100+ datasets found
  1. w

    Reproductive and Child Health Survey 1999 - Tanzania

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Jun 6, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Bureau of Statistics (NBS) (2017). Reproductive and Child Health Survey 1999 - Tanzania [Dataset]. https://microdata.worldbank.org/index.php/catalog/1508
    Explore at:
    Dataset updated
    Jun 6, 2017
    Dataset authored and provided by
    National Bureau of Statistics (NBS)
    Time period covered
    1999
    Area covered
    Tanzania
    Description

    Abstract

    The Tanzania Demographic and Health Survey (TDHS) is part of the worldwide Demographic and Health Surveys (DHS) programme, which is designed to collect data on fertility, family planning, and maternal and child health.

    The primary objective of the 1999 TRCHS was to collect data at the national level (with breakdowns by urban-rural and Mainland-Zanzibar residence wherever warranted) on fertility levels and preferences, family planning use, maternal and child health, breastfeeding practices, nutritional status of young children, childhood mortality levels, knowledge and behaviour regarding HIV/AIDS, and the availability of specific health services within the community.1 Related objectives were to produce these results in a timely manner and to ensure that the data were disseminated to a wide audience of potential users in governmental and nongovernmental organisations within and outside Tanzania. The ultimate intent is to use the information to evaluate current programmes and to design new strategies for improving health and family planning services for the people of Tanzania.

    Geographic coverage

    National. The sample was designed to provide estimates for the whole country, for urban and rural areas separately, and for Zanzibar and, in some cases, Unguja and Pemba separately.

    Analysis unit

    • Households
    • Children under five years
    • Women age 15-49
    • Men age 15-59

    Kind of data

    Sample survey data

    Sampling procedure

    The TRCHS used a three-stage sample design. Overall, 176 census enumeration areas were selected (146 on the Mainland and 30 in Zanzibar) with probability proportional to size on an approximately self-weighting basis on the Mainland, but with oversampling of urban areas and Zanzibar. To reduce costs and maximise the ability to identify trends over time, these enumeration areas were selected from the 357 sample points that were used in the 1996 TDHS, which in turn were selected from the 1988 census frame of enumeration in a two-stage process (first wards/branches and then enumeration areas within wards/branches). Before the data collection, fieldwork teams visited the selected enumeration areas to list all the households. From these lists, households were selected to be interviewed. The sample was designed to provide estimates for the whole country, for urban and rural areas separately, and for Zanzibar and, in some cases, Unguja and Pemba separately. The health facilities component of the TRCHS involved visiting hospitals, health centres, and pharmacies located in areas around the households interviewed. In this way, the data from the two components can be linked and a richer dataset produced.

    See detailed sample implementation in the APPENDIX A of the final report.

    Mode of data collection

    Face-to-face

    Research instrument

    The household survey component of the TRCHS involved three questionnaires: 1) a Household Questionnaire, 2) a Women’s Questionnaire for all individual women age 15-49 in the selected households, and 3) a Men’s Questionnaire for all men age 15-59.

    The health facilities survey involved six questionnaires: 1) a Community Questionnaire administered to men and women in each selected enumeration area; 2) a Facility Questionnaire; 3) a Facility Inventory; 4) a Service Provider Questionnaire; 5) a Pharmacy Inventory Questionnaire; and 6) a questionnaire for the District Medical Officers.

    All these instruments were based on model questionnaires developed for the MEASURE programme, as well as on the questionnaires used in the 1991-92 TDHS, the 1994 TKAP, and the 1996 TDHS. These model questionnaires were adapted for use in Tanzania during meetings with representatives from the Ministry of Health, the University of Dar es Salaam, the Tanzania Food and Nutrition Centre, USAID/Tanzania, UNICEF/Tanzania, UNFPA/Tanzania, and other potential data users. The questionnaires and manual were developed in English and then translated into and printed in Kiswahili.

    The Household Questionnaire was used to list all the usual members and visitors in the selected households. Some basic information was collected on the characteristics of each person listed, including his/her age, sex, education, and relationship to the head of the household. The main purpose of the Household Questionnaire was to identify women and men who were eligible for individual interview and children under five who were to be weighed and measured. Information was also collected about the dwelling itself, such as the source of water, type of toilet facilities, materials used to construct the house, ownership of various consumer goods, and use of iodised salt. Finally, the Household Questionnaire was used to collect some rudimentary information about the extent of child labour.

    The Women’s Questionnaire was used to collect information from women age 15-49. These women were asked questions on the following topics: · Background characteristics (age, education, religion, type of employment) · Birth history · Knowledge and use of family planning methods · Antenatal, delivery, and postnatal care · Breastfeeding and weaning practices · Vaccinations, birth registration, and health of children under age five · Marriage and recent sexual activity · Fertility preferences · Knowledge and behaviour concerning HIV/AIDS.

    The Men’s Questionnaire covered most of these same issues, except that it omitted the sections on the detailed reproductive history, maternal health, and child health. The final versions of the English questionnaires are provided in Appendix E.

    Before the questionnaires could be finalised, a pretest was done in July 1999 in Kibaha District to assess the viability of the questions, the flow and logical sequence of the skip pattern, and the field organisation. Modifications to the questionnaires, including wording and translations, were made based on lessons drawn from the exercise.

    Response rate

    In all, 3,826 households were selected for the sample, out of which 3,677 were occupied. Of the households found, 3,615 were interviewed, representing a response rate of 98 percent. The shortfall is primarily due to dwellings that were vacant or in which the inhabitants were not at home despite of several callbacks.

    In the interviewed households, a total of 4,118 eligible women (i.e., women age 15-49) were identified for the individual interview, and 4,029 women were actually interviewed, yielding a response rate of 98 percent. A total of 3,792 eligible men (i.e., men age 15-59), were identified for the individual interview, of whom 3,542 were interviewed, representing a response rate of 93 percent. The principal reason for nonresponse among both eligible men and women was the failure to find them at home despite repeated visits to the household. The lower response rate among men than women was due to the more frequent and longer absences of men.

    The response rates are lower in urban areas due to longer absence of respondents from their homes. One-member households are more common in urban areas and are more difficult to interview because they keep their houses locked most of the time. In urban settings, neighbours often do not know the whereabouts of such people.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: (1) non-sampling errors, and (2) sampling errors. Non-sampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the TRCHS to minimise this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the TRCHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the TRCHS sample is the result of a two-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the TRCHS is the ISSA Sampling Error Module (SAMPERR). This module used the Taylor linearisation method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rate

    Note: See detailed sampling error calculation in the APPENDIX B

  2. i

    Household Expenditure and Income Survey 2010, Economic Research Forum (ERF)...

    • catalog.ihsn.org
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Hashemite Kingdom of Jordan Department of Statistics (DOS) (2019). Household Expenditure and Income Survey 2010, Economic Research Forum (ERF) Harmonization Data - Jordan [Dataset]. https://catalog.ihsn.org/index.php/catalog/7662
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    The Hashemite Kingdom of Jordan Department of Statistics (DOS)
    Time period covered
    2010 - 2011
    Area covered
    Jordan
    Description

    Abstract

    The main objective of the HEIS survey is to obtain detailed data on household expenditure and income, linked to various demographic and socio-economic variables, to enable computation of poverty indices and determine the characteristics of the poor and prepare poverty maps. Therefore, to achieve these goals, the sample had to be representative on the sub-district level. The raw survey data provided by the Statistical Office was cleaned and harmonized by the Economic Research Forum, in the context of a major research project to develop and expand knowledge on equity and inequality in the Arab region. The main focus of the project is to measure the magnitude and direction of change in inequality and to understand the complex contributing social, political and economic forces influencing its levels. However, the measurement and analysis of the magnitude and direction of change in this inequality cannot be consistently carried out without harmonized and comparable micro-level data on income and expenditures. Therefore, one important component of this research project is securing and harmonizing household surveys from as many countries in the region as possible, adhering to international statistics on household living standards distribution. Once the dataset has been compiled, the Economic Research Forum makes it available, subject to confidentiality agreements, to all researchers and institutions concerned with data collection and issues of inequality.

    Data collected through the survey helped in achieving the following objectives: 1. Provide data weights that reflect the relative importance of consumer expenditure items used in the preparation of the consumer price index 2. Study the consumer expenditure pattern prevailing in the society and the impact of demographic and socio-economic variables on those patterns 3. Calculate the average annual income of the household and the individual, and assess the relationship between income and different economic and social factors, such as profession and educational level of the head of the household and other indicators 4. Study the distribution of individuals and households by income and expenditure categories and analyze the factors associated with it 5. Provide the necessary data for the national accounts related to overall consumption and income of the household sector 6. Provide the necessary income data to serve in calculating poverty indices and identifying the poor characteristics as well as drawing poverty maps 7. Provide the data necessary for the formulation, follow-up and evaluation of economic and social development programs, including those addressed to eradicate poverty

    Geographic coverage

    National

    Analysis unit

    • Households
    • Individuals

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The Household Expenditure and Income survey sample for 2010, was designed to serve the basic objectives of the survey through providing a relatively large sample in each sub-district to enable drawing a poverty map in Jordan. The General Census of Population and Housing in 2004 provided a detailed framework for housing and households for different administrative levels in the country. Jordan is administratively divided into 12 governorates, each governorate is composed of a number of districts, each district (Liwa) includes one or more sub-district (Qada). In each sub-district, there are a number of communities (cities and villages). Each community was divided into a number of blocks. Where in each block, the number of houses ranged between 60 and 100 houses. Nomads, persons living in collective dwellings such as hotels, hospitals and prison were excluded from the survey framework.

    A two stage stratified cluster sampling technique was used. In the first stage, a cluster sample proportional to the size was uniformly selected, where the number of households in each cluster was considered the weight of the cluster. At the second stage, a sample of 8 households was selected from each cluster, in addition to another 4 households selected as a backup for the basic sample, using a systematic sampling technique. Those 4 households were sampled to be used during the first visit to the block in case the visit to the original household selected is not possible for any reason. For the purposes of this survey, each sub-district was considered a separate stratum to ensure the possibility of producing results on the sub-district level. In this respect, the survey framework adopted that provided by the General Census of Population and Housing Census in dividing the sample strata. To estimate the sample size, the coefficient of variation and the design effect of the expenditure variable provided in the Household Expenditure and Income Survey for the year 2008 was calculated for each sub-district. These results were used to estimate the sample size on the sub-district level so that the coefficient of variation for the expenditure variable in each sub-district is less than 10%, at a minimum, of the number of clusters in the same sub-district (6 clusters). This is to ensure adequate presentation of clusters in different administrative areas to enable drawing an indicative poverty map.

