Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Note: This LCMS CONUS Cause of Change image service has been deprecated. It has been replaced by the LCMS CONUS Annual Change image service, which provides updated and consolidated change data.Please refer to the new service here: https://usfs.maps.arcgis.com/home/item.html?id=085626ec50324e5e9ad6323c050ac84dThis product is part of the Landscape Change Monitoring System (LCMS) data suite. It shows LCMS change attribution classes for each year. See additional information about change in the Entity_and_Attribute_Information or Fields section below.LCMS is a remote sensing-based system for mapping and monitoring landscape change across the United States. Its objective is to develop a consistent approach using the latest technology and advancements in change detection to produce a "best available" map of landscape change. Because no algorithm performs best in all situations, LCMS uses an ensemble of models as predictors, which improves map accuracy across a range of ecosystems and change processes (Healey et al., 2018). The resulting suite of LCMS change, land cover, and land use maps offer a holistic depiction of landscape change across the United States over the past four decades.Predictor layers for the LCMS model include outputs from the LandTrendr and CCDC change detection algorithms and terrain information. These components are all accessed and processed using Google Earth Engine (Gorelick et al., 2017). To produce annual composites, the cFmask (Zhu and Woodcock, 2012), cloudScore, and TDOM (Chastain et al., 2019) cloud and cloud shadow masking methods are applied to Landsat Tier 1 and Sentinel 2a and 2b Level-1C top of atmosphere reflectance data. The annual medoid is then computed to summarize each year into a single composite. The composite time series is temporally segmented using LandTrendr (Kennedy et al., 2010; Kennedy et al., 2018; Cohen et al., 2018). All cloud and cloud shadow free values are also temporally segmented using the CCDC algorithm (Zhu and Woodcock, 2014). LandTrendr, CCDC and terrain predictors can be used as independent predictor variables in a Random Forest (Breiman, 2001) model. LandTrendr predictor variables include fitted values, pair-wise differences, segment duration, change magnitude, and slope. CCDC predictor variables include CCDC sine and cosine coefficients (first 3 harmonics), fitted values, and pairwise differences from the Julian Day of each pixel used in the annual composites and LandTrendr. Terrain predictor variables include elevation, slope, sine of aspect, cosine of aspect, and topographic position indices (Weiss, 2001) from the USGS 3D Elevation Program (3DEP) (U.S. Geological Survey, 2019). Reference data are collected using TimeSync, a web-based tool that helps analysts visualize and interpret the Landsat data record from 1984-present (Cohen et al., 2010).Outputs fall into three categories: change, land cover, and land use. Change relates specifically to vegetation cover and includes slow loss (not included for PRUSVI), fast loss (which also includes hydrologic changes such as inundation or desiccation), and gain. These values are predicted for each year of the time series and serve as the foundational products for LCMS. References: Breiman, L. (2001). Random Forests. In Machine Learning (Vol. 45, pp. 5-32). https://doi.org/10.1023/A:1010933404324Chastain, R., Housman, I., Goldstein, J., Finco, M., and Tenneson, K. (2019). Empirical cross sensor comparison of Sentinel-2A and 2B MSI, Landsat-8 OLI, and Landsat-7 ETM top of atmosphere spectral characteristics over the conterminous United States. In Remote Sensing of Environment (Vol. 221, pp. 274-285). https://doi.org/10.1016/j.rse.2018.11.012Cohen, W. B., Yang, Z., and Kennedy, R. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync - Tools for calibration and validation. In Remote Sensing of Environment (Vol. 114, Issue 12, pp. 2911-2924). https://doi.org/10.1016/j.rse.2010.07.010Cohen, W. B., Yang, Z., Healey, S. P., Kennedy, R. E., and Gorelick, N. (2018). A LandTrendr multispectral ensemble for forest disturbance detection. In Remote Sensing of Environment (Vol. 205, pp. 131-140). https://doi.org/10.1016/j.rse.2017.11.015Foga, S., Scaramuzza, P.L., Guo, S., Zhu, Z., Dilley, R.D., Beckmann, T., Schmidt, G.L., Dwyer, J.L., Hughes, M.J., Laue, B. (2017). Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sensing of Environment, 194, 379-390. https://doi.org/10.1016/j.rse.2017.03.026Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. In Remote Sensing of Environment (Vol. 202, pp. 18-27). https://doi.org/10.1016/j.rse.2017.06.031Healey, S. P., Cohen, W. B., Yang, Z., Kenneth Brewer, C., Brooks, E. B., Gorelick, N., Hernandez, A. J., Huang, C., Joseph Hughes, M., Kennedy, R. E., Loveland, T. R., Moisen, G. G., Schroeder, T. A., Stehman, S. V., Vogelmann, J. E., Woodcock, C. E., Yang, L., and Zhu, Z. (2018). Mapping forest change using stacked generalization: An ensemble approach. In Remote Sensing of Environment (Vol. 204, pp. 717-728). https://doi.org/10.1016/j.rse.2017.09.029Kennedy, R. E., Yang, Z., and Cohen, W. B. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr - Temporal segmentation algorithms. In Remote Sensing of Environment (Vol. 114, Issue 12, pp. 2897-2910). https://doi.org/10.1016/j.rse.2010.07.008Kennedy, R., Yang, Z., Gorelick, N., Braaten, J., Cavalcante, L., Cohen, W., and Healey, S. (2018). Implementation of the LandTrendr Algorithm on Google Earth Engine. In Remote Sensing (Vol. 10, Issue 5, p. 691). https://doi.org/10.3390/rs10050691Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., and Wulder, M. A. (2014). Good practices for estimating area and assessing accuracy of land change. In Remote Sensing of Environment (Vol. 148, pp. 42-57). https://doi.org/10.1016/j.rse.2014.02.015Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M. and Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. In Journal of Machine Learning Research (Vol. 12, pp. 2825-2830).Pengra, B. W., Stehman, S. V., Horton, J. A., Dockter, D. J., Schroeder, T. A., Yang, Z., Cohen, W. B., Healey, S. P., and Loveland, T. R. (2020). Quality control and assessment of interpreter consistency of annual land cover reference data in an operational national monitoring program. In Remote Sensing of Environment (Vol. 238, p. 111261). https://doi.org/10.1016/j.rse.2019.111261U.S. Geological Survey. (2019). USGS 3D Elevation Program Digital Elevation Model, accessed August 2022 at https://developers.google.com/earth-engine/datasets/catalog/USGS_3DEP_10mWeiss, A.D. (2001). Topographic position and landforms analysis Poster Presentation, ESRI Users Conference, San Diego, CAZhu, Z., and Woodcock, C. E. (2012). Object-based cloud and cloud shadow detection in Landsat imagery. In Remote Sensing of Environment (Vol. 118, pp. 83-94). https://doi.org/10.1016/j.rse.2011.10.028Zhu, Z., and Woodcock, C. E. (2014). Continuous change detection and classification of land cover using all available Landsat data. In Remote Sensing of Environment (Vol. 144, pp. 152-171). https://doi.org/10.1016/j.rse.2014.01.011This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService For complete information, please visit https://data.gov.
Facebook
TwitterThis data set contains reduced-resolution QuickBird imagery and geospatial data for the entire Barrow QuickBird image area 156.15° W - 157.07° W, 71.15° N - 71.41° N) and the Barrow B4 Quadrangle (156.29° W - 156.89° W, 71.25° N - 71.40° N), for use in Geographic Information Systems (GIS) and remote sensing software. The original QuickBird data sets were acquired by DigitialGlobe from 1 to 2 August 2002, and consist of orthorectified satellite imagery. Federal Geographic Data Committee (FGDC)-compliant metadata for all value-added data sets are provided in text, HTML, and XML formats. Accessory layers include: 1:250,000- and 1:63,360-scale USGS Digital Raster Graphic (DRG) mosaic images (GeoTIFF format); 1:250,000- and 1:63,360-scale USGS quadrangle index maps (ESRI Shapefile format); an index map for the 62 QuickBird tiles (ESRI Shapefile format); and a simple polygon layer of the extent of the Barrow QuickBird image area and the Barrow B4 quadrangle area (ESRI Shapefile format). The baseline geospatial data support education, outreach, and multi-disciplinary research of environmental change in Barrow, which is an area of focused scientific interest. Data are available either via FTP or on CD-ROM.
