analyze the current population survey (cps) annual social and economic supplement (asec) with r the annual march cps-asec has been supplying the statistics for the census bureau's report on income, poverty, and health insurance coverage since 1948. wow. the us census bureau and the bureau of labor statistics ( bls) tag-team on this one. until the american community survey (acs) hit the scene in the early aughts (2000s), the current population survey had the largest sample size of all the annual general demographic data sets outside of the decennial census - about two hundred thousand respondents. this provides enough sample to conduct state- and a few large metro area-level analyses. your sample size will vanish if you start investigating subgroups b y state - consider pooling multiple years. county-level is a no-no. despite the american community survey's larger size, the cps-asec contains many more variables related to employment, sources of income, and insurance - and can be trended back to harry truman's presidency. aside from questions specifically asked about an annual experience (like income), many of the questions in this march data set should be t reated as point-in-time statistics. cps-asec generalizes to the united states non-institutional, non-active duty military population. the national bureau of economic research (nber) provides sas, spss, and stata importation scripts to create a rectangular file (rectangular data means only person-level records; household- and family-level information gets attached to each person). to import these files into r, the parse.SAScii function uses nber's sas code to determine how to import the fixed-width file, then RSQLite to put everything into a schnazzy database. you can try reading through the nber march 2012 sas importation code yourself, but it's a bit of a proc freak show. this new github repository contains three scripts: 2005-2012 asec - download all microdata.R down load the fixed-width file containing household, family, and person records import by separating this file into three tables, then merge 'em together at the person-level download the fixed-width file containing the person-level replicate weights merge the rectangular person-level file with the replicate weights, then store it in a sql database create a new variable - one - in the data table 2012 asec - analysis examples.R connect to the sql database created by the 'download all microdata' progr am create the complex sample survey object, using the replicate weights perform a boatload of analysis examples replicate census estimates - 2011.R connect to the sql database created by the 'download all microdata' program create the complex sample survey object, using the replicate weights match the sas output shown in the png file below 2011 asec replicate weight sas output.png statistic and standard error generated from the replicate-weighted example sas script contained in this census-provided person replicate weights usage instructions document. click here to view these three scripts for more detail about the current population survey - annual social and economic supplement (cps-asec), visit: the census bureau's current population survey page the bureau of labor statistics' current population survey page the current population survey's wikipedia article notes: interviews are conducted in march about experiences during the previous year. the file labeled 2012 includes information (income, work experience, health insurance) pertaining to 2011. when you use the current populat ion survey to talk about america, subract a year from the data file name. as of the 2010 file (the interview focusing on america during 2009), the cps-asec contains exciting new medical out-of-pocket spending variables most useful for supplemental (medical spending-adjusted) poverty research. confidential to sas, spss, stata, sudaan users: why are you still rubbing two sticks together after we've invented the butane lighter? time to transition to r. :D
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Two Creeks town population by gender and age. The dataset can be utilized to understand the gender distribution and demographics of Two Creeks town.
The dataset constitues the following two datasets across these two themes
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
The study included four separate surveys:
The survey of Family Income Support (MOP in Serbian) recipients in 2002 These two datasets are published together.
The LSMS survey of general population of Serbia in 2003 (panel survey)
The survey of Roma from Roma settlements in 2003 These two datasets are published together separately from the 2002 datasets.
Objectives
LSMS represents multi-topical study of household living standard and is based on international experience in designing and conducting this type of research. The basic survey was carried out in 2002 on a representative sample of households in Serbia (without Kosovo and Metohija). Its goal was to establish a poverty profile according to the comprehensive data on welfare of households and to identify vulnerable groups. Also its aim was to assess the targeting of safety net programs by collecting detailed information from individuals on participation in specific government social programs. This study was used as the basic document in developing Poverty Reduction Strategy (PRS) in Serbia which was adopted by the Government of the Republic of Serbia in October 2003.
The survey was repeated in 2003 on a panel sample (the households which participated in 2002 survey were re-interviewed).
Analysis of the take-up and profile of the population in 2003 was the first step towards formulating the system of monitoring in the Poverty Reduction Strategy (PRS). The survey was conducted in accordance with the same methodological principles used in 2002 survey, with necessary changes referring only to the content of certain modules and the reduction in sample size. The aim of the repeated survey was to obtain panel data to enable monitoring of the change in the living standard within a period of one year, thus indicating whether there had been a decrease or increase in poverty in Serbia in the course of 2003. [Note: Panel data are the data obtained on the sample of households which participated in the both surveys. These data made possible tracking of living standard of the same persons in the period of one year.]
Along with these two comprehensive surveys, conducted on national and regional representative samples which were to give a picture of the general population, there were also two surveys with particular emphasis on vulnerable groups. In 2002, it was the survey of living standard of Family Income Support recipients with an aim to validate this state supported program of social welfare. In 2003 the survey of Roma from Roma settlements was conducted. Since all present experiences indicated that this was one of the most vulnerable groups on the territory of Serbia and Montenegro, but with no ample research of poverty of Roma population made, the aim of the survey was to compare poverty of this group with poverty of basic population and to establish which categories of Roma population were at the greatest risk of poverty in 2003. However, it is necessary to stress that the LSMS of the Roma population comprised potentially most imperilled Roma, while the Roma integrated in the main population were not included in this study.
The surveys were conducted on the whole territory of Serbia (without Kosovo and Metohija).
Sample survey data [ssd]
Sample frame for both surveys of general population (LSMS) in 2002 and 2003 consisted of all permanent residents of Serbia, without the population of Kosovo and Metohija, according to definition of permanently resident population contained in UN Recommendations for Population Censuses, which were applied in 2002 Census of Population in the Republic of Serbia. Therefore, permanent residents were all persons living in the territory Serbia longer than one year, with the exception of diplomatic and consular staff.
The sample frame for the survey of Family Income Support recipients included all current recipients of this program on the territory of Serbia based on the official list of recipients given by Ministry of Social affairs.
The definition of the Roma population from Roma settlements was faced with obstacles since precise data on the total number of Roma population in Serbia are not available. According to the last population Census from 2002 there were 108,000 Roma citizens, but the data from the Census are thought to significantly underestimate the total number of the Roma population. However, since no other more precise data were available, this number was taken as the basis for estimate on Roma population from Roma settlements. According to the 2002 Census, settlements with at least 7% of the total population who declared itself as belonging to Roma nationality were selected. A total of 83% or 90,000 self-declared Roma lived in the settlements that were defined in this way and this number was taken as the sample frame for Roma from Roma settlements.
Planned sample: In 2002 the planned size of the sample of general population included 6.500 households. The sample was both nationally and regionally representative (representative on each individual stratum). In 2003 the planned panel sample size was 3.000 households. In order to preserve the representative quality of the sample, we kept every other census block unit of the large sample realized in 2002. This way we kept the identical allocation by strata. In selected census block unit, the same households were interviewed as in the basic survey in 2002. The planned sample of Family Income Support recipients in 2002 and Roma from Roma settlements in 2003 was 500 households for each group.
Sample type: In both national surveys the implemented sample was a two-stage stratified sample. Units of the first stage were enumeration districts, and units of the second stage were the households. In the basic 2002 survey, enumeration districts were selected with probability proportional to number of households, so that the enumeration districts with bigger number of households have a higher probability of selection. In the repeated survey in 2003, first-stage units (census block units) were selected from the basic sample obtained in 2002 by including only even numbered census block units. In practice this meant that every second census block unit from the previous survey was included in the sample. In each selected enumeration district the same households interviewed in the previous round were included and interviewed. On finishing the survey in 2003 the cases were merged both on the level of households and members.
Stratification: Municipalities are stratified into the following six territorial strata: Vojvodina, Belgrade, Western Serbia, Central Serbia (Šumadija and Pomoravlje), Eastern Serbia and South-east Serbia. Primary units of selection are further stratified into enumeration districts which belong to urban type of settlements and enumeration districts which belong to rural type of settlement.