    It should be noted that in addition to the standard non response rate assumed, higher rates were expected in areas where poor households are concentrated in major cities. Therefore, those were taken into consideration during the sampling design phase, and a higher number of households were selected from those areas, aiming at well covering all regions where poverty spreads.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    • General form
    • Expenditure on food commodities form
    • Expenditure on non-food commodities form

    Cleaning operations

    Raw Data: - Organizing forms/questionnaires: A compatible archive system was used to classify the forms according to different rounds throughout the year. A registry was prepared to indicate different stages of the process of data checking, coding and entry till forms were back to the archive system. - Data office checking: This phase was achieved concurrently with the data collection phase in the field where questionnaires completed in the field were immediately sent to data office checking phase. - Data coding: A team was trained to work on the data coding phase, which in this survey is only limited to education specialization, profession and economic activity. In this respect, international classifications were used, while for the rest of the questions, coding was predefined during the design phase. - Data entry/validation: A team consisting of system analysts, programmers and data entry personnel were working on the data at this stage. System analysts and programmers started by identifying the survey framework and questionnaire fields to help build computerized data entry forms. A set of validation rules were added to the entry form to ensure accuracy of data entered. A team was then trained to complete the data entry process. Forms prepared for data entry were provided by the archive department to ensure forms are correctly extracted and put back in the archive system. A data validation process was run on the data to ensure the data entered is free of errors. - Results tabulation and dissemination: After the completion of all data processing operations, ORACLE was used to tabulate the survey final results. Those results were further checked using similar outputs from SPSS to ensure that tabulations produced were correct. A check was also run on each table to guarantee consistency of figures presented, together with required editing for tables' titles and report formatting.

    Harmonized Data: - The Statistical Package for Social Science (SPSS) was used to clean and harmonize the datasets. - The harmonization process started with cleaning all raw data files received from the Statistical Office. - Cleaned data files were then merged to produce one data file on the individual level containing all variables subject to harmonization. - A country-specific program was generated for each dataset to generate/compute/recode/rename/format/label harmonized variables. - A post-harmonization cleaning process was run on the data. - Harmonized data was saved on the household as well as the individual level, in SPSS and converted to STATA format.

  3. 2022 Economic Census: EC2242EOYINV | Wholesale Trade: Inventories by...

    • data.census.gov
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECN, 2022 Economic Census: EC2242EOYINV | Wholesale Trade: Inventories by Valuation Method for the U.S.: 2022 (ECN Sector Statistics Sector 42: Wholesale Trade) [Dataset]. https://data.census.gov/table/ECNEOYINV2022.EC2242EOYINV
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ECN
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2022
    Area covered
    United States
    Description

    Key Table Information.Table Title.Wholesale Trade: Inventories by Valuation Method for the U.S.: 2022.Table ID.ECNEOYINV2022.EC2242EOYINV.Survey/Program.Economic Census.Year.2022.Dataset.ECN Sector Statistics Sector 42: Wholesale Trade.Source.U.S. Census Bureau, 2022 Economic Census, Sector Statistics.Release Date.2025-07-31.Release Schedule.The Economic Census occurs every five years, in years ending in 2 and 7.The data in this file come from the 2022 Economic Census data files released on a flow basis starting in January 2024 with First Look Statistics. Preliminary U.S. totals released in January 2024 are superseded with final data shown in the releases of later economic census statistics through March 2026.For more information about economic census planned data product releases, see 2022 Economic Census Release Schedule..Dataset Universe.The dataset universe consists of all establishments that are in operation for at least some part of 2022, are located in one of the 50 U.S. states, associated offshore areas, or the District of Columbia, have paid employees, and are classified in one of nineteen in-scope sectors defined by the 2022 North American Industry Classification System (NAICS)..Methodology.Data Items and Other Identifying Records.Total inventories, beginning of year ($1,000)LIFO reserve, beginning of year ($1,000)Total inventories, end of year ($1,000)LIFO reserve, end of year ($1,000)Last-in, first-out (LIFO) inventory valuation, end of year ($1,000)First-in, first-out (FIFO) inventory valuation, end of year ($1,000)Average cost inventory valuation, end of year ($1,000)Standard cost inventory valuation, end of year ($1,000)Other non-LIFO inventory valuation, end of year ($1,000)Response coverage of inventories by valuation method inquiry (%)Definitions can be found by clicking on the column header in the table or by accessing the Economic Census Glossary..Unit(s) of Observation.The reporting units for the economic census are employer establishments. An establishment is generally a single physical location where business is conducted or where services or industrial operations are performed. A company or firm is comprised of one or more in-scope establishments that operate under the ownership or control of a single organization. For some industries, the reporting units are instead groups of all establishments in the same industry belonging to the same firm..Geography Coverage.The data are shown for the U.S. level only. For information about economic census geographies, including changes for 2022, see Geographies..Industry Coverage.The data are shown at the 2- through 7-digit 2022 NAICS code levels and selected 8-digit 2022 NAICS-based code levels. For information about NAICS, see Economic Census Code Lists..Business Characteristics.For Wholesale Trade (42), data are presented by Type of Operation (All Establishments; Merchant Wholesalers, except Manufacturers' Sales Branches and Offices; and Manufacturers' Sales Branches and Offices)..Sampling.The 2022 Economic Census sample includes all active operating establishments of multi-establishment firms and approximately 1.7 million single-establishment firms, stratified by industry and state. Establishments selected to the sample receive a questionnaire. For some data on this table, estimates come only from the establishments selected into the sample. For more information about the sample design, see 2022 Economic Census Methodology..Confidentiality.The Census Bureau has reviewed this data product to ensure appropriate access, use, and disclosure avoidance protection of the confidential source data (Project No. 7504609, Disclosure Review Board (DRB) approval number: CBDRB-FY23-099).To protect confidentiality, the U.S. Census Bureau suppresses cell values to minimize the risk of identifying a particular business’ data or identity.To comply with disclosure avoidance guidelines, data rows with fewer than three contributing firms or three contributing establishments are not presented. Additionally, establishment counts are suppressed when other select statistics in the same row are suppressed. More information on disclosure avoidance is available in the 2022 Economic Census Methodology..Technical Documentation/Methodology.For detailed information about the methods used to collect data and produce statistics, survey questionnaires, Primary Business Activity/NAICS codes, NAPCS codes, and more, see Economic Census Technical Documentation..Weights.For some data on this table, estimates come only from the establishments selected into the sample. For these estimates, selected establishments have sampling weights equal to the inverse of their selection probability, generally between 1 and 40. There is further weighting to account for nonresponse and to ensure that detailed estimates sum to basic statistics where applicable. For more information on weighting, see 2022 Economic Census Methodology..Table Information.FTP Download.https://www2.census.gov/programs-s...

  4. w

    Afrobarometer Survey 1 1999-2000, Merged 7 Country - Botswana, Lesotho,...

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Apr 27, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Institute for Democracy in South Africa (IDASA) (2021). Afrobarometer Survey 1 1999-2000, Merged 7 Country - Botswana, Lesotho, Malawi, Namibia, South Africa, Zambia, Zimbabwe [Dataset]. https://microdata.worldbank.org/index.php/catalog/889
    Explore at:
    Dataset updated
    Apr 27, 2021
    Dataset provided by
    Michigan State University (MSU)
    Ghana Centre for Democratic Development (CDD-Ghana)
    Institute for Democracy in South Africa (IDASA)
    Time period covered
    1999 - 2000
    Area covered
    Namibia, Malawi, Lesotho, Zimbabwe, Africa, Botswana, Zambia, South Africa
    Description

    Abstract

    Round 1 of the Afrobarometer survey was conducted from July 1999 through June 2001 in 12 African countries, to solicit public opinion on democracy, governance, markets, and national identity. The full 12 country dataset released was pieced together out of different projects, Round 1 of the Afrobarometer survey,the old Southern African Democracy Barometer, and similar surveys done in West and East Africa.

    The 7 country dataset is a subset of the Round 1 survey dataset, and consists of a combined dataset for the 7 Southern African countries surveyed with other African countries in Round 1, 1999-2000 (Botswana, Lesotho, Malawi, Namibia, South Africa, Zambia and Zimbabwe). It is a useful dataset because, in contrast to the full 12 country Round 1 dataset, all countries in this dataset were surveyed with the identical questionnaire

    Geographic coverage

    Botswana Lesotho Malawi Namibia South Africa Zambia Zimbabwe

    Analysis unit

    Basic units of analysis that the study investigates include: individuals and groups

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    A new sample has to be drawn for each round of Afrobarometer surveys. Whereas the standard sample size for Round 3 surveys will be 1200 cases, a larger sample size will be required in societies that are extremely heterogeneous (such as South Africa and Nigeria), where the sample size will be increased to 2400. Other adaptations may be necessary within some countries to account for the varying quality of the census data or the availability of census maps.

    The sample is designed as a representative cross-section of all citizens of voting age in a given country. The goal is to give every adult citizen an equal and known chance of selection for interview. We strive to reach this objective by (a) strictly applying random selection methods at every stage of sampling and by (b) applying sampling with probability proportionate to population size wherever possible. A randomly selected sample of 1200 cases allows inferences to national adult populations with a margin of sampling error of no more than plus or minus 2.5 percent with a confidence level of 95 percent. If the sample size is increased to 2400, the confidence interval shrinks to plus or minus 2 percent.

    Sample Universe

    The sample universe for Afrobarometer surveys includes all citizens of voting age within the country. In other words, we exclude anyone who is not a citizen and anyone who has not attained this age (usually 18 years) on the day of the survey. Also excluded are areas determined to be either inaccessible or not relevant to the study, such as those experiencing armed conflict or natural disasters, as well as national parks and game reserves. As a matter of practice, we have also excluded people living in institutionalized settings, such as students in dormitories and persons in prisons or nursing homes.

    What to do about areas experiencing political unrest? On the one hand we want to include them because they are politically important. On the other hand, we want to avoid stretching out the fieldwork over many months while we wait for the situation to settle down. It was agreed at the 2002 Cape Town Planning Workshop that it is difficult to come up with a general rule that will fit all imaginable circumstances. We will therefore make judgments on a case-by-case basis on whether or not to proceed with fieldwork or to exclude or substitute areas of conflict. National Partners are requested to consult Core Partners on any major delays, exclusions or substitutions of this sort.

    Sample Design

    The sample design is a clustered, stratified, multi-stage, area probability sample.

    To repeat the main sampling principle, the objective of the design is to give every sample element (i.e. adult citizen) an equal and known chance of being chosen for inclusion in the sample. We strive to reach this objective by (a) strictly applying random selection methods at every stage of sampling and by (b) applying sampling with probability proportionate to population size wherever possible.