Facebook
TwitterThis product set contains reduced-resolution Interferometric Synthetic Aperture Radar (IFSAR) imagery and geospatial data for the Barrow Peninsula (155.39 - 157.48 deg W, 70.86 - 71.47 deg N), for use in Geographic Information Systems (GIS) and remote sensing software. The primary IFSAR data sets were acquired by Intermap Technologies from 27 to 29 July 2002, and consist of an Orthorectified Radar Imagery (ORRI), a Digital Surface Model (DSM), and a Digital Terrain Model (DTM). Derived data layers include aspect, shaded relief, and slope-angle grids (floating-point binary format), as well as a vector layer of contour lines (ESRI Shapefile format). Also available are accessory layers compiled from other sources: 1:250,000- and 1:63,360-scale USGS Digital Raster Graphic (DRG) mosaic images (GeoTIFF format); 1:250,000- and 1:63,360-scale USGS quadrangle index maps (ESRI Shapefile format); and a simple polygon layer of the extent of the Barrow Peninsula (ESRI Shapefile format). The DSM and DTM data sets (20 m resolution) are provided in floating-point binary format with header and projection files. The ORRI mosaic (5 m resolution) is available in GeoTIFF format. FGDC-compliant metadata for all data sets are provided in text, HTML, and XML formats, along with the Intermap License Agreement and product handbook. The baseline geospatial data support education, outreach, and multi-disciplinary research of environmental change in Barrow, which is an area of focused scientific interest. Data are available via FTP and CD-ROM.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Discover the Remote Sensing Object Segmentation Dataset Perfect for GIS, AI driven environmental studies, and satellite image analysis.
Facebook
TwitterThis product set contains high-resolution Interferometric Synthetic Aperture Radar (IFSAR) imagery and geospatial data for the Barrow Peninsula (155.39 - 157.48 deg W, 70.86 - 71.47 deg N) and Barrow Triangle (156.13 - 157.08 deg W, 71.14 - 71.42 deg N), for use in Geographic Information Systems (GIS) and remote sensing software. The primary IFSAR data sets were acquired by Intermap Technologies from 27 to 29 July 2002, and consist of Orthorectified Radar Imagery (ORRI), a Digital Surface Model (DSM), and a Digital Terrain Model (DTM). Derived data layers include aspect, shaded relief, and slope-angle grids (floating-point binary and ArcInfo grid format), as well as a vector layer of contour lines (ESRI Shapefile format). Also available are accessory layers compiled from other sources: 1:250,000- and 1:63,360-scale USGS Digital Raster Graphic (DRG) mosaic images (GeoTIFF format); 1:250,000- and 1:63,360-scale USGS quadrangle index maps (ESRI Shapefile format); a quarter-quadrangle index map for the 26 IFSAR tiles (ESRI Shapefile format); and a simple polygon layer of the extent of the Barrow Peninsula (ESRI Shapefile format). Unmodified IFSAR data comprise 26 data tiles across UTM zones 4 and 5. The DSM and DTM tiles (5 m resolution) are provided in floating-point binary format with header and projection files. The ORRI tiles (1.25 m resolution) are available in GeoTIFF format. FGDC-compliant metadata for all data sets are provided in text, HTML, and XML formats, along with the Intermap License Agreement and product handbook. The baseline geospatial data support education, outreach, and multi-disciplinary research of environmental change in Barrow, which is an area of focused scientific interest. Data are provided on five DVDs, available through licensing only to National Science Foundation (NSF)-funded investigators. An NSF award number must be provided when ordering data.