The sample of Family Income Support recipients represented the cases chosen randomly from the official list of recipients provided by Ministry of Social Affairs. The sample of Roma from Roma settlements was,as in the national survey, a two-staged stratified sample, but the units in the first stage were settlements where Roma population was represented in the percentage over 7%, and the units of the second stage were Roma households. Settlements are stratified in three territorial strata: Vojvodina, Beograd and Central Serbia.
Face-to-face [f2f]
In all surveys the same questionnaire with minimal changes was used. It included different modules, topically separate areas which had an aim of perceiving the living standard of households from different angles. Topic areas were the following: 1. Roster with demography. 2. Housing conditions and durables module with information on the age of durables owned by a household with a special block focused on collecting information on energy billing, payments, and usage. 3. Diary of food expenditures (weekly), including home production, gifts and transfers in kind. 4. Questionnaire of main expenditure-based recall periods sufficient to enable construction of annual consumption at the household level, including home production, gifts and transfers in kind. 5. Agricultural production for all households which cultivate 10+ acres of land or who breed cattle. 6. Participation and social transfers module with detailed breakdown by programs 7. Labour Market module in line with a simplified version of the Labour Force Survey (LFS), with special additional questions to capture various informal sector activities, and providing information on earnings 8. Health with a focus on utilization of services and expenditures (including informal payments) 9. Education module, which incorporated pre-school, compulsory primary education, secondary education and university education. 10. Special income block, focusing on sources of income not covered in other parts (with a focus on remittances).
During field work, interviewers kept a precise diary of interviews, recording both successful and unsuccessful visits. Particular attention was paid to reasons why some households were not interviewed. Separate marks were given for households which were not interviewed due to refusal and for cases when a given household could not be found on the territory of the chosen census block.
In 2002 a total of 7,491 households were contacted. Of this number a total of 6,386 households in 621 census rounds were interviewed. Interviewers did not manage to collect the data for 1,106 or 14.8% of selected households. Out of this number 634 households or
The AHS is the largest, regular national housing sample survey in the United States. The U.S. Census Bureau conducts the AHS to obtain up-to-date housing statistics for the Department of Housing and Urban Development (HUD). The AHS national survey was conducted annually from 1973-1981 and biennially (every two years) since 1983. Metropolitan area surveys have been conducted annually or biennially since 1974.
Round 1 of the Afrobarometer survey was conducted from July 1999 through June 2001 in 12 African countries, to solicit public opinion on democracy, governance, markets, and national identity. The full 12 country dataset released was pieced together out of different projects, Round 1 of the Afrobarometer survey,the old Southern African Democracy Barometer, and similar surveys done in West and East Africa.
The 7 country dataset is a subset of the Round 1 survey dataset, and consists of a combined dataset for the 7 Southern African countries surveyed with other African countries in Round 1, 1999-2000 (Botswana, Lesotho, Malawi, Namibia, South Africa, Zambia and Zimbabwe). It is a useful dataset because, in contrast to the full 12 country Round 1 dataset, all countries in this dataset were surveyed with the identical questionnaire
Botswana Lesotho Malawi Namibia South Africa Zambia Zimbabwe
Basic units of analysis that the study investigates include: individuals and groups
Sample survey data [ssd]
A new sample has to be drawn for each round of Afrobarometer surveys. Whereas the standard sample size for Round 3 surveys will be 1200 cases, a larger sample size will be required in societies that are extremely heterogeneous (such as South Africa and Nigeria), where the sample size will be increased to 2400. Other adaptations may be necessary within some countries to account for the varying quality of the census data or the availability of census maps.
The sample is designed as a representative cross-section of all citizens of voting age in a given country. The goal is to give every adult citizen an equal and known chance of selection for interview. We strive to reach this objective by (a) strictly applying random selection methods at every stage of sampling and by (b) applying sampling with probability proportionate to population size wherever possible. A randomly selected sample of 1200 cases allows inferences to national adult populations with a margin of sampling error of no more than plus or minus 2.5 percent with a confidence level of 95 percent. If the sample size is increased to 2400, the confidence interval shrinks to plus or minus 2 percent.
Sample Universe
The sample universe for Afrobarometer surveys includes all citizens of voting age within the country. In other words, we exclude anyone who is not a citizen and anyone who has not attained this age (usually 18 years) on the day of the survey. Also excluded are areas determined to be either inaccessible or not relevant to the study, such as those experiencing armed conflict or natural disasters, as well as national parks and game reserves. As a matter of practice, we have also excluded people living in institutionalized settings, such as students in dormitories and persons in prisons or nursing homes.
What to do about areas experiencing political unrest? On the one hand we want to include them because they are politically important. On the other hand, we want to avoid stretching out the fieldwork over many months while we wait for the situation to settle down. It was agreed at the 2002 Cape Town Planning Workshop that it is difficult to come up with a general rule that will fit all imaginable circumstances. We will therefore make judgments on a case-by-case basis on whether or not to proceed with fieldwork or to exclude or substitute areas of conflict. National Partners are requested to consult Core Partners on any major delays, exclusions or substitutions of this sort.
Sample Design
The sample design is a clustered, stratified, multi-stage, area probability sample.
To repeat the main sampling principle, the objective of the design is to give every sample element (i.e. adult citizen) an equal and known chance of being chosen for inclusion in the sample. We strive to reach this objective by (a) strictly applying random selection methods at every stage of sampling and by (b) applying sampling with probability proportionate to population size wherever possible.
In a series of stages, geographically defined sampling units of decreasing size are selected. To ensure that the sample is representative, the probability of selection at various stages is adjusted as follows:
The sample is stratified by key social characteristics in the population such as sub-national area (e.g. region/province) and residential locality (urban or rural). The area stratification reduces the likelihood that distinctive ethnic or language groups are left out of the sample. And the urban/rural stratification is a means to make sure that these localities are represented in their correct proportions. Wherever possible, and always in the first stage of sampling, random sampling is conducted with probability proportionate to population size (PPPS). The purpose is to guarantee that larger (i.e., more populated) geographical units have a proportionally greater probability of being chosen into the sample. The sampling design has four stages
A first-stage to stratify and randomly select primary sampling units;
A second-stage to randomly select sampling start-points;
A third stage to randomly choose households;
A final-stage involving the random selection of individual respondents
We shall deal with each of these stages in turn.
STAGE ONE: Selection of Primary Sampling Units (PSUs)
The primary sampling units (PSU's) are the smallest, well-defined geographic units for which reliable population data are available. In most countries, these will be Census Enumeration Areas (or EAs). Most national census data and maps are broken down to the EA level. In the text that follows we will use the acronyms PSU and EA interchangeably because, when census data are employed, they refer to the same unit.
We strongly recommend that NIs use official national census data as the sampling frame for Afrobarometer surveys. Where recent or reliable census data are not available, NIs are asked to inform the relevant Core Partner before they substitute any other demographic data. Where the census is out of date, NIs should consult a demographer to obtain the best possible estimates of population growth rates. These should be applied to the outdated census data in order to make projections of population figures for the year of the survey. It is important to bear in mind that population growth rates vary by area (region) and (especially) between rural and urban localities. Therefore, any projected census data should include adjustments to take such variations into account.
Indeed, we urge NIs to establish collegial working relationships within professionals in the national census bureau, not only to obtain the most recent census data, projections, and maps, but to gain access to sampling expertise. NIs may even commission a census statistician to draw the sample to Afrobarometer specifications, provided that provision for this service has been made in the survey budget.
Regardless of who draws the sample, the NIs should thoroughly acquaint themselves with the strengths and weaknesses of the available census data and the availability and quality of EA maps. The country and methodology reports should cite the exact census data used, its known shortcomings, if any, and any projections made from the data. At minimum, the NI must know the size of the population and the urban/rural population divide in each region in order to specify how to distribute population and PSU's in the first stage of sampling. National investigators should obtain this written data before they attempt to stratify the sample.