    In a series of stages, geographically defined sampling units of decreasing size are selected. To ensure that the sample is representative, the probability of selection at various stages is adjusted as follows:

    The sample is stratified by key social characteristics in the population such as sub-national area (e.g. region/province) and residential locality (urban or rural). The area stratification reduces the likelihood that distinctive ethnic or language groups are left out of the sample. And the urban/rural stratification is a means to make sure that these localities are represented in their correct proportions. Wherever possible, and always in the first stage of sampling, random sampling is conducted with probability proportionate to population size (PPPS). The purpose is to guarantee that larger (i.e., more populated) geographical units have a proportionally greater probability of being chosen into the sample. The sampling design has four stages

    A first-stage to stratify and randomly select primary sampling units;

    A second-stage to randomly select sampling start-points;

    A third stage to randomly choose households;

    A final-stage involving the random selection of individual respondents

    We shall deal with each of these stages in turn.

    STAGE ONE: Selection of Primary Sampling Units (PSUs)

    The primary sampling units (PSU's) are the smallest, well-defined geographic units for which reliable population data are available. In most countries, these will be Census Enumeration Areas (or EAs). Most national census data and maps are broken down to the EA level. In the text that follows we will use the acronyms PSU and EA interchangeably because, when census data are employed, they refer to the same unit.

    We strongly recommend that NIs use official national census data as the sampling frame for Afrobarometer surveys. Where recent or reliable census data are not available, NIs are asked to inform the relevant Core Partner before they substitute any other demographic data. Where the census is out of date, NIs should consult a demographer to obtain the best possible estimates of population growth rates. These should be applied to the outdated census data in order to make projections of population figures for the year of the survey. It is important to bear in mind that population growth rates vary by area (region) and (especially) between rural and urban localities. Therefore, any projected census data should include adjustments to take such variations into account.

    Indeed, we urge NIs to establish collegial working relationships within professionals in the national census bureau, not only to obtain the most recent census data, projections, and maps, but to gain access to sampling expertise. NIs may even commission a census statistician to draw the sample to Afrobarometer specifications, provided that provision for this service has been made in the survey budget.

    Regardless of who draws the sample, the NIs should thoroughly acquaint themselves with the strengths and weaknesses of the available census data and the availability and quality of EA maps. The country and methodology reports should cite the exact census data used, its known shortcomings, if any, and any projections made from the data. At minimum, the NI must know the size of the population and the urban/rural population divide in each region in order to specify how to distribute population and PSU's in the first stage of sampling. National investigators should obtain this written data before they attempt to stratify the sample.

    Once this data is obtained, the sample population (either 1200 or 2400) should be stratified, first by area (region/province) and then by residential locality (urban or rural). In each case, the proportion of the sample in each locality in each region should be the same as its proportion in the national population as indicated by the updated census figures.

    Having stratified the sample, it is then possible to determine how many PSU's should be selected for the country as a whole, for each region, and for each urban or rural locality.

    The total number of PSU's to be selected for the whole country is determined by calculating the maximum degree of clustering of interviews one can accept in any PSU. Because PSUs (which are usually geographically small EAs) tend to be socially homogenous we do not want to select too many people in any one place. Thus, the Afrobarometer has established a standard of no more than 8 interviews per PSU. For a sample size of 1200, the sample must therefore contain 150 PSUs/EAs (1200 divided by 8). For a sample size of 2400, there must be 300 PSUs/EAs.

    These PSUs should then be allocated proportionally to the urban and rural localities within each regional stratum of the sample. Let's take a couple of examples from a country with a sample size of 1200. If the urban locality of Region X in this country constitutes 10 percent of the current national population, then the sample for this stratum should be 15 PSUs (calculated as 10 percent of 150 PSUs). If the rural population of Region Y constitutes 4 percent of the current national population, then the sample for this stratum should be 6 PSU's.

    The next step is to select particular PSUs/EAs using random methods. Using the above example of the rural localities in Region Y, let us say that you need to pick 6 sample EAs out of a census list that contains a total of 240 rural EAs in Region Y. But which 6? If the EAs created by the national census bureau are of equal or roughly equal population size, then selection is relatively straightforward. Just number all EAs consecutively, then make six selections using a table of random numbers. This procedure, known as simple random sampling (SRS), will

  5. d

    Mikrocensus 1971, 2. quarter: Additional Questions for the Population Census...

    • demo-b2find.dkrz.de
    Updated Nov 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Mikrocensus 1971, 2. quarter: Additional Questions for the Population Census - Dataset - B2FIND [Dataset]. http://demo-b2find.dkrz.de/dataset/0f908f62-9230-504f-8df5-5deaf23a6cc5
    Explore at:
    Dataset updated
    Nov 11, 2025
    Description

    In Austria a population census takes place every 10 years; this census contains a program of important statistical data on population and employment. They roughly corresponds to the information in the Mikrozensus standard survey but are more detailed (for instance with question on the connection of the place of residence and the workplace, questions on education, confession, etc.) Population and Mikrozensus are closely linked which the name already implies: Mikrozensus means a small-scale population census; this should demonstrate that what the population census reports only every 10 years, the Mikrozensus reports through the method of ongoing sampling. These ongoing sample are also collected in the years of the population census. The Mikrozensus however is far more detailed than the survey program of the population census because the Mikrozensus special surveys offer the possibility of asking questions which are fare beyond the scope of the population census. This complementary function of Mikrozensus and population census becomes especially obvious in the June-survey: certain questions that could not be posed in the population census due to the limited program were answered in the Mikrozensus via sampling. These were the topics: questions on the social stratification of the population questions on fertility and succession of birth questions on the silent Human Resources

  6. Downscaling livestock census data using multivariate predictive models:...

    • plos.figshare.com
    tiff
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Daniele Da Re; Marius Gilbert; Celia Chaiban; Pierre Bourguignon; Weerapong Thanapongtharm; Timothy P. Robinson; Sophie O. Vanwambeke (2023). Downscaling livestock census data using multivariate predictive models: Sensitivity to modifiable areal unit problem [Dataset]. http://doi.org/10.1371/journal.pone.0221070
    Explore at:
    tiffAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Daniele Da Re; Marius Gilbert; Celia Chaiban; Pierre Bourguignon; Weerapong Thanapongtharm; Timothy P. Robinson; Sophie O. Vanwambeke
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The analysis of census data aggregated by administrative units introduces a statistical bias known as the modifiable areal unit problem (MAUP). Previous researches have mostly assessed the effect of MAUP on upscaling models. The present study contributes to clarify the effects of MAUP on the downscaling methodologies, highlighting how a priori choices of scales and shapes could influence the results. We aggregated chicken and duck fine-resolution census in Thailand, using three administrative census levels in regular and irregular shapes. We then disaggregated the data within the Gridded Livestock of the World analytical framework, sampling predictors in two different ways. A sensitivity analysis on Pearson’s r correlation statistics and RMSE was carried out to understand how size and shapes of the response variables affect the goodness-of-fit and downscaling performances. We showed that scale, rather than shapes and sampling methods, affected downscaling precision, suggesting that training the model using the finest administrative level available is preferable. Moreover, datasets showing non-homogeneous distribution but instead spatial clustering seemed less affected by MAUP, yielding higher Pearson’s r values and lower RMSE compared to a more spatially homogenous dataset. Implementing aggregation sensitivity analysis in spatial studies could help to interpret complex results and disseminate robust products.

  7. Geocoded Baltimore City Telephone Survey 2006

    • search.dataone.org
    Updated Oct 14, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cary Institute Of Ecosystem Studies; Jarlath O'Neil-Dunne (2013). Geocoded Baltimore City Telephone Survey 2006 [Dataset]. https://search.dataone.org/view/knb-lter-bes.335.570
    Explore at:
    Dataset updated
    Oct 14, 2013
    Dataset provided by
    Long Term Ecological Research Networkhttp://www.lternet.edu/
    Authors
    Cary Institute Of Ecosystem Studies; Jarlath O'Neil-Dunne
    Time period covered
    Jan 1, 2004 - Nov 17, 2011
    Area covered
    Description

    Geocoded for Baltimore City County. The BES Household Survey 2003 is a telephone survey of metropolitan Baltimore residents consisting of 29 questions. The survey research firm, Hollander, Cohen, and McBride conducted the survey, asking respondents questions about their outdoor recreation activities, watershed knowledge, environmental behavior, neighborhood characteristics and quality of life, lawn maintenance, satisfaction with life, neighborhood, and the environment, and demographic information. The data from each respondent is also associated with a PRIZM(r) classification, census block group, and latitude-longitude. PRIZM(r) classifications categorize the American population using Census data, market research surveys, public opinion polls, and point-of-purchase receipts. The PRIZM(r) classification is spatially explicit allowing the survey data to be viewed and analyzed spatially and allowing specific neighborhood types to be identified and compared based on the survey data. The census block group and latitude-longitude data also allow us additional methods of presenting and analyzing the data spatially. The household survey is part of the core data collection of the Baltimore Ecosystem Study to classify and characterize social and ecological dimensions of neighborhoods (patches) over time and across space. This survey is linked to other core data including US Census data, remotely-sensed data, and field data collection, including the BES DemSoc Field Observation Survey. The BES 2003 telephone survey was conducted by Hollander, Cohen, and McBride from September 1-30, 2003. The sample was obtained from the professional sampling firm Claritas, in order that their "PRIZM" encoding would be appended to each piece of sample (telephone number) supplied. Mailing addresses were also obtained so that a postcard could be sent in advance of interviewers calling. The postcard briefly informed potential respondents about the survey, who was conducting it, and that they might receive a phone call in the next few weeks. A stratified sampling method was used to obtain between 50 - 150 respondents in each of the 15 main PRIZM classifications. This allows direct comparison of PRIZM classifications. Analysis of the data for the general metropolitan Baltimore area must be weighted to match the population proportions normally found in the region. They obtained a total of 9000 telephone numbers in the sample. All 9,000 numbers were dialed but contact was only made on 4,880. 1508 completed an interview, 2524 refused immediately, 147 broke off/incomplete, 84 respondents had moved and were no longer in the correct location, and a qualified respondent was not available on 617 calls. This resulted in a response rate of 36.1% compared with a response rate of 28.2% in 2000. The CATI software (Computer Assisted Terminal Interviewing) randomized the random sample supplied, and was programmed for at least 3 attempted callbacks per number, with emphasis on pulling available callback sample prior to accessing uncalled numbers. Calling was conducted only during evening and weekend hours, when most head of households are home. The use of CATI facilitated stratified sampling on PRIZM classifications, centralized data collection, standardized interviewer training, and reduced the overall cost of primary data collection. Additionally, to reduce respondent burden, the questionnaire was revised to be concise, easy to understand, minimize the use of open-ended responses, and require an average of 15 minutes to complete. The household survey is part of the core data collection of the Baltimore Ecosystem Study to classify and characterize social and ecological dimensions of neighborhoods (patches) over time and across space. This survey is linked to other core data, including US Census data, remotely-sensed data, and field data collection, including the BES DemSoc Field Observation Survey. Additional documentation of this database is attached to this metadata and includes 4 documents, 1) the telephone survey, 2) documentation of the telephone survey, 3) metadata for the telephone survey, and 4) a description of the attribute data in the BES survey 2003 survey. This database was created by joining the GDT geographic database of US Census Block Group geographies for the Baltimore Metropolitan Statisticsal Area (MSA), with the Claritas PRIZM database, 2003, of unique classifications of each Census Block Group, and the unique PRIZM code for each respondent from the BES Household Telephone Survey, 2003. The GDT database is preferred and used because of its higher spatial accuracy than other databases describing US Census geographies, including those provided by the US Census. This database includes data only for environmental behaviors: How likely would you be to take part in the following efforts to improve and maintain the quality of the watershe... Visit https://dataone.org/datasets/knb-lter-bes.335.570 for complete metadata about this dataset.