Facebook
TwitterMeet Earth EngineGoogle Earth Engine combines a multi-petabyte catalog of satellite imagery and geospatial datasets with planetary-scale analysis capabilities and makes it available for scientists, researchers, and developers to detect changes, map trends, and quantify differences on the Earth's surface.SATELLITE IMAGERY+YOUR ALGORITHMS+REAL WORLD APPLICATIONSLEARN MOREGLOBAL-SCALE INSIGHTExplore our interactive timelapse viewer to travel back in time and see how the world has changed over the past twenty-nine years. Timelapse is one example of how Earth Engine can help gain insight into petabyte-scale datasets.EXPLORE TIMELAPSEREADY-TO-USE DATASETSThe public data archive includes more than thirty years of historical imagery and scientific datasets, updated and expanded daily. It contains over twenty petabytes of geospatial data instantly available for analysis.EXPLORE DATASETSSIMPLE, YET POWERFUL APIThe Earth Engine API is available in Python and JavaScript, making it easy to harness the power of Google’s cloud for your own geospatial analysis.EXPLORE THE APIGoogle Earth Engine has made it possible for the first time in history to rapidly and accurately process vast amounts of satellite imagery, identifying where and when tree cover change has occurred at high resolution. Global Forest Watch would not exist without it. For those who care about the future of the planet Google Earth Engine is a great blessing!-Dr. Andrew Steer, President and CEO of the World Resources Institute.CONVENIENT TOOLSUse our web-based code editor for fast, interactive algorithm development with instant access to petabytes of data.LEARN ABOUT THE CODE EDITORSCIENTIFIC AND HUMANITARIAN IMPACTScientists and non-profits use Earth Engine for remote sensing research, predicting disease outbreaks, natural resource management, and more.SEE CASE STUDIESREADY TO BE PART OF THE SOLUTION?SIGN UP NOWTERMS OF SERVICE PRIVACY ABOUT GOOGLE
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The USDA Forest Service (USFS) builds two versions of percent tree canopy cover data, in order to serve needs of multiple user communities. These datasets encompass conterminous United States (CONUS), Coastal Alaska, Hawaii, and Puerto Rico and U.S. Virgin Islands (PRUSVI). The two versions of data within the v2023-5 TCC product suite include: The initial model outputs referred to as the Science data; And a modified version built for the National Land Cover Database and referred to as NLCD data. The NLCD product suite includes data for years 1985 through 2023. The NCLD data are processed to mask TCC from non-treed features such as water and non-tree crops, and to reduce interannual noise and smooth the NLCD time series. TCC pixel values range from 0 to 100 percent. The non-processing area is represented by value 254, and the background is represented by the value 255. The Science and NLCD tree canopy cover data are accessible for multiple user communities, through multiple channels and platforms. For information on the Science data and processing steps see the Science metadata. Information on the NLCD data and processing steps are included here. Data Download and Methods Documents: - https://data.fs.usda.gov/geodata/rastergateway/treecanopycover/ This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService For complete information, please visit https://data.gov.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is a landing page. To access the datasets, expand the RELATED DATASETS section below, and follow the link to the dataset you require. \r \r --------------------------------------\r \r The Remote Sensing Organisational Unit as part of the Water Group, within the NSW Department of Climate Change, Energy, the Environment and Water (NSW DCCEEW) is dedicated to harnessing the power of satellite earth observations, aerial imagery, in-situ data, and advanced modelling techniques to produce cutting-edge remote sensing information products. Our team employs a multi-faceted approach, integrating remote sensing data captured by satellites operating at various temporal and spatial scales with on-the-ground observations and key spatial datasets, including land-use mapping, weather data, and ancillary verification datasets. This synthesis of diverse information sources enables us to derive critical insights that significantly contribute to water resource planning, policy formulation, and advancements in scientific research.\r \r Drawing upon satellite imagery from reputable sources such as NASA, the European Space Agency, and commercial providers like Planet and SPOT, our team places a special emphasis on leveraging Landsat and Sentinel satellite imagery. Renowned for their archived, calibrated, and consistent datasets, these sources provide a significant advantage in our pursuit of delivering accurate and reliable information. To ensure the robustness of our information products, we implement thorough validation processes, incorporating semi-automation techniques that facilitate rapid turnaround times.\r \r Our operational efficiency is further enhanced through strategic interventions in our workflows, including the automation of processes through efficient computing scripts and the utilization of Google Earth Engine for cloud computing. This integrated approach allows us to maintain high standards of data quality while meeting the increasing demand for timely and accurate information.\r \r Our commitment to providing high-quality, professional, and technically accurate Remote Sensing - Geographic Information System (RS-GIS) data packages, maps, and information is underscored by our recognition of the growing role of technology in information transfer and the promotion of information sharing. Moreover, our dedication to ensuring the currency of RS-GIS methods, interpretation techniques, and 3D modelling enables us to continually deliver innovative products that align with evolving client expectations. Through these efforts, our team strives to contribute meaningfully to the advancement of remote sensing applications for improved environmental understanding and informed decision-making.\r \r -----------------------------------\r \r Note: If you would like to ask a question, make any suggestions, or tell us how you are using this dataset, please visit the NSW Water Hub which has an online forum you can join.\r \r \r \r \r
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
CSCD dateset for crop types classification based on multi-source high resolution remote sensing images
Facebook
Twitterhttps://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.7910/DVN/HGEW9Qhttps://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.7910/DVN/HGEW9Q
Technology adoption by farmers is linked to changes in environmental and climate variations but also to the household socio economic status and the cultural acceptance of technologies. The reliability and replicability of the technologies depend to the specific context where technologies are developed and implemented. Regarding the available technologies developed in phase I of the Africa RISING project and technologies under validation in phase II it is important to map and characterize using GIS and remote sensing technologies under different agro-ecological and socio-economic context.