Once this data is obtained, the sample population (either 1200 or 2400) should be stratified, first by area (region/province) and then by residential locality (urban or rural). In each case, the proportion of the sample in each locality in each region should be the same as its proportion in the national population as indicated by the updated census figures.
Having stratified the sample, it is then possible to determine how many PSU's should be selected for the country as a whole, for each region, and for each urban or rural locality.
The total number of PSU's to be selected for the whole country is determined by calculating the maximum degree of clustering of interviews one can accept in any PSU. Because PSUs (which are usually geographically small EAs) tend to be socially homogenous we do not want to select too many people in any one place. Thus, the Afrobarometer has established a standard of no more than 8 interviews per PSU. For a sample size of 1200, the sample must therefore contain 150 PSUs/EAs (1200 divided by 8). For a sample size of 2400, there must be 300 PSUs/EAs.
These PSUs should then be allocated proportionally to the urban and rural localities within each regional stratum of the sample. Let's take a couple of examples from a country with a sample size of 1200. If the urban locality of Region X in this country constitutes 10 percent of the current national population, then the sample for this stratum should be 15 PSUs (calculated as 10 percent of 150 PSUs). If the rural population of Region Y constitutes 4 percent of the current national population, then the sample for this stratum should be 6 PSU's.
The next step is to select particular PSUs/EAs using random methods. Using the above example of the rural localities in Region Y, let us say that you need to pick 6 sample EAs out of a census list that contains a total of 240 rural EAs in Region Y. But which 6? If the EAs created by the national census bureau are of equal or roughly equal population size, then selection is relatively straightforward. Just number all EAs consecutively, then make six selections using a table of random numbers. This procedure, known as simple random sampling (SRS), will
Age, Sex, Race, Ethnicity, Total Housing Units, and Voting Age Population. This service is updated annually with American Community Survey (ACS) 5-year data. Contact: District of Columbia, Office of Planning. Email: planning@dc.gov. Geography: Census Tracts. Current Vintage: 2019-2023. ACS Table(s): DP05. Data downloaded from: Census Bureau's API for American Community Survey. Date of API call: January 2, 2025. National Figures: data.census.gov. Please cite the Census and ACS when using this data. Data Note from the Census: Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables. Data Processing Notes: This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2020 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page. Data processed using R statistical package and ArcGIS Desktop. Margin of Error was not included in this layer but is available from the Census Bureau. Contact the Office of Planning for more information about obtaining Margin of Error values.
The GHS is an annual household survey which measures the living circumstances of South African households. The GHS collects data on education, health, and social development, housing, access to services and facilities, food security, and agriculture.
National coverage
Households and individuals
The survey covers all de jure household members (usual residents) of households in the nine provinces of South Africa, and residents in workers' hostels. The survey does not cover collective living quarters such as student hostels, old age homes, hospitals, prisons, and military barracks.
Sample survey data [ssd]
From 2015 the General Household Survey (GHS) uses a Master Sample (MS) frame developed in 2013 as a general-purpose sampling frame to be used for all Stats SA household-based surveys. This MS has design requirements that are reasonably compatible with the GHS. The 2013 Master Sample is based on information collected during the 2011 Census conducted by Stats SA. In preparation for Census 2011, the country was divided into 103 576 enumeration areas (EAs). The census EAs, together with the auxiliary information for the EAs, were used as the frame units or building blocks for the formation of primary sampling units (PSUs) for the Master Sample, since they covered the entire country, and had other information that is crucial for stratification and creation of PSUs. There are 3 324 primary sampling units (PSUs) in the Master Sample, with an expected sample of approximately 33 000 dwelling units (DUs). The number of PSUs in the current Master Sample (3 324) reflect an 8,0% increase in the size of the Master Sample compared to the previous (2008) Master Sample (which had 3 080 PSUs). The larger Master Sample of PSUs was selected to improve the precision (smaller coefficients of variation, known as CVs) of the GHS estimates. The Master Sample is designed to be representative at provincial level and within provinces at metro/non-metro levels. Within the metros, the sample is further distributed by geographical type. The three geography types are Urban, Tribal and Farms. This implies, for example, that within a metropolitan area, the sample is representative of the different geography types that may exist within that metro.
The sample for the GHS is based on a stratified two-stage design with probability proportional to size (PPS) sampling of PSUs in the first stage, and sampling of dwelling units (DUs) with systematic sampling in the second stage.After allocating the sample to the provinces, the sample was further stratified by geography (primary stratification), and by population attributes using Census 2011 data (secondary stratification).
Computer Assisted Telephone Interview
Data was collected with a household questionnaire and a questionnaire administered to a household member to elicit information on household members.
Since 2019, the questionnaire for the GHS series changed and the variables were also renamed. For correspondence between old names (GHS pre-2019) and new name (GHS post-2019), see the document ghs-2019-variables-renamed.
The 2007/08 Agricultural Sample Census was designed to meet the data needs of a wide range of users down to district level including policy makers at local, regional and national levels, rural development agencies, funding institutions, researchers, NGOs, farmers' organizations, and others. The dataset is both more numerous in its sample and detailed in its scope and coverage so as to meet the user demand.
The census was carried out in order to:
-Provide benchmark data on productivity, production and agricultural practices in relation to policies and interventions promoted by the Ministry of Agriculture and Food Security and other stakeholders; and
Tanzania Mainland and Zanzibar
Community, Household, Individual
Small scale farmers, Large Scale Farmers, Community
Sample survey data [ssd]
The Mainland sample consisted of 3,192 villages. The total Mainland sample was 47,880 agricultural households while in Zanzibar, a total of 317 EAs were selected and 4,755 agricultural households were covered.
The villages were drawn from the National Master Sample (NMS) developed by the National Bureau of Statistics (NBS) to serve as a national framework for the conduct of household based surveys in the country. The National Master Sample was developed from the previous 2002 Population and Housing Census.
The numbers of villages/Enumeration Areas (EAs) were selected for the first stage with a probability proportional to the number of villages/EAs in each district. In the second stage, 15 households were selected from a list of agricultural households in each village/EA using systematic random sampling.
Face-to-face [f2f]
The census used three different questionnaires: - Small scale farm questionnaire - Community level questionnaire - Large scale farm questionnaire
The small scale farm questionnaire was the main census instrument and it included questions related to crop and livestock production and practices; population demographics; access to services, community resources and infrastructure; issues on poverty and gender. The main topics covered were:
The community level questionnaire was designed to collect village level data such as access and use of common resources, community tree plantation and seasonal farm gate prices.
The Large Scale Farm questionnaire was administered to large farms either privately or corporately managed.