  8. South African Census 2011, 10% Sample - South Africa

    • datafirst.uct.ac.za
    Updated Sep 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics South Africa (2024). South African Census 2011, 10% Sample - South Africa [Dataset]. http://www.datafirst.uct.ac.za/Dataportal/index.php/catalog/485
    Explore at:
    Dataset updated
    Sep 18, 2024
    Dataset authored and provided by
    Statistics South Africahttp://www.statssa.gov.za/
    Time period covered
    2011
    Area covered
    South Africa
    Description

    Abstract

    Censuses are principal means of collecting basic population and housing statistics required for social and economic development, policy interventions, their implementation and evaluation. The Post-Apartheid South African government has conducted three Censuses, in 1996, 2001 and 2011.

    Geographic coverage

    The South African Census 2011 has national coverage.

    Analysis unit

    Households and individuals

    Universe

    The South African Census 2011 covered every person present in South Africa on Census Night, 9-31 October 2011 including all de jure household members and residents of institutions.

    Kind of data

    Census/enumeration data

    Sampling procedure

    The sampling frame for the PES was the complete list of Census 2011 EAs, amounting to 103 576 EAs. The primary sampling units (PSUs) were the Census EAs. The principle for selecting the PES sample is that the EA boundaries for sampled EAs should have well defined boundaries, and these boundaries should correspond with those of Census EAs to allow for item-by-item comparison between the Census and PES records. The stratification and sampling process followed will allow for the provision of estimates at national, provincial, urban (geography type = urban) and non-urban (geography type = farm and traditional) levels, but estimates will only be reliable at national and provincial levels. The sample of 600 EAs was selected and allocated to the provinces based on expected standard errors which were based on those obtained in PES 2001. Populations in institutions (other than Workers' Hostels), floating and homeless individuals were excluded from the PES sample.

    The data files in the dataset include Household, Person, and Mortality files. The 10% sample for the Mortality data file was sampled separately and is not the same as the 10% sample for Household file and Person file.

    Mode of data collection

    Face-to-face

    Research instrument

    Three sets of questionnaires were developed for Census 2011: 1. Questionnaire A - the household questionnaire - administed to the population in a household set-up including those households that were found within an institution, such as staff residences 2. Questionnaire B - the population in transit (departing) and those on holiday on reference night (9/10 October 2011). The homeless were also enumerated using this set of questions 3. Questionnaire C - the institutions questionnaire administered to the population in collective living quarters (people who spent census night 9/10 October 2011 at the institution)

    A Post-Enumeration Survey was carried out after the census, which used a PES questionnaire.

    Sampling error estimates

    Comparison of Census 2011 with previous Censuses requires alignment of the data to 2011 municipal boundaries Questions on disability asked in former censuses were replaced in census 2011 with General health and functioning questions. Misreporting on general health and functioning for children younger than five years means data for this variable are only profiled for persons five years and older.

    Data appraisal

    The dataset does not have a code list for the “geotype” variable which has 3 values (1,2,3).

  9. undefined undefined: undefined | undefined (undefined)

    • data.census.gov
    Updated Jan 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Census Bureau (2025). undefined undefined: undefined | undefined (undefined) [Dataset]. https://data.census.gov/table/ECNECOMM2022.EC2231ECOMM?q=Roach+Michael+E
    Explore at:
    Dataset updated
    Jan 23, 2025
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Key Table Information.Table Title.Manufacturing: E-Commerce Statistics for the U.S.: 2022.Table ID.ECNECOMM2022.EC2231ECOMM.Survey/Program.Economic Census.Year.2022.Dataset.ECN Core Statistics Manufacturing: E-Commerce Statistics for the U.S.: 2022.Release Date.2025-01-23.Release Schedule.The Economic Census occurs every five years, in years ending in 2 and 7.The data in this file come from the 2022 Economic Census data files released on a flow basis starting in January 2024 with First Look Statistics. Preliminary U.S. totals released in January 2024 are superseded with final data shown in the releases of later economic census statistics through March 2026.For more information about economic census planned data product releases, see 2022 Economic Census Release Schedule..Dataset Universe.The dataset universe consists of all establishments that are in operation for at least some part of 2022, are located in one of the 50 U.S. states, associated offshore areas, or the District of Columbia, have paid employees, and are classified in one of nineteen in-scope sectors defined by the 2022 North American Industry Classification System (NAICS)..Methodology.Data Items and Other Identifying Records.Sales, value of shipments, or revenue ($1,000)E-Shipments value ($1,000) E-Shipments as percent of total sales, value of shipments, or revenue (%) Range indicating imputed percentage of total sales, value of shipments, or revenueDefinitions can be found by clicking on the column header in the table or by accessing the Economic Census Glossary..Unit(s) of Observation.The reporting units for the economic census are employer establishments. An establishment is generally a single physical location where business is conducted or where services or industrial operations are performed. A company or firm is comprised of one or more in-scope establishments that operate under the ownership or control of a single organization. For some industries, the reporting units are instead groups of all establishments in the same industry belonging to the same firm..Geography Coverage.The data are shown for the U.S. level only. For information about economic census geographies, including changes for 2022, see Geographies..Industry Coverage.The data are shown at the 2- through 3-digit 2022 NAICS code levels for the U.S. For information about NAICS, see Economic Census Code Lists..Sampling.The 2022 Economic Census sample includes all active operating establishments of multi-establishment firms and approximately 1.7 million single-establishment firms, stratified by industry and state. Establishments selected to the sample receive a questionnaire. For all data on this table, establishments not selected into the sample are represented with administrative data. For more information about the sample design, see 2022 Economic Census Methodology..Confidentiality.The Census Bureau has reviewed this data product to ensure appropriate access, use, and disclosure avoidance protection of the confidential source data (Project No. 7504609, Disclosure Review Board (DRB) approval number: CBDRB-FY23-099).To protect confidentiality, the U.S. Census Bureau suppresses cell values to minimize the risk of identifying a particular business’ data or identity.To comply with disclosure avoidance guidelines, data rows with fewer than three contributing firms or three contributing establishments are not presented. Additionally, establishment counts are suppressed when other select statistics in the same row are suppressed. More information on disclosure avoidance is available in the 2022 Economic Census Methodology..Technical Documentation/Methodology.For detailed information about the methods used to collect data and produce statistics, survey questionnaires, Primary Business Activity/NAICS codes, NAPCS codes, and more, see Economic Census Technical Documentation..Weights.No weighting applied as establishments not sampled are represented with administrative data..Table Information.FTP Download.https://www2.census.gov/programs-surveys/economic-census/data/2022/sector31/.API Information.Economic census data are housed in the Census Bureau Application Programming Interface (API)..Symbols.D - Withheld to avoid disclosing data for individual companies; data are included in higher level totalsN - Not available or not comparableS - Estimate does not meet publication standards because of high sampling variability, poor response quality, or other concerns about the estimate quality. Unpublished estimates derived from this table by subtraction are subject to these same limitations and should not be attributed to the U.S. Census Bureau. For a description of publication standards and the total quantity response rate, see link to program methodology page.X - Not applicableA - Relative standard error of 100% or morer - Reviseds - Relative standard error exceeds 40%For a complete list of symbols, see Economic Census Data Dictionary..Data-Specific Notes.Data users who create their own es...

  10. 2022 Economic Census: EC2251BASIC | Information: Summary Statistics for the...

    • data.census.gov
    Updated Dec 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECN (2024). 2022 Economic Census: EC2251BASIC | Information: Summary Statistics for the U.S., States, and Selected Geographies: 2022 (ECN Core Statistics Summary Statistics for the U.S., States, and Selected Geographies: 2022) [Dataset]. https://data.census.gov/table/ECNBASIC2022.EC2251BASIC?q=Carus+Fernandez+Pa
    Explore at:
    Dataset updated
    Dec 5, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ECN
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2022
    Area covered
    United States
    Description

    Key Table Information.Table Title.Information: Summary Statistics for the U.S., States, and Selected Geographies: 2022.Table ID.ECNBASIC2022.EC2251BASIC.Survey/Program.Economic Census.Year.2022.Dataset.ECN Core Statistics Summary Statistics for the U.S., States, and Selected Geographies: 2022.Source.U.S. Census Bureau, 2022 Economic Census, Core Statistics.Release Date.2024-12-05.Dataset Universe.The dataset universe consists of all establishments that are in operation for at least some part of 2022, are located in one of the 50 U.S. states, associated offshore areas, or the District of Columbia, have paid employees, and are classified in one of nineteen in-scope sectors defined by the 2022 North American Industry Classification System (NAICS)..Methodology.Data Items and Other Identifying Records.Number of firmsNumber of establishmentsSales, value of shipments, or revenue ($1,000)Annual payroll ($1,000)First-quarter payroll ($1,000)Number of employeesRange indicating imputed percentage of total sales, value of shipments, or revenueRange indicating imputed percentage of total annual payrollRange indicating imputed percentage of total employeesDefinitions can be found by clicking on the column header in the table or by accessing the Economic Census Glossary..Unit(s) of Observation.The reporting units for the economic census are employer establishments. An establishment is generally a single physical location where business is conducted or where services or industrial operations are performed. A company or firm is comprised of one or more in-scope establishments that operate under the ownership or control of a single organization. For some industries, the reporting units are instead groups of all establishments in the same industry belonging to the same firm..Geography Coverage.The data are shown for the U.S., State, Combined Statistical Area, Metropolitan and Micropolitan Statistical Area, Metropolitan Division, Consolidated City, County (and equivalent), and Economic Place (and equivalent; incorporated and unincorporated) levels that vary by industry. For information about economic census geographies, including changes for 2022, see Geographies..Industry Coverage.The data are shown at the 2- through 6-digit 2022 NAICS code levels and selected 7-digit 2022 NAICS-based code levels. For information about NAICS, see Economic Census Code Lists..Sampling.The 2022 Economic Census sample includes all active operating establishments of multi-establishment firms and approximately 1.7 million single-establishment firms, stratified by industry and state. Establishments selected to the sample receive a questionnaire. For all data on this table, establishments not selected into the sample are represented with administrative data. For more information about the sample design, see 2022 Economic Census Methodology..Confidentiality.The Census Bureau has reviewed this data product to ensure appropriate access, use, and disclosure avoidance protection of the confidential source data (Project No. 7504609, Disclosure Review Board (DRB) approval number: CBDRB-FY23-099).To protect confidentiality, the U.S. Census Bureau suppresses cell values to minimize the risk of identifying a particular business’ data or identity.To comply with disclosure avoidance guidelines, data rows with fewer than three contributing firms or three contributing establishments are not presented. Additionally, establishment counts are suppressed when other select statistics in the same row are suppressed. More information on disclosure avoidance is available in the 2022 Economic Census Methodology..Technical Documentation/Methodology.For detailed information about the methods used to collect data and produce statistics, survey questionnaires, Primary Business Activity/NAICS codes, NAPCS codes, and more, see Economic Census Technical Documentation..Weights.No weighting applied as establishments not sampled are represented with administrative data..Table Information.FTP Download.https://www2.census.gov/programs-surveys/economic-census/data/2022/.API Information.Economic census data are housed in the Census Bureau Application Programming Interface (API)..Symbols.D - Withheld to avoid disclosing data for individual companies; data are included in higher level totalsN - Not available or not comparableS - Estimate does not meet publication standards because of high sampling variability, poor response quality, or other concerns about the estimate quality. Unpublished estimates derived from this table by subtraction are subject to these same limitations and should not be attributed to the U.S. Census Bureau. For a description of publication standards and the total quantity response rate, see link to program methodology page.X - Not applicableA - Relative standard error of 100% or morer - Reviseds - Relative standard error exceeds 40%For a complete list of symbols, see Economic Census Data Dictionary..Data-Specific Notes.Data users who create their own estimates us...

  11. 2022 Economic Census: EC2231INVVAL | Manufacturing: Method of Inventory...

    • data.census.gov
    Updated Dec 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECN (2024). 2022 Economic Census: EC2231INVVAL | Manufacturing: Method of Inventory Valuation for the U.S.: 2022 (ECN Sector Statistics Economic Census: Manufacturing: Method of Inventory Valuation for the U.S.) [Dataset]. https://data.census.gov/table/ECNINVVAL2022.EC2231INVVAL?q=%E5%85%8D%E6%9D%80%E8%BF%9C%E6%8E%A72022%E3%80%90%E5%85%8D%E6%9D%80%E7%BD%91%E7%AB%99537v%E7%82%B9Com%E3%80%91%E2%9C%94%EF%B8%8F%E5%85%8D%E6%9D%80%E8%BF%9C%E6%8E%A7%E2%9C%94%EF%B8%8F%E5%AE%89%E5%8D%93%E8%BF%9C%E6%8E%A7%C2%B7%E5%85%8D%E6%9D%80%E5%8C%85%E6%9C%88%C2%B7%E8%82%89%E9%B8%A1%E6%89%B9%E5%8F%91%E5%A2%A8%E5%AE%A2%E5%AE%89%E5%85%A8%E7%BD%91%C2%B7eXGdi
    Explore at:
    Dataset updated
    Dec 7, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ECN
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2022
    Area covered
    United States
    Description

    Key Table Information.Table Title.Manufacturing: Method of Inventory Valuation for the U.S.: 2022.Table ID.ECNINVVAL2022.EC2231INVVAL.Survey/Program.Economic Census.Year.2022.Dataset.ECN Sector Statistics Economic Census: Manufacturing: Method of Inventory Valuation for the U.S..Source.U.S. Census Bureau, 2022 Economic Census, Sector Statistics.Release Date.2025-04-03.Release Schedule.The Economic Census occurs every five years, in years ending in 2 and 7.The data in this file come from the 2022 Economic Census data files released on a flow basis starting in January 2024 with First Look Statistics. Preliminary U.S. totals released in January 2024 are superseded with final data shown in the releases of later economic census statistics through March 2026.For more information about economic census planned data product releases, see 2022 Economic Census Release Schedule..Dataset Universe.The dataset universe consists of all establishments that are in operation for at least some part of 2022, are located in one of the 50 U.S. states, associated offshore areas, or the District of Columbia, have paid employees, and are classified in one of nineteen in-scope sectors defined by the 2022 North American Industry Classification System (NAICS)..Methodology.Data Items and Other Identifying Records.Total inventories, end of year ($1,000)Last-in, first-out (LIFO) inventory valuation, end of year ($1,000)Non-LIFO costing, end of year ($1,000)First-in, first-out (FIFO) inventory valuation, end of year ($1,000)Average cost inventory valuation, end of year ($1,000)Standard cost inventory valuation, end of year ($1,000)Other non-LIFO inventory, end of year ($1,000)Definitions can be found by clicking on the column header in the table or by accessing the Economic Census Glossary..Unit(s) of Observation.The reporting units for the economic census are employer establishments. An establishment is generally a single physical location where business is conducted or where services or industrial operations are performed. A company or firm is comprised of one or more in-scope establishments that operate under the ownership or control of a single organization. For some industries, the reporting units are instead groups of all establishments in the same industry belonging to the same firm..Geography Coverage.The data are shown for the U.S. level only. For information about economic census geographies, including changes for 2022, see Geographies..Industry Coverage.The data are shown at the 2- through 6-digit 2022 NAICS code levels. For information about NAICS, see Economic Census Code Lists..Sampling.The 2022 Economic Census sample includes all active operating establishments of multi-establishment firms and approximately 1.7 million single-establishment firms, stratified by industry and state. Establishments selected to the sample receive a questionnaire. For all data on this table, establishments not selected into the sample are represented with administrative data. For more information about the sample design, see 2022 Economic Census Methodology..Confidentiality.The Census Bureau has reviewed this data product to ensure appropriate access, use, and disclosure avoidance protection of the confidential source data (Project No. 7504609, Disclosure Review Board (DRB) approval number: CBDRB-FY23-099).To protect confidentiality, the U.S. Census Bureau suppresses cell values to minimize the risk of identifying a particular business’ data or identity.To comply with disclosure avoidance guidelines, data rows with fewer than three contributing firms or three contributing establishments are not presented. Additionally, establishment counts are suppressed when other select statistics in the same row are suppressed. More information on disclosure avoidance is available in the 2022 Economic Census Methodology..Technical Documentation/Methodology.For detailed information about the methods used to collect data and produce statistics, survey questionnaires, Primary Business Activity/NAICS codes, NAPCS codes, and more, see Economic Census Technical Documentation..Weights.No weighting applied as establishments not sampled are represented with administrative data..Table Information.FTP Download.https://www2.census.gov/programs-surveys/economic-census/data/2022/sector31/.API Information.Economic census data are housed in the Census Bureau Application Programming Interface (API)..Symbols.D - Withheld to avoid disclosing data for individual companies; data are included in higher level totalsN - Not available or not comparableS - Estimate does not meet publication standards because of high sampling variability, poor response quality, or other concerns about the estimate quality. Unpublished estimates derived from this table by subtraction are subject to these same limitations and should not be attributed to the U.S. Census Bureau. For a description of publication standards and the total quantity response rate, see link to program methodology page.X - Not ap...

  12. w

    Integrated Living Conditions Survey 2011 - Armenia

    • microdata.worldbank.org
    • microdata.armstat.am
    • +1more
    Updated Apr 24, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Statistical Service of the Republic of Armenia (NSS RA) (2018). Integrated Living Conditions Survey 2011 - Armenia [Dataset]. https://microdata.worldbank.org/index.php/catalog/2960
    Explore at:
    Dataset updated
    Apr 24, 2018
    Dataset authored and provided by
    National Statistical Service of the Republic of Armenia (NSS RA)
    Time period covered
    2011
    Area covered
    Armenia
    Description

    Abstract

    The Integrated Living Conditions Survey (ILCS), conducted annually by the NSS National Statistical Service of the Republic of Armenia, formed the basis for monitoring living conditions in Armenia. The ILCS is a universally recognized best-practice survey for collecting data to inform about the living standards of households. The ILCS comprises comprehensive and valuable data on the welfare of households and separate individuals which gives the NSS an opportunity to provide the public with up to date information on the population’s income, expenditures, the level of poverty and the other changes in living standards on an annual basis.

    Geographic coverage

    Urban and rural communities

    Analysis unit

    • Households;
    • Individuals.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    During the 2001-2003 surveys two-stage random sample was used; the first stage covered the selection of settlements - cities and villages, while the second stage was focused on the selection of households in these settlements. The surveys were conducted on the principle of monthly rotation of households by clusters (sample units). In 2002 and 2003 the number of households was 387 with the sample covering 14 cities and 30 villages in 2002 and 17 cities and 20 villages in 2003.

    During the 2004-2006 surveys the sampling frame for the ILCS was built using the database of addresses for the 2001 Population Census; the database was developed with the World Bank technical assistance. The database of addresses of all households in Armenia was divided into 48 strata including 12 communities of Yerevan city. The households from other regions (marzes) were grouped according to the following three categories: big towns with 15,000 and more population; villages, and other towns. Big towns formed 16 strata (the only exception was the Vayots Dzor marz where there are no big towns). The villages and other towns formed 10 strata each. According to this division, a random, two-step sample stratified at marz level was developed. All marzes, as well as all urban and rural settlements were included in the sample population according to the share of population residing in those settlements as percent to the total population in the country. In the first step, the settlements, i.e. primary sample units, were selected: 43 towns out of 48 or 90 percent of all towns in Armenia were surveyed during the year; also 216 villages out of 951 or 23 percent of all villages in the country were covered by the survey. In the second step, the respondent households were selected: 6,816 households (5,088 from urban and 1,728 from rural settlements). As a result, for the first time since 1996 survey data were representative at the marz level.

    During the 2007-2012 surveys the sampling frame for ILCS was designed according to the database of addresses for the 2001 Population Census, which was developed with the World Bank technical assistance. The sample consisted of two parts: core sample and oversample.