Facebook
TwitterHigh resolution (10 meter) land surface temperature (LST) from September 1, 2022 is mapped for the seven-county metropolitan region of the Twin Cities. The goal of the map is to show the heat differences across the region and is not intended to show the maximum temperature that any specific area can reach. The raster dataset was computed at 30 meters using satellite imagery from Landsat 9 and downscaled to 10 meters using Copernicus Sentinel-2. These datasets were integrated using techniques modified from Ermida et al. 2020 and Onačillová et al. 2022). Open water was removed using ancillary data from OpenStreetMap and 2020 Generalized Land Use for the Twin Cities (Metropolitan Council).
First, Landsat 9 imagery taken at 11:59 am CDT on September 01, 2022 was processed into 30-meter resolution LST (based on Ermida et al. 2020). At this time, the air temperature was 88° F at the Minneapolis-St. Paul International Airport (NOAA). A model predicting LST based on spectral indices of Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), and Normalized Difference Built-up Index (NDBI) was created and applied to 10-meter Sentenel-2 imagery. Sentinel-2 imagery was also taken on September 1, 2022, and this resulted in a 10-meter downscaled LST image (based on Onačillová et al. 2022). To account for anomalies in NDVI on the primary image date of September 1 (e.g., recently harvested agricultural fields), maximum NDVI occurring between July 1, 2022 and September 1, 2022 was used for both Landsat and Sentinel image processing. Water bodies were removed for all processing steps (OpenStreetMap 2023, Metropolitan Council 2021).
This dataset is an update to the 2016 LST data for the Twin Cities Region (Metropolitan Council).
The code to create and processes this dataset is available at: https://github.com/Metropolitan-Council/extreme.heat
Sources:
Ermida, S.L., Soares, P., Mantas, V., Göttsche, F.-M., Trigo, I.F., 2020. Google Earth Engine open-source code for Land Surface Temperature estimation from the Landsat series. Remote Sensing, 12 (9), 1471; https://doi.org/10.3390/rs12091471.
Metropolitan Council. 2021. Generalized Land Use 2020. Minnesota Geospatial Commons. https://gisdata.mn.gov/dataset/us-mn-state-metc-plan-generl-lnduse2020
Metropolitan Council. 2017. Land Surface Temperature for Climate Vulnerability Analysis. Minnesota Geospatial Commons. https://gisdata.mn.gov/dataset/us-mn-state-metc-env-cva-lst2016
NOAA, National Oceanic and Atmospheric Administration, National Centers for Environmental Information, station USW00014922. September 1, 2022.
Onačillová, K., Gallay, M., Paluba, D., Péliová, A., Tokarčík, O., Laubertová, D. 2022. Combining Landsat 8 and Sentinel 2 data in Google Earth Engine to derive higher resolution land surface temperature maps in urban environment. Remote Sensing, 14 (16), 4076. https://doi.org/10.3390/rs14164076.