Data editing took place at a number of stages throughout the processing, including: - Manual cleaning exercisePrior to scanning. (Questionnaires found dirty or damaged and generally unsuitable for scanning were put aside for manual data entry ) - CSPro was used for data entry of all Large Scale Farms and Community based questionnaires - Scanning and ICR data capture technology for the smallholder questionnaire - There was an Interactive validation during the ICR extraction process. - The use of a batch validation program developed in CSPro. This was used in order to identify inconsistencies within a questionnaire. - Statistical Package for Social Sciences (SPSS) was used to produce the Census tabulations - Microsoft Excel was used to organize the tables, charts and compute additional indicators -Arc GIS (Geographical Information System) was used in producing the maps. - Microsoft Word was used in compiling and writing up the reports
https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de442616https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de442616
Abstract (en): The Public Use Microdata Samples (PUMS) contain person- and household-level information from the "long-form" questionnaires distributed to a sample of the population enumerated in the 1980 Census. This data collection, containing 5-percent data, identifies every state, county groups, and most individual counties with 100,000 or more inhabitants (350 in all). In many cases, individual cities or groups of places with 100,000 or more inhabitants are also identified. Household-level variables include housing tenure, year structure was built, number and types of rooms in dwelling, plumbing facilities, heating equipment, taxes and mortgage costs, number of children, and household and family income. The person record contains demographic items such as sex, age, marital status, race, Spanish origin, income, occupation, transportation to work, and education. All persons and housing units in the United States and Puerto Rico. For this data collection, the full 1980 Census sample that received the "long-form" questionnaire (19.4 percent of all households) was sampled again through a stratified systematic selection procedure with probability proportional to a measure of size. This 5-percent sample, i.e., 5 households for every 100 households in the nation, includes over one-fourth of the households that received the long-form questionnaire. 2006-01-12 All files were removed from dataset 81 and flagged as study-level files, so that they will accompany all downloads.2006-01-12 All files were removed from dataset 80 and flagged as study-level files, so that they will accompany all downloads.2006-01-12 All files were removed from dataset 81 and flagged as study-level files, so that they will accompany all downloads.2006-01-12 All files were removed from dataset 80 and flagged as study-level files, so that they will accompany all downloads.1997-08-25 Part 72, Puerto Rico data, has been added to the collection, as well as supplemental documentation for Puerto Rico in the form of a separate PDF file. The household and person records in each hierarchical data file have logical record lengths of 193 characters, but the number of records varies with each file.The record layout for Part 72, Puerto Rico, is different from the state datasets. Refer to the supplemental documentation for this part.The codebook is available in hardcopy form only, while the Puerto Rico supplemental documentation is provided as a Portable Document Format (PDF) file.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Lava Hot Springs. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Lava Hot Springs, while the Census reported a median income of $31,875 for all female workers aged 15 years and older, data for males in the same category was unavailable due to an insufficient number of sample observations.
Because income data for males was not available from the Census Bureau, conducting a comprehensive analysis of gender-based pay disparity in the city of Lava Hot Springs was not possible.
- Full-time workers, aged 15 years and older: In Lava Hot Springs, among full-time, year-round workers aged 15 years and older, males earned a median income of $77,188, while females earned $75,250, resulting in a 3% gender pay gap among full-time workers. This illustrates that women earn 97 cents for each dollar earned by men in full-time positions. While this gap shows a trend where women are inching closer to wage parity with men, it also exhibits a noticeable income difference for women working full-time in the city of Lava Hot Springs.When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Lava Hot Springs median household income by race. You can refer the same here
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Key Table Information.Table Title.Transportation and Warehousing: Summary Statistics for the U.S., States, and Selected Geographies: 2022.Table ID.ECNBASIC2022.EC2248BASIC.Survey/Program.Economic Census.Year.2022.Dataset.ECN Core Statistics Summary Statistics for the U.S., States, and Selected Geographies: 2022.Source.U.S. Census Bureau, 2022 Economic Census, Core Statistics.Release Date.2024-12-05.Release Schedule.The Economic Census occurs every five years, in years ending in 2 and 7.The data in this file come from the 2022 Economic Census data files released on a flow basis starting in January 2024 with First Look Statistics. Preliminary U.S. totals released in January 2024 are superseded with final data shown in the releases of later economic census statistics through March 2026.For more information about economic census planned data product releases, see 2022 Economic Census Release Schedule..Dataset Universe.The dataset universe consists of all establishments that are in operation for at least some part of 2022, are located in one of the 50 U.S. states, associated offshore areas, or the District of Columbia, have paid employees, and are classified in one of nineteen in-scope sectors defined by the 2022 North American Industry Classification System (NAICS)..Methodology.Data Items and Other Identifying Records.Number of firmsNumber of establishmentsSales, value of shipments, or revenue ($1,000)Annual payroll ($1,000)First-quarter payroll ($1,000)Number of employeesRange indicating imputed percentage of total sales, value of shipments, or revenueRange indicating imputed percentage of total annual payrollRange indicating imputed percentage of total employeesDefinitions can be found by clicking on the column header in the table or by accessing the Economic Census Glossary..Unit(s) of Observation.The reporting units for the economic census are employer establishments. An establishment is generally a single physical location where business is conducted or where services or industrial operations are performed. A company or firm is comprised of one or more in-scope establishments that operate under the ownership or control of a single organization. For some industries, the reporting units are instead groups of all establishments in the same industry belonging to the same firm..Geography Coverage.The data are shown for the U.S., State, Combined Statistical Area, Metropolitan and Micropolitan Statistical Area, Metropolitan Division, Consolidated City, County (and equivalent), and Economic Place (and equivalent; incorporated and unincorporated) levels that vary by industry. For information about economic census geographies, including changes for 2022, see Geographies..Industry Coverage.The data are shown at the 2- through 6-digit 2022 NAICS code levels and selected 7-digit 2022 NAICS-based code levels. For information about NAICS, see Economic Census Code Lists..Sampling.The 2022 Economic Census sample includes all active operating establishments of multi-establishment firms and approximately 1.7 million single-establishment firms, stratified by industry and state. Establishments selected to the sample receive a questionnaire. For all data on this table, establishments not selected into the sample are represented with administrative data. For more information about the sample design, see 2022 Economic Census Methodology..Confidentiality.The Census Bureau has reviewed this data product to ensure appropriate access, use, and disclosure avoidance protection of the confidential source data (Project No. 7504609, Disclosure Review Board (DRB) approval number: CBDRB-FY23-099).To protect confidentiality, the U.S. Census Bureau suppresses cell values to minimize the risk of identifying a particular business’ data or identity.To comply with disclosure avoidance guidelines, data rows with fewer than three contributing firms or three contributing establishments are not presented. Additionally, establishment counts are suppressed when other select statistics in the same row are suppressed. More information on disclosure avoidance is available in the 2022 Economic Census Methodology..Technical Documentation/Methodology.For detailed information about the methods used to collect data and produce statistics, survey questionnaires, Primary Business Activity/NAICS codes, NAPCS codes, and more, see Economic Census Technical Documentation..Weights.No weighting applied as establishments not sampled are represented with administrative data..Table Information.FTP Download.https://www2.census.gov/programs-surveys/economic-census/data/2022/.API Information.Economic census data are housed in the Census Bureau Application Programming Interface (API)..Symbols.D - Withheld to avoid disclosing data for individual companies; data are included in higher level totalsN - Not available or not comparableS - Estimate does not meet publication standards because of high sampling variability, poor response quality, or other concerns about the estimat...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Pinehurst. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Pinehurst, while the Census reported a median income of $20,341 for all male workers aged 15 years and older, data for females in the same category was unavailable due to an insufficient number of sample observations.
Given the absence of income data for females from the Census Bureau, conducting a thorough analysis of gender-based pay disparity in the city of Pinehurst was not possible.
- Full-time workers, aged 15 years and older: In Pinehurst, among full-time, year-round workers aged 15 years and older, males earned a median income of $46,875, while females earned $43,750, resulting in a 7% gender pay gap among full-time workers. This illustrates that women earn 93 cents for each dollar earned by men in full-time positions. While this gap shows a trend where women are inching closer to wage parity with men, it also exhibits a noticeable income difference for women working full-time in the city of Pinehurst.When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Pinehurst median household income by race. You can refer the same here
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Key Table Information.Table Title.Health Care and Social Assistance: Summary Statistics for the U.S., States, and Selected Geographies: 2022.Table ID.ECNBASIC2022.EC2262BASIC.Survey/Program.Economic Census.Year.2022.Dataset.ECN Core Statistics Summary Statistics for the U.S., States, and Selected Geographies: 2022.Source.U.S. Census Bureau, 2022 Economic Census, Core Statistics.Release Date.2024-12-05.Release Schedule.The Economic Census occurs every five years, in years ending in 2 and 7.The data in this file come from the 2022 Economic Census data files released on a flow basis starting in January 2024 with First Look Statistics. Preliminary U.S. totals released in January 2024 are superseded with final data shown in the releases of later economic census statistics through March 2026.For more information about economic census planned data product releases, see 2022 Economic Census Release Schedule..Dataset Universe.The dataset universe consists of all establishments that are in operation for at least some part of 2022, are located in one of the 50 U.S. states, associated offshore areas, or the District of Columbia, have paid employees, and are classified in one of nineteen in-scope sectors defined by the 2022 North American Industry Classification System (NAICS)..Methodology.Data Items and Other Identifying Records.Number of firmsNumber of establishmentsSales, value of shipments, or revenue ($1,000)Annual payroll ($1,000)First-quarter payroll ($1,000)Number of employeesOperating expenses ($1,000)Range indicating imputed percentage of total sales, value of shipments, or revenueRange indicating imputed percentage of total annual payrollRange indicating imputed percentage of total employeesDefinitions can be found by clicking on the column header in the table or by accessing the Economic Census Glossary..Unit(s) of Observation.The reporting units for the economic census are employer establishments. An establishment is generally a single physical location where business is conducted or where services or industrial operations are performed. A company or firm is comprised of one or more in-scope establishments that operate under the ownership or control of a single organization. For some industries, the reporting units are instead groups of all establishments in the same industry belonging to the same firm..Geography Coverage.The data are shown for the U.S., State, Combined Statistical Area, Metropolitan and Micropolitan Statistical Area, Metropolitan Division, Consolidated City, County (and equivalent), and Economic Place (and equivalent; incorporated and unincorporated) levels that vary by industry. For information about economic census geographies, including changes for 2022, see Geographies..Industry Coverage.The data are shown at the 2- through 6-digit 2022 NAICS code levels and selected 7-digit 2022 NAICS-based code levels. For information about NAICS, see Economic Census Code Lists..Business Characteristics.For selected Services sectors, data are presented by Tax Status (All establishments, Establishments subject to federal income tax, and Establishments exempt from federal income tax)..Sampling.The 2022 Economic Census sample includes all active operating establishments of multi-establishment firms and approximately 1.7 million single-establishment firms, stratified by industry and state. Establishments selected to the sample receive a questionnaire. For all data on this table, establishments not selected into the sample are represented with administrative data. For more information about the sample design, see 2022 Economic Census Methodology..Confidentiality.The Census Bureau has reviewed this data product to ensure appropriate access, use, and disclosure avoidance protection of the confidential source data (Project No. 7504609, Disclosure Review Board (DRB) approval number: CBDRB-FY23-099).To protect confidentiality, the U.S. Census Bureau suppresses cell values to minimize the risk of identifying a particular business’ data or identity.To comply with disclosure avoidance guidelines, data rows with fewer than three contributing firms or three contributing establishments are not presented. Additionally, establishment counts are suppressed when other select statistics in the same row are suppressed. More information on disclosure avoidance is available in the 2022 Economic Census Methodology..Technical Documentation/Methodology.For detailed information about the methods used to collect data and produce statistics, survey questionnaires, Primary Business Activity/NAICS codes, NAPCS codes, and more, see Economic Census Technical Documentation..Weights.No weighting applied as establishments not sampled are represented with administrative data..Table Information.FTP Download.https://www2.census.gov/programs-surveys/economic-census/data/2022/.API Information.Economic census data are housed in the Census Bureau Application Programming Interface (API)..Symbols.D - Withheld to avoid disclosing data for indi...
2013-2023 Virginia Median Household Income based on the past 12 months by Census Block Group. Contains estimates and margins of error.
Special data considerations: Large negative values do exist (more detail below) and should be addressed prior to graphing or aggregating the data.
A value of -666,666,666 in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.
A value of -222,222,222 in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.
U.S. Census Bureau; American Community Survey, American Community Survey 5-Year Estimates, Table B19013 Data accessed from: Census Bureau's API for American Community Survey (https://www.census.gov/data/developers/data-sets.html)
The United States Census Bureau's American Community Survey (ACS): -What is the American Community Survey? (https://www.census.gov/programs-surveys/acs/about.html) -Geography & ACS (https://www.census.gov/programs-surveys/acs/geography-acs.html) -Technical Documentation (https://www.census.gov/programs-surveys/acs/technical-documentation.html)
Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section. (https://www.census.gov/programs-surveys/acs/technical-documentation/code-lists.html)
Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section. (https://www.census.gov/acs/www/methodology/sample_size_and_data_quality/)
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties.
Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation https://www.census.gov/programs-surveys/acs/technical-documentation.html). The effect of nonsampling error is not represented in these tables.
Annotation values are character representations of estimates and have values when non-integer information needs to be represented. Below are a few examples. Complete information is available on the ACS website under Notes on ACS Estimate and Annotation Values. (https://www.census.gov/data/developers/data-sets/acs-1year/notes-on-acs-estimate-and-annotation-values.html).
2013-2023 Virginia Tenure by Vehicles Available by Census Block Group (ACS 5-Year). Contains estimates and margins of error.
U.S. Census Bureau; American Community Survey, American Community Survey 5-Year Estimates, Table B25044 Data accessed from: Census Bureau's API for American Community Survey (https://www.census.gov/data/developers/data-sets.html)
The United States Census Bureau's American Community Survey (ACS): -What is the American Community Survey? (https://www.census.gov/programs-surveys/acs/about.html) -Geography & ACS (https://www.census.gov/programs-surveys/acs/geography-acs.html) -Technical Documentation (https://www.census.gov/programs-surveys/acs/technical-documentation.html)
Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section. (https://www.census.gov/programs-surveys/acs/technical-documentation/code-lists.html)
Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section. (https://www.census.gov/acs/www/methodology/sample_size_and_data_quality/)
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties.
Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation https://www.census.gov/programs-surveys/acs/technical-documentation.html). The effect of nonsampling error is not represented in these tables.
The main objective of the HEIS survey is to obtain detailed data on household expenditure and income, linked to various demographic and socio-economic variables, to enable computation of poverty indices and determine the characteristics of the poor and prepare poverty maps. Therefore, to achieve these goals, the sample had to be representative on the sub-district level. The raw survey data provided by the Statistical Office was cleaned and harmonized by the Economic Research Forum, in the context of a major research project to develop and expand knowledge on equity and inequality in the Arab region. The main focus of the project is to measure the magnitude and direction of change in inequality and to understand the complex contributing social, political and economic forces influencing its levels. However, the measurement and analysis of the magnitude and direction of change in this inequality cannot be consistently carried out without harmonized and comparable micro-level data on income and expenditures. Therefore, one important component of this research project is securing and harmonizing household surveys from as many countries in the region as possible, adhering to international statistics on household living standards distribution. Once the dataset has been compiled, the Economic Research Forum makes it available, subject to confidentiality agreements, to all researchers and institutions concerned with data collection and issues of inequality.
Data collected through the survey helped in achieving the following objectives: 1. Provide data weights that reflect the relative importance of consumer expenditure items used in the preparation of the consumer price index 2. Study the consumer expenditure pattern prevailing in the society and the impact of demographic and socio-economic variables on those patterns 3. Calculate the average annual income of the household and the individual, and assess the relationship between income and different economic and social factors, such as profession and educational level of the head of the household and other indicators 4. Study the distribution of individuals and households by income and expenditure categories and analyze the factors associated with it 5. Provide the necessary data for the national accounts related to overall consumption and income of the household sector 6. Provide the necessary income data to serve in calculating poverty indices and identifying the poor characteristics as well as drawing poverty maps 7. Provide the data necessary for the formulation, follow-up and evaluation of economic and social development programs, including those addressed to eradicate poverty
National
Sample survey data [ssd]
The Household Expenditure and Income survey sample for 2010, was designed to serve the basic objectives of the survey through providing a relatively large sample in each sub-district to enable drawing a poverty map in Jordan. The General Census of Population and Housing in 2004 provided a detailed framework for housing and households for different administrative levels in the country. Jordan is administratively divided into 12 governorates, each governorate is composed of a number of districts, each district (Liwa) includes one or more sub-district (Qada). In each sub-district, there are a number of communities (cities and villages). Each community was divided into a number of blocks. Where in each block, the number of houses ranged between 60 and 100 houses. Nomads, persons living in collective dwellings such as hotels, hospitals and prison were excluded from the survey framework.
A two stage stratified cluster sampling technique was used. In the first stage, a cluster sample proportional to the size was uniformly selected, where the number of households in each cluster was considered the weight of the cluster. At the second stage, a sample of 8 households was selected from each cluster, in addition to another 4 households selected as a backup for the basic sample, using a systematic sampling technique. Those 4 households were sampled to be used during the first visit to the block in case the visit to the original household selected is not possible for any reason. For the purposes of this survey, each sub-district was considered a separate stratum to ensure the possibility of producing results on the sub-district level. In this respect, the survey framework adopted that provided by the General Census of Population and Housing Census in dividing the sample strata. To estimate the sample size, the coefficient of variation and the design effect of the expenditure variable provided in the Household Expenditure and Income Survey for the year 2008 was calculated for each sub-district. These results were used to estimate the sample size on the sub-district level so that the coefficient of variation for the expenditure variable in each sub-district is less than 10%, at a minimum, of the number of clusters in the same sub-district (6 clusters). This is to ensure adequate presentation of clusters in different administrative areas to enable drawing an indicative poverty map.
It should be noted that in addition to the standard non response rate assumed, higher rates were expected in areas where poor households are concentrated in major cities. Therefore, those were taken into consideration during the sampling design phase, and a higher number of households were selected from those areas, aiming at well covering all regions where poverty spreads.
Face-to-face [f2f]
Raw Data: - Organizing forms/questionnaires: A compatible archive system was used to classify the forms according to different rounds throughout the year. A registry was prepared to indicate different stages of the process of data checking, coding and entry till forms were back to the archive system. - Data office checking: This phase was achieved concurrently with the data collection phase in the field where questionnaires completed in the field were immediately sent to data office checking phase. - Data coding: A team was trained to work on the data coding phase, which in this survey is only limited to education specialization, profession and economic activity. In this respect, international classifications were used, while for the rest of the questions, coding was predefined during the design phase. - Data entry/validation: A team consisting of system analysts, programmers and data entry personnel were working on the data at this stage. System analysts and programmers started by identifying the survey framework and questionnaire fields to help build computerized data entry forms. A set of validation rules were added to the entry form to ensure accuracy of data entered. A team was then trained to complete the data entry process. Forms prepared for data entry were provided by the archive department to ensure forms are correctly extracted and put back in the archive system. A data validation process was run on the data to ensure the data entered is free of errors. - Results tabulation and dissemination: After the completion of all data processing operations, ORACLE was used to tabulate the survey final results. Those results were further checked using similar outputs from SPSS to ensure that tabulations produced were correct. A check was also run on each table to guarantee consistency of figures presented, together with required editing for tables' titles and report formatting.
Harmonized Data: - The Statistical Package for Social Science (SPSS) was used to clean and harmonize the datasets. - The harmonization process started with cleaning all raw data files received from the Statistical Office. - Cleaned data files were then merged to produce one data file on the individual level containing all variables subject to harmonization. - A country-specific program was generated for each dataset to generate/compute/recode/rename/format/label harmonized variables. - A post-harmonization cleaning process was run on the data. - Harmonized data was saved on the household as well as the individual level, in SPSS and converted to STATA format.
2013-2023 Virginia Population by Race by Census Block Group. Contains estimates and margins of error.
U.S. Census Bureau; American Community Survey, American Community Survey 5-Year Estimates, Table B03002 Data accessed from: Census Bureau's API for American Community Survey (https://www.census.gov/data/developers/data-sets.html)
The United States Census Bureau's American Community Survey (ACS): -What is the American Community Survey? (https://www.census.gov/programs-surveys/acs/about.html) -Geography & ACS (https://www.census.gov/programs-surveys/acs/geography-acs.html) -Technical Documentation (https://www.census.gov/programs-surveys/acs/technical-documentation.html)
Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section. (https://www.census.gov/programs-surveys/acs/technical-documentation/code-lists.html)
Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section. (https://www.census.gov/acs/www/methodology/sample_size_and_data_quality/)
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties.
Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation https://www.census.gov/programs-surveys/acs/technical-documentation.html). The effect of nonsampling error is not represented in these tables.
The NLSS 1995/96 is basically limited to the living standards of households.
The basic objectives of this survey was to provide information required for monitoring the progress in improving national living standards and to evaluate the impact of various government policies and program on living condition of the population. This survey captured comprehensive set of data on different aspects of households welfare like consumption, income, housing, labour markets, education, health etc.
National coverage The 4 strata of the survey: - Mountains - Hills (Urban) - Hills (Rural) - Terai
The survey covered all modified de jure household members (usual residents).
Sample survey data [ssd]
Sample Design
Sample Frame: A complete list of all wards in the country, with a measure of size, was developed in order to select from it with Probability Proportional to Size (PPS) the sample of wards to be visited. The 1991 Population Census of Nepal was the best starting point for building such a sample frame. The Central Bureau of Statistics (CBS) constructed a data set with basic information from the census at the ward level. This data set was used as a sample frame to develop the NLSS sample.
Sample Design: The sample size for the NLSS was set at 3,388 households. This sample was divided into four strata based on the geographic and ecological regions of the country: (i) mountains, (ii) urban Hills, (iii) rural Hills, and (iv) Terai.
The sample size was designed to provide enough observations within each ecological stratum to ensure adequate statistical accuracy, as well as enough variation in key variables for policy analysis within each stratum, while respecting resource constraints and the need to balance sampling and non-sampling errors.
A two-stage stratified sampling procedure was used to select the sample for the NLSS. The primary sampling unit (PSU) is the ward, the smallest administrative unit in the 1991 Population Census. In order to increase the variability of the sample, it was decided that a small number of households - twelve - would be interviewed in each ward. Thus, a total of275 wards was obtained.
In the first stage of the sampling, wards were selected with probability proportional to size (PPS) from each of the four ecological strata, using the number of household in the ward as the measure of size. In order to give the sample an implicit stratification respecting the division of the country into Development Regions, the sample frame was sorted by ascending order of district codes, and these were numbered from East to West. The sample frame considered all the 75 districts in the country, and indeed 73 of them were represented in the sample. In the second stage of the sampling, a fixed number of households were chosen with equal probabilities from each selected PSU.
The two-stage procedure just described has several advantages. It simplified the analysis by providing a self-weighted sample. It also reduced the travel time and cost, as 12 or 16 households are interviewed in each ward. In addition, as the number of households to be interviewed in each ward was known in advance, the procedure made it possible to plan an even workload across different survey teams.
Face-to-face [f2f]
A preliminary draft of the questionnaire was first prepared with several discussions held between the core staff and the consultant to the project. Several documents both received from the world bank as well as from countries that had already conducted such surveys in the past were referred during this process. Subsequently the questionnaire was translated into NepalI.
After a suitable draft design of the questionnaire, a pre-test was conducted in five different places of the country. The places selected for the pre-test were Biratnagar, Rasuwa, Palpa, Nepalganj and Kathmandu Valley. The entire teams created for the pre-test were also represented by either a consultant or an expert from the bank. Feedback received from the field was utilized for necessary improvements in finalizing the seventy page questionnaire.
The content of each questionnaire is as follows:
HOUSEHOLD QUESTIONNAIRE
Section 1. HOUSEHOLD INFORMATION This section served two main purposes: (i) identify every person who is a member of the household, and (ii) provide basic demographic data such as age, sex, and marital status of everyone presently living in the household. In addition, information collected also included data on all economic activities undertaken by household members and on unemployment.
Section 2. HOUSING This section collected information on the type of dwelling occupied by the household, as well as on the household's expenditures on housing and amenities (rent, expenditure on water, garbage collection, electricity, etc.).
Section 3. ACCESS TO FACILITIES This section collected information on the distance from the household's residence to various public facilities and services.
Section 4. MIGRATION This section collected information from the household head on permanent migration for reasons of work or land availability.
Section 5. FOOD EXPENSES AND HOME PRODUCTION This section collected information on all food expenditures of the household, as well as on consumption of food items that the household produced.
Section 6. NON-FOOD EXPENDITURES AND INVENTORY OF DURABLE GOODS This section collected information on expenditure on non-food items (clothing, fuels, items for the house, etc.), as well as on the durable goods owned by the household.
Section 7. EDUCATION This section collected information on literacy for all household members aged 5 years and above, on the level of education for those members who have attended school in the past, and on levelof education and expenditures on schooling for those currently attending an educational institution.
Section 8. HEALTH This section collected information on illnesses, use of medical facilities, expenditure on health care, children's immunization, and diarrhea.
Section 9. ANTHROPOMETRICS This section collected weight and height measurements for all children 3 years or under.
Section 10. MARRIAGE AND MATERNITY HISTORY This section collected information on maternity history, pre/post-natal care, and knowledge/use of family planning methods.
Section 11. WAGE EMPLOYMENT This section collected information on wage employment in agriculture and in non-agricultural activities, as well as on income earned through wage labor.
Section 12. FARMING AND LIVESTOCK This section collected information on all agricultural activities -- land owned or operated, crops grown, use of crops, income from the sale of crops, ownership of livestock, and income from the sale of livestock.
Section 13. NON-FARM ENTERPRISES/ACTIVITIES This section collected information on all non-agricultural enterprises and activities -- type of activity, revenue earned, expenditures, etc.
Section 14. CREDIT AND SAVINGS This section collected information on loans made by the household to others, or loans taken from others by household members, as well as on land, property, or other fixed assets owned by the household.
Section 15. REMITTANCES AND TRANSFERS This section collected information on remittances sent by members of the household to others and on transfers received by members of the household from others.
Section 16. OTHER ASSETS AND INCOME This section collected information on income from all other sources not covered elsewhere in the questionnaire.
Section 17. ADEQUACY OF CONSUMPTION This section collected information on whether the household perceives its level of consumption to be adequate or not.
RURAL COMMUNITY QUESTIONNAIRE
Section 1. POPULATION CHARACTERISTICS AND INFRASTRUCTURES This section collected information on the characteristics of the community, availability of electricity and its services and water supply and sewerage.
Section 2. ACCESS TO FACILITIES Data on services and amenities, education status and health facilities was collected.
Section 3. AGRICULTURE AND FORESTRY Information on the land situation, irrigation systems, crop cycles, wages paid to hired labor, rental rates for cattle and machinery and forestry use were asked in this section.
Section 4. MIGRATION This section collected information on the main migratory movements in and out.
Section 5. DEVELOPMENT PROGRAMS, USER GROUPS, etc. In this section, information on development programs, existence user groups, and the quality of life in the community was collected.
Section 6. RURAL PRIMARY SCHOOL This section collected information on enrollment, infrastructure, and supplies.
Section 7. RURAL HEALTH FACILITY This section collected information on health facilities, equipment and services available, and health personnel in the community.
Section 8. MARKETS AND PRICES This section collected information on local shops, Haat Bazaar, agricultural inputs, sale of crops and the conversion of local units into standard units.
URBAN COMMUNITY QUESTIONNAIRE
Section 1. POPULATION CHARACTERISTICS AND INFRASTRUCTURE Information was collected on the characteristics of the community, availability of electricity, water supply and sewerage system in the ward.
Section 2. ACCESS TO FACILITIES This section collected information on the distance from the community to the various places and public facilities and services.
Section 3. MARKETS AND PRICES This section collected information on the availability and prices of different goods.
Section 4. QUALITY OF LIFE Here the notion of the quality of life in the community was
How does your organization use this dataset? What other NYSERDA or energy-related datasets would you like to see on Open NY? Let us know by emailing OpenNY@nyserda.ny.gov. The Low- to Moderate-Income (LMI) New York State (NYS) Census Population Analysis dataset is resultant from the LMI market database designed by APPRISE as part of the NYSERDA LMI Market Characterization Study (https://www.nyserda.ny.gov/lmi-tool). All data are derived from the U.S. Census Bureau’s American Community Survey (ACS) 1-year Public Use Microdata Sample (PUMS) files for 2013, 2014, and 2015. Each row in the LMI dataset is an individual record for a household that responded to the survey and each column is a variable of interest for analyzing the low- to moderate-income population. The LMI dataset includes: county/county group, households with elderly, households with children, economic development region, income groups, percent of poverty level, low- to moderate-income groups, household type, non-elderly disabled indicator, race/ethnicity, linguistic isolation, housing unit type, owner-renter status, main heating fuel type, home energy payment method, housing vintage, LMI study region, LMI population segment, mortgage indicator, time in home, head of household education level, head of household age, and household weight. The LMI NYS Census Population Analysis dataset is intended for users who want to explore the underlying data that supports the LMI Analysis Tool. The majority of those interested in LMI statistics and generating custom charts should use the interactive LMI Analysis Tool at https://www.nyserda.ny.gov/lmi-tool. This underlying LMI dataset is intended for users with experience working with survey data files and producing weighted survey estimates using statistical software packages (such as SAS, SPSS, or Stata).
The 2005 Guyana HIV/AIDS Indicator Survey (GAIS) is the first household-based, comprehensive survey on HIV/AIDS to be carried out in Guyana. The 2005 GAIS was implemented by the Guyana Responsible Parenthood Association (GRPA) for the Ministry of Health (MoH). ORC Macro of Calverton, Maryland provided technical assistance to the project through its contract with the U.S. Agency for International Development (USAID) under the MEASURE DHS program. Funding to cover technical assistance by ORC Macro and for local costs was provided in their entirety by USAID/Washington and USAID/Guyana.
The 2005 GAIS is a nationally representative sample survey of women and men age 15-49 initiated by MoH with the purpose of obtaining national baseline data for indicators on knowledge/awareness, attitudes, and behavior regarding HIV/AIDS. The survey data can be effectively used to calculate valuable indicators of the President’s Emergency Plan for AIDS Relief (PEPFAR), the Joint United Nations Program on HIV/AIDS (UNAIDS), the United Nations General Assembly Special Session (UNGASS), the United Nations Children Fund (UNICEF) Orphan and Vulnerable Children unit (OVC), and the World Health Organization (WHO), among others. The overall goal of the survey was to provide program managers and policymakers involved in HIV/AIDS programs with information needed to monitor and evaluate existing programs; and to effectively plan and implement future interventions, including resource mobilization and allocation, for combating the HIV/AIDS epidemic in Guyana.
Other objectives of the 2005 GAIS include the support of dissemination and utilization of the results in planning, managing and improving family planning and health services in the country; and enhancing the survey capabilities of the institutions involved in order to facilitate the implementation of surveys of this type in the future.
The 2005 GAIS sampled over 3,000 households and completed interviews with 2,425 eligible women and 1,875 eligible men. In addition to the data on HIV/AIDS indicators, data on the characteristics of households and its members, malaria, infant and child mortality, tuberculosis, fertility, and family planning were also collected.
National
Sample survey data [ssd]
The primary objective of the 2005 GAIS is to provide estimates with acceptable precision for important population characteristics such as HIV/AIDS related knowledge, attitudes, and behavior. The population to be covered by the 2005 GAIS was defined as the universe of all women and men age 15-49 in Guyana.
The major domains to be distinguished in the tabulation of important characteristics for the eligible population are: • Guyana as a whole • The urban area and the rural area each as a separate major domain • Georgetown and the remainder urban areas.
Administratively, Guyana is divided into 10 major regions. For census purposes, each region is further subdivided in enumeration districts (EDs). Each ED is classified as either urban or rural. There is a list of EDs that contains the number of households and population for each ED from the 2002 census. The list of EDs is grouped by administrative units as townships. The available demarcated cartographic material for each ED from the last census makes an adequate sample frame for the 2005 GAIS.
The sampling design had two stages with enumeration districts (EDs) as the primary sampling units (PSUs) and households as the secondary sampling units (SSUs). The standard design for the GAIS called for the selection of 120 EDs. Twenty-five households were selected by systematic random sampling from a full list of households from each of the selected enumeration districts for a total of 3,000 households. All women and men 15-49 years of age in the sample households were eligible to be interviewed with the individual questionnaire.
The database for the recently completed 2002 Census was used as a sampling frame to select the sampling units. In the census frame, EDs are grouped by urban-rural location within the ten administrative regions and they are also ordered in each administrative unit in serpentine fashion. Therefore, this stratification and ordering will be also reflected in the 2005 GAIS sample.
Based on response rates from other surveys in Guyana, around 3,000 interviews of women and somewhat fewer of men expected to be completed in the 3,000 households selected.
Several allocation schemes were considered for the sample of clusters for each urban-rural domain. One option was to allocate clusters to urban and rural areas proportionally to the population in the area. According to the census, the urban population represents only 29 percent of the population of the country. In this case, around 35 clusters out of the 120 would have been allocated to the urban area. Options to obtain the best allocation by region were also examined. It should be emphasized that optimality is not guaranteed at the regional level but the power for analysis is increased in the urban area of Georgetown by departing from proportionality. Upon further analysis of the different options, the selection of an equal number of clusters in each major domain (60 urban and 60 rural) was recommended for the 2005 GAIS. As a result of the nonproportionalallocation of the number of EDs for the urban-rural and regional domains, the household sample for the 2005 GAIS is not a self-weighted sample.
The 2005 GAIS sample of households was selected using a stratified two-stage cluster design consisting of 120 clusters. The first stage-units (primary sampling units or PSUs) are the enumeration areas used for the 2002 Population and Housing Census. The number of EDs (clusters) in each domain area was calculated dividing its total allocated number of households by the sample take (25 households for selection per ED). In each major domain, clusters are selected systematically with probability proportional to size.
The sampling procedures are more fully described in "Guyana HIV/AIDS Indicator Survey 2005 - Final Report" pp.135-138.
Face-to-face [f2f]
Two types of questionnaires were used in the survey, namely: the Household Questionnaire and the Individual Questionnaire. The contents of these questionnaires were based on model questionnaires developed by the MEASURE DHS program. In consultation with USAID/Guyana, MoH, GRPA, and other government agencies and local organizations, the model questionnaires were modified to reflect issues relevant to HIV/AIDS in Guyana. The questionnaires were finalized around mid-May.
The Household Questionnaire was used to list all the usual members and visitors in the selected households. For each person listed, information was collected on sex, age, education, and relationship to the head of the household. An important purpose of the Household Questionnaire was to identify women and men who were eligible for the individual interview.
The Household Questionnaire also collected non-income proxy indicators about the household's dwelling unit, such as the source of water; type of toilet facilities; materials used for the floor, roof and walls of the house; and ownership of various durable goods and land. As part of the Malaria Module, questions were included on ownership and use of mosquito bednets.
The Individual Questionnaire was used to collect information from women and men age 15-49 years and covered the following topics: • Background characteristics (age, education, media exposure, employment, etc.) • Reproductive history (number of births and—for women—a birth history, birth registration, current pregnancy, and current family planning use) • Marriage and sexual activity • Husband’s background • Knowledge about HIV/AIDS and exposure to specific HIV-related mass media programs • Attitudes toward people living with HIV/AIDS • Knowledge and experience with HIV testing • Knowledge and symptoms of other sexually transmitted infections (STIs) • The malaria module and questions on tuberculosis
The processing of the GAIS questionnaires began in mid-July 2005, shortly after the beginning of fieldwork and during the first visit of the ORC Macro data processing specialist. Questionnaires for completed clusters (enumeration districts) were periodically submitted to GRPA offices in Georgetown, where they were edited by data processing personnel who had been trained specifically for this task. The concurrent processing of the data—standard for surveys participating in the DHS program—allowed GRPA to produce field-check tables to monitor response rates and other variables, and advise field teams of any problems that were detected during data entry. All data were entered twice, allowing 100 percent verification. Data processing, including data entry, data editing, and tabulations, was done using CSPro, a program developed by ORC Macro, the U.S. Bureau of Census, and SERPRO for processing surveys and censuses. The data entry and editing of the questionnaires was completed during a second visit by the ORC Macro specialist in mid-September. At this time, a clean data set was produced and basic tables with the basic HIV/AIDS indicators were run. The tables included in the current report were completed by the end of November 2005.
• From a total of 3,055 households in the sample, 2,800 were occupied. Among these households, interviews were completed in 2,608, for a response rate of 93 percent. • A total of 2,776 eligible women were identified and
analyze the current population survey (cps) annual social and economic supplement (asec) with r the annual march cps-asec has been supplying the statistics for the census bureau's report on income, poverty, and health insurance coverage since 1948. wow. the us census bureau and the bureau of labor statistics ( bls) tag-team on this one. until the american community survey (acs) hit the scene in the early aughts (2000s), the current population survey had the largest sample size of all the annual general demographic data sets outside of the decennial census - about two hundred thousand respondents. this provides enough sample to conduct state- and a few large metro area-level analyses. your sample size will vanish if you start investigating subgroups b y state - consider pooling multiple years. county-level is a no-no. despite the american community survey's larger size, the cps-asec contains many more variables related to employment, sources of income, and insurance - and can be trended back to harry truman's presidency. aside from questions specifically asked about an annual experience (like income), many of the questions in this march data set should be t reated as point-in-time statistics. cps-asec generalizes to the united states non-institutional, non-active duty military population. the national bureau of economic research (nber) provides sas, spss, and stata importation scripts to create a rectangular file (rectangular data means only person-level records; household- and family-level information gets attached to each person). to import these files into r, the parse.SAScii function uses nber's sas code to determine how to import the fixed-width file, then RSQLite to put everything into a schnazzy database. you can try reading through the nber march 2012 sas importation code yourself, but it's a bit of a proc freak show. this new github repository contains three scripts: 2005-2012 asec - download all microdata.R down load the fixed-width file containing household, family, and person records import by separating this file into three tables, then merge 'em together at the person-level download the fixed-width file containing the person-level replicate weights merge the rectangular person-level file with the replicate weights, then store it in a sql database create a new variable - one - in the data table 2012 asec - analysis examples.R connect to the sql database created by the 'download all microdata' progr am create the complex sample survey object, using the replicate weights perform a boatload of analysis examples replicate census estimates - 2011.R connect to the sql database created by the 'download all microdata' program create the complex sample survey object, using the replicate weights match the sas output shown in the png file below 2011 asec replicate weight sas output.png statistic and standard error generated from the replicate-weighted example sas script contained in this census-provided person replicate weights usage instructions document. click here to view these three scripts for more detail about the current population survey - annual social and economic supplement (cps-asec), visit: the census bureau's current population survey page the bureau of labor statistics' current population survey page the current population survey's wikipedia article notes: interviews are conducted in march about experiences during the previous year. the file labeled 2012 includes information (income, work experience, health insurance) pertaining to 2011. when you use the current populat ion survey to talk about america, subract a year from the data file name. as of the 2010 file (the interview focusing on america during 2009), the cps-asec contains exciting new medical out-of-pocket spending variables most useful for supplemental (medical spending-adjusted) poverty research. confidential to sas, spss, stata, sudaan users: why are you still rubbing two sticks together after we've invented the butane lighter? time to transition to r. :D