    1) For the creation of core sample, the sample frame (database of addresses of all households in Armenia) was divided into 48 strata including 12 communities of Yerevan city. The households from other regions (marzes) were grouped according to three categories: large towns (with population of 15000 and higher), villages and other towns. Large towns formed by 16 groups (strata), while the villages and towns formed by 10 strata each. According to that division, a random, two-step sample stratified at the marz level was developed. All marzes, as well as all urban and rural settlements were included in the sample population according to the share of households residing in those settlements as percent to the total households in the country. In the first step, using the PPS method the enumeration units (i.e., primary sample units to be surveyed during the year) were selected. 2007 sample includes 48 urban and 18 rural enumeration areas per month. 2) The oversample was drawn from the list of villages included in MCA-Armenia Rural Roads Rehabilitation Project. The enumeration areas of villages that were already in the core sample were excluded from that list. From the remaining enumeration areas 18 enumeration areas were selected per month. Thus, the rural sample size was doubled. 3) After merging the core sample and oversample, the survey households were selected in the second step. 656 households were surveyed per month, from which 368 from urban and 288 from rural settlements. Each month 82 interviewers had conducted field work, and their workload included 8 households per month. In 2007 number of surveyed households was 7,872 (4,416 from urban and 3,456 from rural areas).

    For the survey 2013 the sample frame for ILCS was designed in accordance with the database of addresses of all private households in the country developed on basis of the 2001 Population Census results, with the technical assistance of the World Bank. The method of systematic representative probability sampling was used to frame the sample. For the purpose of drawing the sample, the sample frame was divided into 32 strata including 12 communities of Yerevan City (currently, the administrative districts). According to this division, a two-tier sample was drawn stratified by regions and by Yerevan. All regions and Yerevan, as well as all urban and rural communities were included in the sample in accordance to the shares of their resident households within the total number of households in the country. In the first round, enumeration areas - that is primary sample units to be surveyed during the year - were selected. The ILCS 2013 sample included 32 enumeration areas in urban and 16 enumeration areas in rural communities per month. The households to be surveyed were selected in the second round. A total of 432 households were surveyed per month, of which 279 and 153 households from urban and rural communities, respectively. Every month 48 interviewers went on field work with a workload of 9 households per month.

    The sample frame for 2014-2016 was designed in accordance with the database of addresses of all private households in the country developed on basis of the 2011 Population Census results, with the technical assistance of the World Bank. The method of systematic representative probability sampling was used to frame the sample.
    For drawing the sample, the sample frame was divided into 32 strata including 12 communities of Yerevan City (currently, the administrative districts). According to this division, a two-tier sample was drawn stratified by regions and by Yerevan. All regions and Yerevan, as well as all urban and rural communities were included in the sample in accordance to the shares of their resident households within the total number of households in the country. In the first round, enumeration areas - that is primary sample units to be surveyed during the year - were selected. The ILCS 2014 sample included 30 enumeration areas in urban and 18 enumeration areas in rural communities per month. The method of representative probability sampling was used to frame the sample. At regional level, all communities were grouped into two categories - towns and villages. According to this division, a two-tier sample was drawn stratified by regions and by Yerevan. All regions and Yerevan, as well as all rural and urban communities were included in the sample in accordance to the shares of their resident households within the total number of households in the country. In the first round, enumeration districts - that is primary sample units to be surveyed during the year - were selected. The ILCS 2015 sample included 30 enumeration districts in urban and 18 enumeration districts in rural communities per month.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The Questionnaire is filled in by the interviewer during the least five visits to households per month. During face-to-face interviews with the household head or another knowledgeable adult member, the interviewer collects information on the composition and housing conditions of the household, the employment status, educational level and health condition of the members, availability and use of land, livestock, and agricultural machinery, monetary and commodity flows between households, and other information.

    The 2011 survey questionnaire had the following sections: (1) "List of Household Members", (2) "Migration", (3) "Housing and Dwelling Conditions", (4) "Employment", (5) "Education", (6) "Agriculture", (7) "Food Production", (8) "Monetary and Commodity Flows between Households", (9) "Health (General) and Healthcare", (10) "Debts", (11) "Subjective Assessment of Living Conditions", (12) "Provision of Services", (13) "Social Assistance", (14) "Households as Employers for Service Personnel", and (15) "Household Monthly Consumption of Energy Resources".

    The Diary is completed directly by the household for one month. Every day the household would record all its expenditures on food, non-food products and services, also giving a detailed description of such purchases; e.g. for food products the name, quantity, cost, and place of purchase of the product is recorded. Besides, the household records its consumption of food products received and used from its own land and livestock, as well as from other sources (e.g. gifts, humanitarian aid). Non-food products and services purchased or received for free are also recorded in the diary. Then, the household records its income received during the month. At the end of the month, information on rarely used food products, durable goods and ceremonies is recorded, as well. The records in the diary are verified by the interviewer in the course of 5

  13. w

    Living Standards Survey 1997-1998 - Viet Nam

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Oct 26, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    General Statistical Office (GSO) (2023). Living Standards Survey 1997-1998 - Viet Nam [Dataset]. https://microdata.worldbank.org/index.php/catalog/2694
    Explore at:
    Dataset updated
    Oct 26, 2023
    Dataset authored and provided by
    General Statistical Office (GSO)
    Time period covered
    1997 - 1998
    Area covered
    Vietnam
    Description

    Abstract

    The first Vietnam Living Standards Survey (VLSS) was conducted in 1992-93 by the State Planning Committee (SPC) (now Ministry of Planning and Investment) along with the General Statistical Office (GSO). The second VLSS was conducted by the GSO in 1997-98. Both VLSS surveys were funded by UNDP and Swedish International Development Authority (SIDA). The survey was part of the Living Standards Measurement Study (LSMS) household surveys conducted in a number of developing countries with technical assistance from the World Bank.

    The second VLSS was designed to provide an up-to-date source of data on households to be used in policy design, monitoring of living standards and evaluation of policies and programs. The timing of the second VLSS approximately five years after the first allows analysis of medium term trends in living standards as a large part of the questionnaire is the same in both surveys.

    In addition to the purpose of obtaining a comprehensive and comparable data set to the 1992-93 VLSS for policy analysis, the survey also served as a medium for training and improving survey methods and analysis within the General Statistical Office of Vietnam (GSO), the agency in charge of designing and implementing the second round of the VLSS as well as other government agencies involved in social statistics.

    Geographic coverage

    National

    Analysis unit

    • Households
    • Individuals
    • Community
    • Schools
    • Health Centers

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The survey sample was selected to be representative for the whole country, taking into account available funding, geographical conditions, organizational capacity and staff competence. The sample size was set at 6000 households selected from provinces and cities throughout the country, but excluding islands due to logistical difficulties in traveling and conducting the survey in those locations.

    The sample for the 1997-1998 VLSS was primarily selected from the households selected in the original 150 communes/wards of the 1992-1993 VLSS. The sample was increased by 1200 households with these additional households obtained from the sample of the Multi-purpose Household survey (MPHS) which was based on a similar sampling methodology. Replacement households were selected randomly from within the clusters of the survey and used where necessary.

    The selection of the original sample of 4800 households from VLSS 1992-1993 followed a method of stratified random cluster sampling. The basic sample frame was obtained from the 1989 Population Census. The sampling procedures took into account that communes or wards are the basic local level administrative unit, and each commune/ward has a number of villages or urban residential blocks. The number of households selected in a given cluster was determined primarily based on the requirements for organization of interview teams and time needed for each household interview on location.

    Based on the sampling frame including two lists, list of communes and list of wards (or equivalent administrative units) throughout the country with the number of households in each commune/ward obtained from the 1989 Population Census, the sample of the 1992-1993 VLSS was selected in three steps, independently for urban and rural areas:

    Step 1: Random selection of 120 communes and 30 wards throughout the country based on the method of probability proportional to the number of households in those villages or wards. The selection of primary sampling units (communes) was stratified by urban and rural areas based on the results of the 1989 Census that 80% of the population was living in rural areas and 20% in urban areas.

    Step 2: Within each selected commune, two villages or urban residential blocks were selected randomly by the method of probability proportional to the number of households as in the first stage of sampling. Thus, 240 villages and 60 residential blocks were selected.

    Step 3: Within each selected village or residential block, 20 households were randomly selected by systematic method with equal probability, including 16 official and 4 alternate households. To eliminate the effect of the seasonal differences, the rotation method of sample was adopted: the 6000 surveyed households were divided into 10 sub-samples and each sub-sample was surveyed for one month.

    Sampling procedure is explained in details in the document called "Vietnam Living Standards Survey (VLSS), 1997-98", available in this documentation.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The second round of the VLSS used 5 questionnaires: household, commune, price, school and clinic. - Household Questionnaire: The household questionnaire contains 15 sections each of which covered a separate aspect of household activity.

    • Commune/Ward Questionnaire: A completely new commune questionnaire was developed for the 1997-98 VLSS survey with a greatly expanded content. A few questions in the 1992-93 questionnaire were dropped or moved to other questionnaires (see below). The commune questionnaire was administered by the team supervisor and completed with the help of village chiefs, teachers, government officials and health care workers. The questionnaire was administered only in rural and minor urban areas, i.e. communes 37 to 194, corresponding to villages 73 to 388. Some sections of the questionnaire contain village/block level information, while most of the commune questionnaire refers to the commune. The commune questionnaire contains 10 sections.

    • Price Questionnaire: Price data were collected in all clusters, both urban and rural by the anthropometrist for 36 food items, 33 non-food items, 6 services, 10 pharmaceutical products, and 7 agricultural inputs. Three separate observations were made and these did not necessarily involve actual purchase. However, it is possible that as the anthropometrist is not a local person, the prices quoted are not the true prices of the locality. This information was utilized in checking unit prices in the consumption modules, and for calculating poverty lines. Price indices utilized for adjusting monetary figures to real values were obtained from the GSO CPI unit. Details on how and where prices were to be collected can be found in the anthropometry manual. The actual locations of price collection were recorded in the questionnaires, but unfortunately not entered in the computer files.

    • School Questionnaire: The school questionnaires were implemented by the team supervisor to all schools within the two villages selected within a commune. There are between 1 and 7 school questionnaires filled in per commune.

    • Commune Health Station Questionnaire: The commune health station questionnaire was implemented by the team supervisor. The respondent could be the director, doctor or physician’s assistant of the health station.

    Response rate

    Response rates are shown in details in the document called "Vietnam Living Standards Survey (VLSS), 1997-98 Basic Information", available in this documentation.

  14. e

    Subjective wellbeing, 'Worthwhile', percentage of responses in range 0-6

    • data.europa.eu
    • ckan.publishing.service.gov.uk
    • +2more
    html, sparql
    Updated Oct 11, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ministry of Housing, Communities and Local Government (2021). Subjective wellbeing, 'Worthwhile', percentage of responses in range 0-6 [Dataset]. https://data.europa.eu/data/datasets/subjective-wellbeing-worthwhile-percentage-of-responses-in-range-0-6
    Explore at:
    html, sparqlAvailable download formats
    Dataset updated
    Oct 11, 2021
    Dataset authored and provided by
    Ministry of Housing, Communities and Local Government
    License

    http://reference.data.gov.uk/id/open-government-licencehttp://reference.data.gov.uk/id/open-government-licence

    Description

    Percentage of responses in range 0-6 out of 10 (corresponding to 'low wellbeing') for 'Worthwhile' in the First ONS Annual Experimental Subjective Wellbeing survey.

    The Office for National Statistics has included the four subjective well-being questions below on the Annual Population Survey (APS), the largest of their household surveys.

    • Overall, how satisfied are you with your life nowadays?
    • Overall, to what extent do you feel the things you do in your life are worthwhile?
    • Overall, how happy did you feel yesterday?
    • Overall, how anxious did you feel yesterday?

    This dataset presents results from the second of these questions, "Overall, to what extent do you feel the things you do in your life are worthwhile?" Respondents answer these questions on an 11 point scale from 0 to 10 where 0 is ‘not at all’ and 10 is ‘completely’. The well-being questions were asked of adults aged 16 and older.

    Well-being estimates for each unitary authority or county are derived using data from those respondents who live in that place. Responses are weighted to the estimated population of adults (aged 16 and older) as at end of September 2011.

    The data cabinet also makes available the proportion of people in each county and unitary authority that answer with ‘low wellbeing’ values. For the ‘worthwhile’ question answers in the range 0-6 are taken to be low wellbeing.

    This dataset contains the percentage of responses in the range 0-6. It also contains the standard error, the sample size and lower and upper confidence limits at the 95% level.

    The ONS survey covers the whole of the UK, but this dataset only includes results for counties and unitary authorities in England, for consistency with other statistics available at this website.

    At this stage the estimates are considered ‘experimental statistics’, published at an early stage to involve users in their development and to allow feedback. Feedback can be provided to the ONS via this email address.

    The APS is a continuous household survey administered by the Office for National Statistics. It covers the UK, with the chief aim of providing between-census estimates of key social and labour market variables at a local area level. Apart from employment and unemployment, the topics covered in the survey include housing, ethnicity, religion, health and education. When a household is surveyed all adults (aged 16+) are asked the four subjective well-being questions.

    The 12 month Subjective Well-being APS dataset is a sub-set of the general APS as the well-being questions are only asked of persons aged 16 and above, who gave a personal interview and proxy answers are not accepted. This reduces the size of the achieved sample to approximately 120,000 adult respondents in England.

    The original data is available from the ONS website.

    Detailed information on the APS and the Subjective Wellbeing dataset is available here.

    As well as collecting data on well-being, the Office for National Statistics has published widely on the topic of wellbeing. Papers and further information can be found here.

  15. Census Income dataset

    • kaggle.com
    zip
    Updated Oct 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    tawfik elmetwally (2023). Census Income dataset [Dataset]. https://www.kaggle.com/datasets/tawfikelmetwally/census-income-dataset
    Explore at:
    zip(707150 bytes)Available download formats
    Dataset updated
    Oct 28, 2023
    Authors
    tawfik elmetwally
    Description

    This intermediate level data set was extracted from the census bureau database. There are 48842 instances of data set, mix of continuous and discrete (train=32561, test=16281).

    The data set has 15 attribute which include age, sex, education level and other relevant details of a person. The data set will help to improve your skills in Exploratory Data Analysis, Data Wrangling, Data Visualization and Classification Models.

    Feel free to explore the data set with multiple supervised and unsupervised learning techniques. The Following description gives more details on this data set:

    • age: the age of an individual.
    • workclass: The type of work or employment of an individual. It can have the following categories:
      • Private: Working in the private sector.
      • Self-emp-not-inc: Self-employed individuals who are not incorporated.
      • Self-emp-inc: Self-employed individuals who are incorporated.
      • Federal-gov: Working for the federal government.
      • Local-gov: Working for the local government.
      • State-gov: Working for the state government.
      • Without-pay: Not working and without pay.
      • Never-worked: Never worked before.
    • Final Weight: The weights on the CPS files are controlled to independent estimates of the civilian noninstitutional population of the US. These are prepared monthly for us by Population Division here at the Census Bureau. We use 3 sets of controls.

    These are: 1. A single cell estimate of the population 16+ for each state. 2. Controls for Hispanic Origin by age and sex. 3. Controls by Race, age and sex.

    We use all three sets of controls in our weighting program and "rake" through them 6 times so that by the end we come back to all the controls we used.

    People with similar demographic characteristics should have similar weights. There is one important caveat to remember about this statement. That is that since the CPS sample is actually a collection of 51 state samples, each with its own probability of selection, the statement only applies within state.

    • education: The highest level of education completed.
    • education-num: The number of years of education completed.
    • marital-status: The marital status.
    • occupation: Type of work performed by an individual.
    • relationship: The relationship status.
    • race: The race of an individual.
    • sex: The gender of an individual.
    • capital-gain: The amount of capital gain (financial profit).
    • capital-loss: The amount of capital loss an individual has incurred.
    • hours-per-week: The number of hours works per week.
    • native-country: The country of origin or the native country.
    • income: The income level of an individual and serves as the target variable. It indicates whether the income is greater than $50,000 or less than or equal to $50,000, denoted as (>50K, <=50K).
  16. d

    Czech Attitude Barometer, wave 2, 2024 CAB, wave 2 - Dataset - B2FIND

    • demo-b2find.dkrz.de
    Updated Sep 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Czech Attitude Barometer, wave 2, 2024 CAB, wave 2 - Dataset - B2FIND [Dataset]. http://demo-b2find.dkrz.de/dataset/ae6480c0-78a7-53be-991d-1673d656f241
    Explore at:
    Dataset updated
    Sep 20, 2025
    Description

    This dataset represents survey data from the second wave of the Czech Attitude Barometer (CAB) panel survey. The CAB panel survey studies the attitudes and behaviour of the adult (15 years or older) population of residents in the Czech Republic. Respondents in the panel were sampled using a multi-stage stratified cluster sampling method with replacement. The sampling frame is the Census Districts and Buildings Register. The 66 strata are based on the Czech Republic regions crossed with the municipality's size. The main themes surveyed in the second wave of the CAB panel survey include attitudes towards the judiciary, distributive justice, general belief in a just world, attitudes towards male and female roles, fear of the war in Ukraine, and non-electoral political participation. The themes covered in the second wave differ significantly from the themes surveyed in the first wave of the CAB panel survey. In total, 1676 respondents completed the questionnaire between 12 September and 1 October 2024 (1644 respondents filled both CAB waves). The dataset from the second wave contains 173 variables. Datasets from the CAB panel survey will be publicly available one year after the project “Beyond Security: Role of Conflict in Resilience-Building” (reg. no.: CZ.02.01.01/00/22_008/0004595) concludes (i.e. the datasets will be shared in the Czech Social Science Data Archive in 2029).

  17. m

    Agriculture census (Availability score over 20 years) - Paraguay

    • macro-rankings.com
    csv, excel
    Updated Dec 31, 2004
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    macro-rankings (2004). Agriculture census (Availability score over 20 years) - Paraguay [Dataset]. https://www.macro-rankings.com/paraguay/agriculture-census-(availability-score-over-20-years)
    Explore at:
    excel, csvAvailable download formats
    Dataset updated
    Dec 31, 2004
    Dataset authored and provided by
    macro-rankings
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Paraguay
    Description

    Time series data for the statistic Agriculture census (Availability score over 20 years) and country Paraguay. Indicator Definition:Agriculture censuses collect information on agricultural activities, such as size of holding, land tenure, land use, employment and production, and provide basic structural data and sampling frames for agricultural surveys. Censuses of agriculture normally involves collecting key structural data by complete enumeration of all agricultural holdings, in combination with more detailed structural data using sampling methods. It is recommended that agricultural censuses be conducted at least every 10 years.

  18. Living Standards Survey V 2005-2006 - World Bank SHIP Harmonized Dataset -...

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Dec 9, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ghana Statistical Service (GSS) (2014). Living Standards Survey V 2005-2006 - World Bank SHIP Harmonized Dataset - Ghana [Dataset]. https://microdata.worldbank.org/index.php/catalog/1064
    Explore at:
    Dataset updated
    Dec 9, 2014
    Dataset provided by
    Ghana Statistical Services
    Authors
    Ghana Statistical Service (GSS)
    Time period covered
    2005 - 2006
    Area covered
    Ghana
    Description

    Abstract

    Survey based Harmonized Indicators (SHIP) files are harmonized data files from household surveys that are conducted by countries in Africa. To ensure the quality and transparency of the data, it is critical to document the procedures of compiling consumption aggregation and other indicators so that the results can be duplicated with ease. This process enables consistency and continuity that make temporal and cross-country comparisons consistent and more reliable.

    Four harmonized data files are prepared for each survey to generate a set of harmonized variables that have the same variable names. Invariably, in each survey, questions are asked in a slightly different way, which poses challenges on consistent definition of harmonized variables. The harmonized household survey data present the best available variables with harmonized definitions, but not identical variables. The four harmonized data files are

    a) Individual level file (Labor force indicators in a separate file): This file has information on basic characteristics of individuals such as age and sex, literacy, education, health, anthropometry and child survival. b) Labor force file: This file has information on labor force including employment/unemployment, earnings, sectors of employment, etc. c) Household level file: This file has information on household expenditure, household head characteristics (age and sex, level of education, employment), housing amenities, assets, and access to infrastructure and services. d) Household Expenditure file: This file has consumption/expenditure aggregates by consumption groups according to Purpose (COICOP) of Household Consumption of the UN.

    Geographic coverage

    National

    Analysis unit

    • Individual level for datasets with suffix _I and _L
    • Household level for datasets with suffix _H and _E

    Universe

    The survey covered all de jure household members (usual residents).

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Sampling Frame and Units As in all probability sample surveys, it is important that each sampling unit in the surveyed population has a known, non-zero probability of selection. To achieve this, there has to be an appropriate list, or sampling frame of the primary sampling units (PSUs).The universe defined for the GLSS 5 is the population living within private households in Ghana. The institutional population (such as schools, hospitals etc), which represents a very small percentage in the 2000 Population and Housing Census (PHC), is excluded from the frame for the GLSS 5.

    The Ghana Statistical Service (GSS) maintains a complete list of census EAs, together with their respective population and number of households as well as maps, with well defined boundaries, of the EAs. . This information was used as the sampling frame for the GLSS 5. Specifically, the EAs were defined as the primary sampling units (PSUs), while the households within each EA constituted the secondary sampling units (SSUs).

    Stratification In order to take advantage of possible gains in precision and reliability of the survey estimates from stratification, the EAs were first stratified into the ten administrative regions. Within each region, the EAs were further sub-divided according to their rural and urban areas of location. The EAs were also classified according to ecological zones and inclusion of Accra (GAMA) so that the survey results could be presented according to the three ecological zones, namely 1) Coastal, 2) Forest, and 3) Northern Savannah, and for Accra.

    Sample size and allocation The number and allocation of sample EAs for the GLSS 5 depend on the type of estimates to be obtained from the survey and the corresponding precision required. It was decided to select a total sample of around 8000 households nationwide.

    To ensure adequate numbers of complete interviews that will allow for reliable estimates at the various domains of interest, the GLSS 5 sample was designed to ensure that at least 400 households were selected from each region.

    A two-stage stratified random sampling design was adopted. Initially, a total sample of 550 EAs was considered at the first stage of sampling, followed by a fixed take of 15 households per EA. The distribution of the selected EAs into the ten regions or strata was based on proportionate allocation using the population.

    For example, the number of selected EAs allocated to the Western Region was obtained as: 1924577/18912079*550 = 56

    Under this sampling scheme, it was observed that the 400 households minimum requirement per region could be achieved in all the regions but not the Upper West Region. The proportionate allocation formula assigned only 17 EAs out of the 550 EAs nationwide and selecting 15 households per EA would have yielded only 255 households for the region. In order to surmount this problem, two options were considered: retaining the 17 EAs in the Upper West Region and increasing the number of selected households per EA from 15 to about 25, or increasing the number of selected EAs in the region from 17 to 27 and retaining the second stage sample of 15 households per EA.

    The second option was adopted in view of the fact that it was more likely to provide smaller sampling errors for the separate domains of analysis. Based on this, the number of EAs in Upper East and the Upper West were adjusted from 27 and 17 to 40 and 34 respectively, bringing the total number of EAs to 580 and the number of households to 8,700.

    A complete household listing exercise was carried out between May and June 2005 in all the selected EAs to provide the sampling frame for the second stage selection of households. At the second stage of sampling, a fixed number of 15 households per EA was selected in all the regions. In addition, five households per EA were selected as replacement samples.The overall sample size therefore came to 8,700 households nationwide.

    Mode of data collection

    Face-to-face [f2f]

  19. m

    Agriculture census (Availability score over 20 years) - Tonga

    • macro-rankings.com
    csv, excel
    Updated Dec 31, 2004
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    macro-rankings (2004). Agriculture census (Availability score over 20 years) - Tonga [Dataset]. https://www.macro-rankings.com/tonga/agriculture-census-(availability-score-over-20-years)
    Explore at:
    csv, excelAvailable download formats
    Dataset updated
    Dec 31, 2004
    Dataset authored and provided by
    macro-rankings
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Tonga
    Description

    Time series data for the statistic Agriculture census (Availability score over 20 years) and country Tonga. Indicator Definition:Agriculture censuses collect information on agricultural activities, such as size of holding, land tenure, land use, employment and production, and provide basic structural data and sampling frames for agricultural surveys. Censuses of agriculture normally involves collecting key structural data by complete enumeration of all agricultural holdings, in combination with more detailed structural data using sampling methods. It is recommended that agricultural censuses be conducted at least every 10 years.

  20. m

    Agriculture census (Availability score over 20 years) - Lebanon

    • macro-rankings.com
    csv, excel
    Updated Dec 31, 2004
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    macro-rankings (2004). Agriculture census (Availability score over 20 years) - Lebanon [Dataset]. https://www.macro-rankings.com/lebanon/agriculture-census-(availability-score-over-20-years)
    Explore at:
    csv, excelAvailable download formats
    Dataset updated
    Dec 31, 2004
    Dataset authored and provided by
    macro-rankings
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Lebanon
    Description

    Time series data for the statistic Agriculture census (Availability score over 20 years) and country Lebanon. Indicator Definition:Agriculture censuses collect information on agricultural activities, such as size of holding, land tenure, land use, employment and production, and provide basic structural data and sampling frames for agricultural surveys. Censuses of agriculture normally involves collecting key structural data by complete enumeration of all agricultural holdings, in combination with more detailed structural data using sampling methods. It is recommended that agricultural censuses be conducted at least every 10 years.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
National Bureau of Statistics (NBS) (2017). Reproductive and Child Health Survey 1999 - Tanzania [Dataset]. https://microdata.worldbank.org/index.php/catalog/1508

Reproductive and Child Health Survey 1999 - Tanzania

Explore at:
3 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jun 6, 2017
Dataset authored and provided by
National Bureau of Statistics (NBS)
Time period covered
1999
Area covered
Tanzania
Description

Abstract

The Tanzania Demographic and Health Survey (TDHS) is part of the worldwide Demographic and Health Surveys (DHS) programme, which is designed to collect data on fertility, family planning, and maternal and child health.

The primary objective of the 1999 TRCHS was to collect data at the national level (with breakdowns by urban-rural and Mainland-Zanzibar residence wherever warranted) on fertility levels and preferences, family planning use, maternal and child health, breastfeeding practices, nutritional status of young children, childhood mortality levels, knowledge and behaviour regarding HIV/AIDS, and the availability of specific health services within the community.1 Related objectives were to produce these results in a timely manner and to ensure that the data were disseminated to a wide audience of potential users in governmental and nongovernmental organisations within and outside Tanzania. The ultimate intent is to use the information to evaluate current programmes and to design new strategies for improving health and family planning services for the people of Tanzania.

Geographic coverage

National. The sample was designed to provide estimates for the whole country, for urban and rural areas separately, and for Zanzibar and, in some cases, Unguja and Pemba separately.

Analysis unit

  • Households
  • Children under five years
  • Women age 15-49
  • Men age 15-59

Kind of data

Sample survey data

Sampling procedure

The TRCHS used a three-stage sample design. Overall, 176 census enumeration areas were selected (146 on the Mainland and 30 in Zanzibar) with probability proportional to size on an approximately self-weighting basis on the Mainland, but with oversampling of urban areas and Zanzibar. To reduce costs and maximise the ability to identify trends over time, these enumeration areas were selected from the 357 sample points that were used in the 1996 TDHS, which in turn were selected from the 1988 census frame of enumeration in a two-stage process (first wards/branches and then enumeration areas within wards/branches). Before the data collection, fieldwork teams visited the selected enumeration areas to list all the households. From these lists, households were selected to be interviewed. The sample was designed to provide estimates for the whole country, for urban and rural areas separately, and for Zanzibar and, in some cases, Unguja and Pemba separately. The health facilities component of the TRCHS involved visiting hospitals, health centres, and pharmacies located in areas around the households interviewed. In this way, the data from the two components can be linked and a richer dataset produced.

See detailed sample implementation in the APPENDIX A of the final report.

Mode of data collection

Face-to-face

Research instrument

The household survey component of the TRCHS involved three questionnaires: 1) a Household Questionnaire, 2) a Women’s Questionnaire for all individual women age 15-49 in the selected households, and 3) a Men’s Questionnaire for all men age 15-59.

The health facilities survey involved six questionnaires: 1) a Community Questionnaire administered to men and women in each selected enumeration area; 2) a Facility Questionnaire; 3) a Facility Inventory; 4) a Service Provider Questionnaire; 5) a Pharmacy Inventory Questionnaire; and 6) a questionnaire for the District Medical Officers.

All these instruments were based on model questionnaires developed for the MEASURE programme, as well as on the questionnaires used in the 1991-92 TDHS, the 1994 TKAP, and the 1996 TDHS. These model questionnaires were adapted for use in Tanzania during meetings with representatives from the Ministry of Health, the University of Dar es Salaam, the Tanzania Food and Nutrition Centre, USAID/Tanzania, UNICEF/Tanzania, UNFPA/Tanzania, and other potential data users. The questionnaires and manual were developed in English and then translated into and printed in Kiswahili.

The Household Questionnaire was used to list all the usual members and visitors in the selected households. Some basic information was collected on the characteristics of each person listed, including his/her age, sex, education, and relationship to the head of the household. The main purpose of the Household Questionnaire was to identify women and men who were eligible for individual interview and children under five who were to be weighed and measured. Information was also collected about the dwelling itself, such as the source of water, type of toilet facilities, materials used to construct the house, ownership of various consumer goods, and use of iodised salt. Finally, the Household Questionnaire was used to collect some rudimentary information about the extent of child labour.

The Women’s Questionnaire was used to collect information from women age 15-49. These women were asked questions on the following topics: · Background characteristics (age, education, religion, type of employment) · Birth history · Knowledge and use of family planning methods · Antenatal, delivery, and postnatal care · Breastfeeding and weaning practices · Vaccinations, birth registration, and health of children under age five · Marriage and recent sexual activity · Fertility preferences · Knowledge and behaviour concerning HIV/AIDS.

The Men’s Questionnaire covered most of these same issues, except that it omitted the sections on the detailed reproductive history, maternal health, and child health. The final versions of the English questionnaires are provided in Appendix E.

Before the questionnaires could be finalised, a pretest was done in July 1999 in Kibaha District to assess the viability of the questions, the flow and logical sequence of the skip pattern, and the field organisation. Modifications to the questionnaires, including wording and translations, were made based on lessons drawn from the exercise.

Response rate

In all, 3,826 households were selected for the sample, out of which 3,677 were occupied. Of the households found, 3,615 were interviewed, representing a response rate of 98 percent. The shortfall is primarily due to dwellings that were vacant or in which the inhabitants were not at home despite of several callbacks.

In the interviewed households, a total of 4,118 eligible women (i.e., women age 15-49) were identified for the individual interview, and 4,029 women were actually interviewed, yielding a response rate of 98 percent. A total of 3,792 eligible men (i.e., men age 15-59), were identified for the individual interview, of whom 3,542 were interviewed, representing a response rate of 93 percent. The principal reason for nonresponse among both eligible men and women was the failure to find them at home despite repeated visits to the household. The lower response rate among men than women was due to the more frequent and longer absences of men.

The response rates are lower in urban areas due to longer absence of respondents from their homes. One-member households are more common in urban areas and are more difficult to interview because they keep their houses locked most of the time. In urban settings, neighbours often do not know the whereabouts of such people.

Sampling error estimates

The estimates from a sample survey are affected by two types of errors: (1) non-sampling errors, and (2) sampling errors. Non-sampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the TRCHS to minimise this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the TRCHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.

If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the TRCHS sample is the result of a two-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the TRCHS is the ISSA Sampling Error Module (SAMPERR). This module used the Taylor linearisation method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rate

Note: See detailed sampling error calculation in the APPENDIX B

Search
Clear search
Close search
Google apps
Main menu