OpenStreetMap contributors. 2023. Retrieved from https://planet.openstreetmap.org on April 12, 2023.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This product is part of the Landscape Change Monitoring System (LCMS) data suite. It shows LCMS modeled Land Cover classes for each year. See additional information about Land Cover in the Entity_and_Attribute_Information or Fields section below.LCMS is a remote sensing-based system for mapping and monitoring landscape change across the United States. Its objective is to develop a consistent approach using the latest technology and advancements in change detection to produce a "best available" map of landscape change. Because no algorithm performs best in all situations, LCMS uses an ensemble of models as predictors, which improves map accuracy across a range of ecosystems and change processes (Healey et al., 2018). The resulting suite of LCMS Change, Land Cover, and Land Use maps offer a holistic depiction of landscape change across the United States over the past four decades.Predictor layers for the LCMS model include outputs from the LandTrendr and CCDC change detection algorithms and terrain information. These components are all accessed and processed using Google Earth Engine (Gorelick et al., 2017). To produce annual composites, the cFmask (Zhu and Woodcock, 2012), cloudScore, Cloud Score + (Pasquarella et al., 2023), and TDOM (Chastain et al., 2019) cloud and cloud shadow masking methods are applied to Landsat Tier 1 and Sentinel 2a and 2b Level-1C top of atmosphere reflectance data. The annual medoid is then computed to summarize each year into a single composite. The composite time series is temporally segmented using LandTrendr (Kennedy et al., 2010; Kennedy et al., 2018; Cohen et al., 2018). All cloud and cloud shadow free values are also temporally segmented using the CCDC algorithm (Zhu and Woodcock, 2014). LandTrendr, CCDC and terrain predictors can be used as independent predictor variables in a Random Forest (Breiman, 2001) model. LandTrendr predictor variables include fitted values, pair-wise differences, segment duration, change magnitude, and slope. CCDC predictor variables include CCDC sine and cosine coefficients (first 3 harmonics), fitted values, and pairwise differences from the Julian Day of each pixel used in the annual composites and LandTrendr. Terrain predictor variables include elevation, slope, sine of aspect, cosine of aspect, and topographic position indices (Weiss, 2001) from the USGS 3D Elevation Program (3DEP) (U.S. Geological Survey, 2019). Reference data are collected using TimeSync, a web-based tool that helps analysts visualize and interpret the Landsat data record from 1984-present (Cohen et al., 2010).Outputs fall into three categories: Change, Land Cover, and Land Use. At its foundation, Change maps areas of Disturbance, Vegetation Successional Growth, and Stable landscape. More detailed levels of Change products are available and are intended to address needs centered around monitoring causes and types of variations in vegetation cover, water extent, or snow/ice extent that may or may not result in a transition of land cover and/or land use. Change, Land Cover, and Land Use are predicted for each year of the time series and serve as the foundational products for LCMS. This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService For complete information, please visit https://data.gov.
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
This remote sensing image dataset includes orthomosaics and Spartina alterniflora spatial data, derived from drone-based RGB photos over Zhangjiang Estuary, Fujian Province from 2013 to 2022. The drone photos were collected via automatic flight planning mainly during daytime low-tide periods. Based on the structure-from-motion three-dimension reconstruction technique, for each campaign the drone photos can be mosaiced into a digital orthophoto map, which is then used for extracting the spatial distribution of Spartina alterniflora. The dataset contains 2 folders including 10 orthomosaics and 10 Spartina alterniflora data, respectively. The file sizes are 1.7GB and 10.7MB for the orthomosaics and Spartina alterniflora data, respectively. All the data are in TIF format, and you can use GIS or remote sensing softwares like ArcGIS and ENVI to open them. The orthomosaics are named as "date-DOM" or the datasets with network RTK positioning service are named as "date-DOM-RTK". For example, the orthmosaic in June, 2022 is named as "202206-DOM-RTK.tif". Spartina alterniflora datasets are named "date-classified". The resolution of all data is 20 cm and the coordinate system is WGS84/UTM zone 50N. The drones used are different for these flights, and there is a slight deviation in positioning accuracy.
Facebook
TwitterThis is a collection of Digital Surface Models and Highest Hit rasters covering selected U.S. Forest Service and adjoining lands in the Southwest Region, encompassing Arizona and New Mexico. The data are presented in a time-enabled format, allowing the end-user to view available data year-by-year, or all available years at once, within a GIS system. The data encompass varying years, varying resolutions, and varying geographic extents, dependent upon available data as provided by the region. DSM and Highest Hit rasters represent elevation of Earth's surface, including its natural and human-made features, such as vegetation and buildings.The data contains an attribute table. Notable attributes that may be of interest to an end-user are:lowps: the pixel size of the source raster, given in meters.highps: the pixel size of the top-most pyramid for the raster, given in meters.beginyear: the first year of data acquisition for an individual dataset.endyear: the final year of data acquisition for an individual dataset.dataset_name: the name of the individual dataset within the collection.metadata: A URL link to a file on IIPP's Portal containing metadata pertaining to an individual dataset within the image service.resolution: The pixel size of the source raster, given in meters.Terrain-related imagery are primarily derived from Lidar, stereoscopic aerial imagery, or Interferometric Synthetic Aperture Radar datasets. Consequently, these derivatives inherit the limitations and uncertainties of the parent sensor and platform and the processing techniques used to produce the imagery. The terrain images are orthographic; they have been georeferenced and displacement due to sensor orientation and topography have been removed, producing data that combines the characteristics of an image with the geometric qualities of a map. The orthographic images show ground features in their proper positions, without the distortion characteristic of unrectified aerial or satellite imagery. Digital orthoimages produced and used within the Forest Service are developed from imagery acquired through various national and regional image acquisition programs. The resulting orthoimages can be directly applied in remote sensing, GIS and mapping applications. They serve a variety of purposes, from interim maps to references for Earth science investigations and analysis. Because of the orthographic property, an orthoimage can be used like a map for measurement of distances, angles, and areas with scale being constant everywhere. Also, they can be used as map layers in GIS or other computer-based manipulation, overlaying, and analysis. An orthoimage differs from a map in a manner of depiction of detail; on a map only selected detail is shown by conventional symbols whereas on an orthoimage all details appear just as in original aerial or satellite imagery.Tribal lands have been masked from this public service in accordance with Tribal agreements.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This product is part of the Landscape Change Monitoring System (LCMS) data suite. It supplies LCMS Change classes for each year that are a refinement of the modeled LCMS Change classes (Slow Loss, Fast Loss, and Gain) and provide information on the cause of landscape change. See additional information about Change in the Entity_and_Attribute_Information or Fields section below.LCMS is a remote sensing-based system for mapping and monitoring landscape change across the United States. Its objective is to develop a consistent approach using the latest technology and advancements in change detection to produce a "best available" map of landscape change. Because no algorithm performs best in all situations, LCMS uses an ensemble of models as predictors, which improves map accuracy across a range of ecosystems and change processes (Healey et al., 2018). The resulting suite of LCMS Change, Land Cover, and Land Use maps offer a holistic depiction of landscape change across the United States over the past four decades.Predictor layers for the LCMS model include outputs from the LandTrendr and CCDC change detection algorithms and terrain information. These components are all accessed and processed using Google Earth Engine (Gorelick et al., 2017). To produce annual composites, the cFmask (Zhu and Woodcock, 2012), cloudScore, Cloud Score + (Pasquarella et al., 2023), and TDOM (Chastain et al., 2019) cloud and cloud shadow masking methods are applied to Landsat Tier 1 and Sentinel 2a and 2b Level-1C top of atmosphere reflectance data. The annual medoid is then computed to summarize each year into a single composite. The composite time series is temporally segmented using LandTrendr (Kennedy et al., 2010; Kennedy et al., 2018; Cohen et al., 2018). All cloud and cloud shadow free values are also temporally segmented using the CCDC algorithm (Zhu and Woodcock, 2014). LandTrendr, CCDC and terrain predictors can be used as independent predictor variables in a Random Forest (Breiman, 2001) model. LandTrendr predictor variables include fitted values, pair-wise differences, segment duration, change magnitude, and slope. CCDC predictor variables include CCDC sine and cosine coefficients (first 3 harmonics), fitted values, and pairwise differences from the Julian Day of each pixel used in the annual composites and LandTrendr. Terrain predictor variables include elevation, slope, sine of aspect, cosine of aspect, and topographic position indices (Weiss, 2001) from the USGS 3D Elevation Program (3DEP) (U.S. Geological Survey, 2019). Reference data are collected using TimeSync, a web-based tool that helps analysts visualize and interpret the Landsat data record from 1984-present (Cohen et al., 2010).Outputs fall into three categories: Change, Land Cover, and Land Use. At its foundation, Change maps areas of Disturbance, Vegetation Successional Growth, and Stable landscape. More detailed levels of Change products are available and are intended to address needs centered around monitoring causes and types of variations in vegetation cover, water extent, or snow/ice extent that may or may not result in a transition of land cover and/or land use. Change, Land Cover, and Land Use are predicted for each year of the time series and serve as the foundational products for LCMS. This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService For complete information, please visit https://data.gov.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is a collection of 124 global and free datasets allowing for spatial (and temporal) analyses of floods, droughts and their interactions with human societies. We have structured the datasets into seven categories: hydrographic baseline, hydrological dynamics, hydrological extremes, land cover & agriculture, human presence, water management, and vulnerability. Please refer to Lindersson et al. (in preparation) for further information about review methodology.
The collection is a descriptive list, holding the following information for each dataset:
NOTE: Carefully consult the data usage licenses as given by the data providers, to assure that the exact permissions and restrictions are followed.
Facebook
TwitterAbstract
The Urban Green Raster Germany is a land cover classification for Germany that addresses in particular the urban vegetation areas. The raster dataset covers the terrestrial national territory of Germany and has a spatial resolution of 10 meters. The dataset is based on a fully automated classification of Sentinel-2 satellite data from a full 2018 vegetation period using reference data from the European LUCAS land use and land cover point dataset. The dataset identifies eight land cover classes. These include Built-up, Built-up with significant green share, Coniferous wood, Deciduous wood, Herbaceous vegetation (low perennial vegetation), Water, Open soil, Arable land (low seasonal vegetation). The land cover dataset provided here is offered as an integer raster in GeoTiff format. The assignment of the number coding to the corresponding land cover class is explained in the legend file.
Data acquisition
The data acquisition comprises two main processing steps: (1) Collection, processing, and automated classification of the multispectral Sentinel 2 satellite data with the “Land Cover DE method”, resulting in the raw land cover classification dataset, NDVI layer, and RF assignment frequency vector raster. (2) GIS-based postprocessing including discrimination of (densely) built-up and loosely built-up pixels according NDVI threshold, and creating water-body and arable-land masks from geo-topographical base-data (ATKIS Basic DLM) and reclassification of water and arable land pixels based on the assignment frequency.
Data collection
Satellite data were searched and downloaded from the Copernicus Open Access Hub (https://scihub.copernicus.eu/).
The LUCAS reference and validation points were loaded from the Eurostat platform (https://ec.europa.eu/eurostat/web/lucas/data/database).
The processing of the satellite data was performed at the DLR data center in Oberpfaffenhofen.
GIS-based post-processing of the automatic classification result was performed at IOER in Dresden.
Value of the data
The dataset can be used to quantify the amount of green areas within cities on a homogeneous data base [5].
Thus it is possible to compare cities of different sizes regarding their greenery and with respect to their ratio of green and built-up areas [6].
Built-up areas within cities can be discriminated regarding their built-up density (dense built-up vs. built-up with higher green share).
Data description
A Raster dataset in GeoTIFF format: The dataset is stored as an 8 bit integer raster with values ranging from 1 to 8 for the eight different land cover classes. The nomenclature of the coded values is as follows: 1 = Built-up, 2=open soil; 3=Coniferous wood, 4= Deciduous wood, 5=Arable land (low seasonal vegetation), 6=Herbaceous vegetation (low perennial vegetation), 7=Water, 8=Built-up with significant green share. Name of the file ugr2018_germany.tif. The dataset is zipped alongside with accompanying files: *.twf (geo-referencing world-file), *.ovr (Overlay file for quick data preview in GIS), *.clr (Color map file).
A text file with the integer value assignment of the land cover classes. