow production of supercritical fluid) More information on these components and their development can be found in Kolker et al., 2022. For the purposes of subsurface imaging, it is easier to detect a permeable fluid-filled reservoir than it is to detect separate fluid and permeability components. Therefore, in this analysis, we combine fluid and permeability for conventional hydrothermal plays, and supercritical fluid and producibility for supercritical plays. More information on this process is described in the following sections. We also project the 3D favorability volumes onto 2D surfaces for simplified joint interpretation, and we incorporate an uncertainty component. Uncertainty was modeled using the best approach for the dataset in question, for the datasets where we had enough information to do so. Identifying which subsurface parameters are the least resolved can help qualify current PFA results and focus future efforts in data collection. Where possible, the resulting uncertainty models/indices were weighted using the same weights applied to the respective datasets, and summed, following the PFA methodology above, but for uncertainty. There are two different versions of the Leapfrog model and associated favorability models: - v1.0: The first release in June 2023 - v2.1: The second release, with improvements made to the earthquake catalog (included additional identified events, removed duplicate events), to the temperature model (fixed a deep BHT), and to the index models (updated the seismicity-heat source index models for supercritical and EGS, and the resistivity-insulation index models for all three play types). Also uses the jet color map rather than the magma color map for improved interpretability. - v2.1.1: Updated to include v2.0 uncertainty results (see below for uncertainty model versions) There are two different versions of the associated uncertainty models: - v1.0: The first release in June 2023 - v2.0: The second release, with improvements made to the temperature and fault uncertainty models. ** Note that this submission is deprecated and that a newer submission, linked below and titled "DEEPEN Final 3D PFA Favorability Models and 2D Favorability Maps at Newberry Volcano" contains the final versions of these resources. **
This digital data release presents contour data from multiple subsurface geologic horizons as presented in previously published summaries of the regional subsurface configuration of the Michigan and Illinois Basins. The original maps that served as the source of the digital data within this geodatabase are from the Geological Society of America’s Decade of North American Geology project series, “The Geology of North America” volume D-2, chapter 13 “The Michigan Basin” and chapter 14 “Illinois Basin Region”. Contour maps in the original published chapters were generated from geophysical well logs (generally gamma-ray) and adapted from previously published contour maps. The published contour maps illustrated the distribution sedimentary strata within the Illinois and Michigan Basin in the context of the broad 1st order supercycles of L.L. Sloss including the Sauk, Tippecanoe, Kaskaskia, Absaroka, Zuni, and Tejas supersequences. Because these maps represent time-transgressive surfaces, contours frequently delineate the composite of multiple named sedimentary formations at once. Structure contour maps on the top of the Precambrian basement surface in both the Michigan and Illinois basins illustrate the general structural geometry which undergirds the sedimentary cover. Isopach maps of the Sauk 2 and 3, Tippecanoe 1 and 2, Kaskaskia 1 and 2, Absaroka, and Zuni sequences illustrate the broad distribution of sedimentary units in the Michigan Basin, as do isopach maps of the Sauk, Upper Sauk, Tippecanoe 1 and 2, Lower Kaskaskia 1, Upper Kaskaskia 1-Lower Kaskaskia 2, Kaskaskia 2, and Absaroka supersequences in the Illinois Basins. Isopach contours and structure contours were formatted and attributed as GIS data sets for use in digital form as part of U.S. Geological Survey’s ongoing effort to inventory, catalog, and release subsurface geologic data in geospatial form. This effort is part of a broad directive to develop 2D and 3D geologic information at detailed, national, and continental scales. This data approximates, but does not strictly follow the USGS National Cooperative Geologic Mapping Program's GeMS data structure schema for geologic maps. Structure contour lines and isopach contours for each supersequence are stored within separate “IsoValueLine” feature classes. These are distributed within a geographic information system geodatabase and are also saved as shapefiles. Contour data is provided in both feet and meters to maintain consistency with the original publication and for ease of use. Nonspatial tables define the data sources used, define terms used in the dataset, and describe the geologic units referenced herein. A tabular data dictionary describes the entity and attribute information for all attributes of the geospatial data and accompanying nonspatial tables.
The National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territoriesGeographic Extent: The Contiguous United States, Hawaii, portions of Alaska, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: USGSUpdate Frequency: AnnualPublication Date: July 2022This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not. Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute.Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map.Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
The National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territoriesGeographic Extent: The Contiguous United States, Hawaii, portions of Alaska, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: USGSUpdate Frequency: AnnualPublication Date: July 2022This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not. Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute.Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map.Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
The proposed 2D-3D FCN ensemble is constructed in two phases as shown in Fig. 1. In Phase I, the 2D FCN and 3D FCN architectures are adapted to the specific dataset using a Multiobjective Evolutionary based Algorithm (MEA algorithm) presented in our previous work [24]. This is performed by dividing the dataset into 5 folds and selecting a fold at random to define the 2D and 3D FCN architectures. In Phase II, the optimal 2D FCN and 3D FCN architectures are trained with each of the 5 folds from the training dataset and subsequently averaging the softmax probability maps of the 2D and 3D FCNs.
Part of the DEEPEN (DE-risking Exploration of geothermal Plays in magmatic ENvironments) project involved developing and testing a methodology for a 3D play fairway analysis (PFA) for multiple play types (conventional hydrothermal, superhot EGS, and supercritical). This was tested using new and existing geoscientific exploration datasets at Newberry Volcano. This GDR submission includes images, data, and models related to the 3D favorability and uncertainty models and the 2D favorability and uncertainty maps. The DEEPEN PFA Methodology, detailed in the journal article below, is based on the method proposed by Poux & O'brien (2020), which uses the Leapfrog Geothermal software with the Edge extension to conduct PFA in 3D. This method uses all available data to build a 3D geodata model which can be broken down into smaller blocks and analyzed with advanced geostatistical methods. Each data set is imported into a 3D model in Leapfrog and divided into smaller blocks. Conditional queries can then be used to assign each block an index value which conditionally ranks each block's favorability, from 0-5 with 5 being most favorable, for each model (e.g., lithologic, seismic, magnetic, structural). The values between 0-5 assigned to each block are referred to as index values. The final step of the process is to combine all the index models to create a favorability index. This involves multiplying each index model by a given weight and then summing the resulting values. The DEEPEN PFA Methodology follows this approach, but split up by the specific geologic components of each play type. These components are defined as follows for each magmatic play type: 1. Conventional hydrothermal plays in magmatic environments: Heat, fluid, and permeability 2. Superhot EGS plays: Heat, thermal insulation, and producibility (the ability to create and sustain fractures suitable for and EGS reservoir) 3. Supercritical plays: Heat, supercritical fluid, pressure seal, and producibility (the proper permeability and pressure conditions to allow production of supercritical fluid) More information on these components and their development can be found in Kolker et al., (2022). For the purposes of subsurface imaging, it is easier to detect a permeable fluid-filled reservoir than it is to detect separate fluid and permeability components. Therefore, in this analysis, we combine fluid and permeability for conventional hydrothermal plays, and supercritical fluid and producibility for supercritical plays. We also project the 3D favorability volumes onto 2D surfaces for simplified joint interpretation, and we incorporate an uncertainty component. Uncertainty was modeled using the best approach for the dataset in question, for the datasets where we had enough information to do so. Identifying which subsurface parameters are the least resolved can help qualify current PFA results and focus future efforts in data collection. Where possible, the resulting uncertainty models/indices were weighted using the same weights applied to the respective datasets, and summed, following the PFA methodology above, but for uncertainty.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Author: Megan Banaski (mbanaski@esri.com) and Max Ozenberger (mozenberger@esri.com)Last Updated: 1/1/2024Intended Environment: WebPurpose:Exercise B2: Build a Starter 2D Map or Build a Starter 3D Map This lab is part of GitHub repository that contains short labs that step you through the process of developing a web application with ArcGIS API for JavaScript.The labs start from ground-zero and work through the accessing different aspects of the API and how to begin to build an application and add functionality.Requirements: Here are the resources you will use for the labs.ArcGIS for Developers - Account, Documentation, Samples, Apps, DownloadsEsri Open Source Projects - More source codeA simple guide for setting up a local web server (optional)Help with HTML, CSS, and JavaScript
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://upload.wikimedia.org/wikipedia/commons/7/79/VEGFR2_bound_to_axitinib.gif" alt="image">
This dataset is a replication of the dataset described in the paper Generative Modeling for Protein Structures by Namrata Anand and Po-Ssu Huang. The data is used to train a Generative Adversarial Network with the capability of creating protein structures.
The data is stored in a hdf5 file and is structured in the following manner:
{
"test_16": "16x16 numpy arrays",
"train_16": "16x16 numpy arrays",
"test_64": "64x64 numpy arrays",
"train_64": "64x64 numpy arrays",
"test_128": "128x128 numpy arrays"
"train_128": "128x128 numpy arrays"
}
and contains the following number of numpy arrays:
test_16: 69,713
train_16: 1,820,586
test_64: 11,835
train_64: 331,006
test_128: 3,276
train_128: 98,748
Running the following will yeild ```python3 import h5py import matplotlib.pyplot as plt
dataset = h5py.File('dataset.hdf5', 'r') test_64 = dataset['test_64']
plt.imshow(test_64[1], cmap='viridis')
plt.colorbar()
plt.show()
```
https://i.imgur.com/lb2bOzo.png" alt="image">
@incollection{NIPS2018_7978,
title = {Generative modeling for protein structures},
author = {Anand, Namrata and Huang, Possu},
booktitle = {Advances in Neural Information Processing Systems 31},
editor = {S. Bengio and H. Wallach and H. Larochelle and K. Grauman and N. Cesa-Bianchi and R. Garnett},
pages = {7494--7505},
year = {2018},
publisher = {Curran Associates, Inc.},
url = {http://papers.nips.cc/paper/7978-generative-modeling-for-protein-structures.pdf}
https://cdn.rcsb.org/rcsb-pdb/v2/common/images/rcsb_logo.png" alt="image">
H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov, P.E. Bourne.
(2000) The Protein Data Bank Nucleic Acids Research, 28: 235-242.
The National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses. For more information on the NHDPlus dataset see the NHDPlus v2 User Guide.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territories not including Alaska.Geographic Extent: The United States not including Alaska, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: EPA and USGSUpdate Frequency: There is new new data since this 2019 version, so no updates planned in the futurePublication Date: March 13, 2019Prior to publication, the NHDPlus network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the NHDPlus Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, On or Off Network (flowlines only), Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original NHDPlus dataset. No data values -9999 and -9998 were converted to Null values for many of the flowline fields.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute. Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map. Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
The product of the previously constructed 3D maps of stellar reddening (Gontcharov, 2010AstL...36..584G, Cat. J/PAZh/36/615) and Rv variations (Gontcharov, 2012AstL...38...12G, J/PAZh/38/15) has allowed us to produce a 3D interstellar extinction map within the nearest kiloparsec from the Sun with a spatial resolution of 100pc and an accuracy of 0.2m. This map is compared with the 2D reddening map by Schlegel et al. (1998ApJ...500..525S), the 3D extinction map at high latitudes by Jones et al. (2011AJ....142...44J), and the analytical 3D extinction models by Arenou et al. (1992A&A...258..104A) and Gontcharov (2009AstL...35..780G). In all cases, we have found good agreement and show that there are no systematic errors in the new map everywhere except the direction toward the Galactic center. We have found that the map by Schlegel et al. (1998ApJ...500..525S) reaches saturation near the Galactic equator at E(B-V)>0.8m, has a zero-point error and systematic errors gradually increasing with reddening, and among the analytical models those that take into account the extinction in the Gould Belt are more accurate. Our extinction map shows that it is determined by reddening variations at low latitudes and Rv variations at high ones. This naturally explains the contradictory data on the correlation or anticorrelation between reddening and Rv available in the literature. There is a correlation in a thin layer near the Galactic equator, because both reddening and Rv here increase toward the Galactic center. There is an anticorrelation outside this layer, because higher values of Rv correspond to lower reddening at high and middle latitudes. Systematic differences in sizes and other properties of the dust grains in different parts of the Galaxy manifest themselves in this way. The largest structures within the nearest kiloparsec, including the Local Bubble, the Gould Belt, the Great Tunnel, the Scorpius, Perseus, Orion, and other complexes, have manifested themselves in the constructed map. Also the data of the Rv from Gontcharov (2012AstL...38...12G, Cat. J/PAZh/38/15) and E(B-V) from Gontcharov (2010AstL...36..584G, Cat. J/PAZh/36/615) 3D maps are added. The error of the E(B-V) is 0.04mag. The error of the Rv is about 0.2.
DEEPEN stands for DE-risking Exploration of geothermal Plays in magmatic ENvironments. Part of the DEEPEN project involved developing and testing a methodology for a 3D play fairway analysis (PFA) for multiple play types (conventional hydrothermal, superhot EGS, and supercritical). This was tested using new and existing geoscientific exploration datasets at Newberry Volcano. This GDR submission includes images, data, and models related to the 3D favorability and uncertainty models and the 2D favorability and uncertainty maps. The DEEPEN PFA Methodology is based on the method proposed by Poux et al. (2020), which uses the Leapfrog Geothermal software with the Edge extension to conduct PFA in 3D. This method uses all available data to build a 3D geodata model which can be broken down into smaller blocks and analyzed with advanced geostatistical methods. Each data set is imported into a 3D model in Leapfrog and divided into smaller blocks. Conditional queries can then be used to assign each block an index value which conditionally ranks each block's favorability, from 0-5 with 5 being most favorable, for each model (e.g., lithologic, seismic, magnetic, structural). The values between 0-5 assigned to each block are referred to as index values. The final step of the process is to combine all the index models to create a favorability index. This involves multiplying each index model by a given weight and then summing the resulting values. The DEEPEN PFA Methodology follows this approach, but split up by the specific geologic components of each play type. These components are defined as follows for each magmatic play type: 1. Conventional hydrothermal plays in magmatic environments: Heat, fluid, and permeability 2. Superhot EGS plays: Heat, thermal insulation, and producibility (the ability to create and sustain fractures suitable for and EGS reservoir) 3. Supercritical plays: Heat, supercritical fluid, pressure seal, and producibility (the proper permeability and pressure conditions to allow production of supercritical fluid) More information on these components and their development can be found in Kolker et al., 2022. For the purposes of subsurface imaging, it is easier to detect a permeable fluid-filled reservoir than it is to detect separate fluid and permeability components. Therefore, in this analysis, we combine fluid and permeability for conventional hydrothermal plays, and supercritical fluid and producibility for supercritical plays. More information on this process is described in the following sections. We also project the 3D favorability volumes onto 2D surfaces for simplified joint interpretation, and we incorporate an uncertainty component. Uncertainty was modeled using the best approach for the dataset in question, for the datasets where we had enough information to do so. Identifying which subsurface parameters are the least resolved can help qualify current PFA results and focus future efforts in data collection. Where possible, the resulting uncertainty models/indices were weighted using the same weights applied to the respective datasets, and summed, following the PFA methodology above, but for uncertainty. There are two different versions of the Leapfrog model and associated favorability models: - v1.0: The first release in June 2023 - v2.1: The second release, with improvements made to the earthquake catalog (included additional identified events, removed duplicate events), to the temperature model (fixed a deep BHT), and to the index models (updated the seismicity-heat source index models for supercritical and EGS, and the resistivity-insulation index models for all three play types). Also uses the jet color map rather than the magma color map for improved interpretability. - v2.1.1: Updated to include v2.0 uncertainty results (see below for uncertainty model versions) There are two different versions of the associated uncertainty models: - v1.0: The first release in June 2023 - v2.0: The second release, with improvements made to the temperature and fault uncertainty models. ** Note that this submission is deprecated and that a newer submission, linked below and titled "DEEPEN Final 3D PFA Favorability Models and 2D Favorability Maps at Newberry Volcano" contains the final versions of these resources. **
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
References - Jeong, Gangwon, Umberto Villa, and Mark A. Anastasio. "Revisiting the joint estimation of initial pressure and speed-of-sound distributions in photoacoustic computed tomography with consideration of canonical object constraints." Photoacoustics (2025): 100700. - Park, Seonyeong, et al. "Stochastic three-dimensional numerical phantoms to enable computational studies in quantitative optoacoustic computed tomography of breast cancer." Journal of biomedical optics 28.6 (2023): 066002-066002. Overview - This dataset includes 80 two-dimensional slices extracted from 3D numerical breast phantoms (NBPs) for photoacoustic computed tomography (PACT) studies. The anatomical structures of these NBPs were obtained using tools from the Virtual Imaging Clinical Trial for Regulatory Evaluation (VICTRE) project. The methods used to modify and extend the VICTRE NBPs for use in PACT studies are described in the publication cited above. - The NBPs in this dataset represent the following four ACR BI-RADS breast composition categories: > Type A - The breast is almost entirely fatty > Type B - There are scattered areas of fibroglandular density in the breast > Type C - The breast is heterogeneously dense > Type D - The breast is extremely dense - Each 2D slice is taken from a different 3D NBP, ensuring that no more than one slice comes from any single phantom. File Name Format - Each data file is stored as a .mat file. The filenames follow this format: {type}{subject_id}.mat where{type} indicates the breast type (A, B, C, or D), and {subject_id} is a unique identifier assigned to each sample. For example, in the filename D510022534.mat, "D" represents the breast type, and "510022534" is the sample ID. File Contents - Each file contains the following variables: > "type": Breast type > "p0": Initial pressure distribution [Pa] > "sos": Speed-of-sound map [mm/μs] > "att": Acoustic attenuation (power-law prefactor) map [dB/ MHzʸ mm] > "y": power-law exponent > "pressure_lossless": Simulated noiseless pressure data obtained by numerically solving the first-order acoustic wave equation using the k-space pseudospectral method, under the assumption of a lossless medium (corresponding to Studies I, II, and III). > "pressure_lossy": Simulated noiseless pressure data obtained by numerically solving the first-order acoustic wave equation using the k-space pseudospectral method, incorporating a power-law acoustic absorption model to account for medium losses (corresponding to Study IV). * The pressure data were simulated using a ring-array transducer that consists of 512 receiving elements uniformly distributed along a ring with a radius of 72 mm. * Note: These pressure data are noiseless simulations. In Studies II–IV of the referenced paper, additive Gaussian i.i.d. noise were added to the measurement data. Users may add similar noise to the provided data as needed for their own studies. - In Study I, all spatial maps (e.g., sos) have dimensions of 512 × 512 pixels, with a pixel size of 0.32 mm × 0.32 mm. - In Study II and Study III, all spatial maps (sos) have dimensions of 1024 × 1024 pixels, with a pixel size of 0.16 mm × 0.16 mm. - In Study IV, both the sos and att maps have dimensions of 1024 × 1024 pixels, with a pixel size of 0.16 mm × 0.16 mm.
Soil map units are the basic geographic unit of the Soil Survey Geographic Database (SSURGO). The SSURGO dataset is a compilation of soils information collected over the last century by the Natural Resources Conservation Service (NRCS). Map units delineate the extent of different soils. Data for each map unit contains descriptions of the soil’s components, productivity, unique properties, and suitability interpretations. Each soil type has a unique combination of physical, chemical, nutrient and moisture properties. Soil type has ramifications for engineering and construction activities, natural hazards such as landslides, agricultural productivity, the distribution of native plant and animal life and hydrologic and other physical processes. Soil types in the context of climate and terrain can be used as a general indicator of engineering constraints, agriculture suitability, biological productivity and the natural distribution of plants and animals. Data from thegSSURGO databasewas used to create this layer. To download ready-to-use project packages of useful soil data derived from the SSURGO dataset, please visit the USA SSURGO Downloader app. Dataset Summary Phenomenon Mapped:Soils of the United States and associated territoriesGeographic Extent:The 50 United States, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaCoordinate System:Web Mercator Auxiliary SphereVisible Scale:1:144,000 to 1:1,000Source:USDA Natural Resources Conservation Service Update Frequency:AnnualPublication Date:December 2024 What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS Online Add this layer to a map in the map viewer. The layer is limited to scales of approximately 1:144,000 or larger but avector tile layercreated from the same data can be used at smaller scales to produce awebmapthat displays across the full scale range. The layer or a map containing it can be used in an application.Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections and apply filters. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Change the layer’s style and filter the data. For example, you could set a filter forFarmland Class= "All areas are prime farmland" to create a map of only prime farmland.Add labels and set their propertiesCustomize the pop-upArcGIS Pro Add this layer to a 2d or 3d map. The same scale limit as Online applies in ProUse as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of theLiving Atlas of the Worldthat provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics. Data DictionaryAttributesKey fields from nine commonly used SSURGO tables were compiled to create the 173 attribute fields in this layer. Some fields were joined directly to the SSURGO Map Unit polygon feature class while others required summarization and other processing to create a 1:1 relationship between the attributes and polygons prior to joining the tables. Attributes of this layer are listed below in their order of occurrence in the attribute table and are organized by the SSURGO table they originated from and the processing methods used on them. Map Unit Polygon Feature Class Attribute TableThe fields in this table are from the attribute table of the Map Unit polygon feature class which provides the geographic extent of the map units. Area SymbolSpatial VersionMap Unit Symbol Map Unit TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the table using the Map Unit Key field. Map Unit NameMap Unit KindFarmland ClassInterpretive FocusIntensity of MappingIowa Corn Suitability Rating Legend TableThis table has 1:1 relationship with the Map Unit table and was joined using the Legend Key field. Project Scale Survey Area Catalog TableThe fields in this table have a 1:1 relationship with the polygons and were joined to the Map Unit table using the Survey Area Catalog Key and Legend Key fields. Survey Area VersionTabular Version Map Unit Aggregated Attribute TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the Map Unit attribute table using the Map Unit Key field. Slope Gradient - Dominant ComponentSlope Gradient - Weighted AverageBedrock Depth - MinimumWater Table Depth - Annual MinimumWater Table Depth - April to June MinimumFlooding Frequency - Dominant ConditionFlooding Frequency - MaximumPonding Frequency - PresenceAvailable Water Storage 0-25 cm - Weighted AverageAvailable Water Storage 0-50 cm - Weighted AverageAvailable Water Storage 0-100 cm - Weighted AverageAvailable Water Storage 0-150 cm - Weighted AverageDrainage Class - Dominant ConditionDrainage Class - WettestHydrologic Group - Dominant ConditionIrrigated Capability Class - Dominant ConditionIrrigated Capability Class - Proportion of Mapunit with Dominant ConditionNon-Irrigated Capability Class - Dominant ConditionNon-Irrigated Capability Class - Proportion of Mapunit with Dominant ConditionRating for Buildings without Basements - Dominant ConditionRating for Buildings with Basements - Dominant ConditionRating for Buildings with Basements - Least LimitingRating for Buildings with Basements - Most LimitingRating for Septic Tank Absorption Fields - Dominant ConditionRating for Septic Tank Absorption Fields - Least LimitingRating for Septic Tank Absorption Fields - Most LimitingRating for Sewage Lagoons - Dominant ConditionRating for Sewage Lagoons - Dominant ComponentRating for Roads and Streets - Dominant ConditionRating for Sand Source - Dominant ConditionRating for Sand Source - Most ProbableRating for Paths and Trails - Dominant ConditionRating for Paths and Trails - Weighted AverageErosion Hazard of Forest Roads and Trails - Dominant ComponentHydric Classification - Presence Rating for Manure and Food Processing Waste - Weighted Average Component Table – Dominant ComponentMap units have one or more components. To create a 1:1 join component data must be summarized by map unit. For these fields a custom script was used to select the component with the highest value for the Component Percentage Representative Value field (comppct_r). Ties were broken with the Slope Representative Value field (slope_r). Components with lower average slope were selected as dominant. If both soil order and slope were tied, the first value in the table was selected. Component Percentage - Low ValueComponent Percentage - Representative ValueComponent Percentage - High ValueComponent NameComponent KindOther Criteria Used to Identify ComponentsCriteria Used to Identify Components at the Local LevelRunoff ClassSoil loss tolerance factorWind Erodibility IndexWind Erodibility GroupErosion ClassEarth Cover 1Earth Cover 2Hydric ConditionHydric RatingAspect Range - Counter Clockwise LimitAspect - Representative ValueAspect Range - Clockwise LimitGeomorphic DescriptionNon-Irrigated Capability SubclassNon-Irrigated Unit Capability ClassIrrigated Capability SubclassIrrigated Unit Capability ClassConservation Tree Shrub GroupGrain Wildlife HabitatGrass Wildlife HabitatHerbaceous Wildlife HabitatShrub Wildlife HabitatConifer Wildlife HabitatHardwood Wildlife HabitatWetland Wildlife HabitatShallow Water Wildlife HabitatRangeland Wildlife HabitatOpenland Wildlife HabitatWoodland Wildlife HabitatWetland Wildlife HabitatSoil Slip PotentialSusceptibility to Frost HeavingConcrete CorrosionSteel CorrosionTaxonomic ClassTaxonomic OrderTaxonomic SuborderGreat GroupSubgroupParticle SizeParticle Size ModCation Exchange Activity ClassCarbonate ReactionTemperature ClassMoist SubclassSoil Temperature RegimeEdition of Keys to Soil Taxonomy Used to Classify SoilCalifornia Storie IndexComponent Key Component Table – Weighted AverageMap units may have one or more soil components. To create a 1:1 join, data from the Component table must be summarized by map unit. For these fields a custom script was used to calculate an average value for each map unit weighted by the Component Percentage Representative Value field (comppct_r). Slope Gradient - Low ValueSlope Gradient - Representative ValueSlope Gradient - High ValueSlope Length USLE - Low ValueSlope Length USLE - Representative ValueSlope Length USLE - High ValueElevation - Low ValueElevation - Representative ValueElevation - High ValueAlbedo - Low ValueAlbedo - Representative ValueAlbedo - High ValueMean Annual Air Temperature - Low ValueMean Annual Air Temperature - Representative ValueMean Annual Air Temperature - High ValueMean Annual Precipitation - Low ValueMean Annual Precipitation - Representative ValueMean Annual Precipitation - High ValueRelative Effective Annual Precipitation - Low ValueRelative Effective Annual Precipitation - Representative ValueRelative Effective Annual Precipitation - High ValueDays between Last and First Frost - Low ValueDays between Last and First Frost - Representative ValueDays between Last and First Frost - High ValueRange Forage Annual Potential Production - Low ValueRange Forage Annual Potential Production - Representative ValueRange Forage Annual Potential Production - High ValueInitial Subsidence - Low ValueInitial Subsidence - Representative ValueInitial Subsidence -
The Terrain 3D layer provides global elevation surface to use in ArcGIS 3D applicationsWhat can you do with this layer?Use this layer to visualize your maps and layers in 3D using applications like the Scene Viewer in ArcGIS Online and ArcGIS Pro. Show me how1) Working with Scenes in ArcGIS Pro or ArcGIS Online Scene Viewer2) Select an appropriate basemap or use your own3) Add your unique 2D and 3D data layers to the scene. Your data are simply added on the elevation. If your data have defined elevation (z coordinates) this information will be honored in the scene4) Share your work as a Web Scene with others in your organization or the publicDataset Coverage To see the coverage and sources of various datasets comprising this elevation layer, view the Elevation Coverage Map. Additionally, this layer uses data from Maxar’s Precision 3D Digital Terrain Models for parts of the globe.This layer is part of a larger collection of elevation layers. For more information, see the Elevation Layers group on ArcGIS Online.
Accepted by NeurIPS 2024 Datasets and Benchmarks Track We introduce the RePair puzzle-solving dataset, a large-scale real world dataset of fractured frescoes from the archaelogical campus of Pompeii. Our dataset consists of over 1000 fractured frescoes. The RePAIR stands as a realistic computational challenge for methods for 2D and 3D puzzle solving, and serves as a benchmark that enables the study of fractured object reassembly and presents new challenges for geometric shape understanding. Please visit our website for more dataset information, access to source code scripts and for an interactive gallery viewing of the dataset samples. Access the entire dataset We provide a compressed version of our dataset in two seperate files. One for the 2D version and one for the 3D version. Our full dataset contains over one thousand individual fractured fragments divided into groups with its corresponding folder and all compressed into their individual sub-set format regarding whether they are 2D or 3D. Regarding the 2D dataset, each fragment is saved as a .PNG image and each group has the corresponding ground truth transformation to solve the puzzle as a .TXT file. Considering the 3D dataset, each fragment is saved as a mesh using the widely .OBJ format with the corresponding material (.MTL) and texture (.PNG) file. The meshes are already in the assembled position and orientation, so that no additional information is needed. All additional metadata information are given as .JSON files. Important Note Please be advised that downloading and reusing this dataset is permitted only upon acceptance of the following license terms. The Istituto Italiano di Tecnologia (IIT) declares, and the user (“User”) acknowledges, that the "RePAIR puzzle-solving dataset" contains 3D scans, texture maps, rendered images and meta-data of fresco fragments acquired at the Archaeological Site of Pompeii. IIT is authorised to publish the RePAIR puzzle-solving dataset herein only for scientific and cultural purposes and in connection with an academic publication referenced as Tsemelis et al., "Re-assembling the past: The RePAIR dataset and benchmark for real world 2D and 3D puzzle solving", NeurIPS 2024. Use of the RePAIR puzzle-solving dataset by User is limited to downloading, viewing such images; comparing these with data or content in other datasets. User is not authorised to use, in particular explicitly excluding any commercial use nor in conjunction with the promotion of a commercial enterprise and/or its product(s) or service(s), reproduce, copy, distribute the RePAIR puzzle-solving dataset. User will not use the RePAIR puzzle-solving dataset in any way prohibited by applicable laws. RePAIR puzzle-solving dataset therein is being provided to User without warranty of any kind, either expressed or implied. User will be solely responsible for their use of such RePAIR puzzle-solving dataset. In no event shall IIT be liable for any damages arising from such use.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The raster datasets in this data release are maps of soil surface properties that were used in analyzing different approaches for digital soil mapping. They include maps of soil pH, electrical conductivity, soil organic matter, and soil summed fine and very fine sand contents that were created using both 2D and 3D modeling strategies. For each property a map was created using both 2D and 3D approaches to compare the mapped results.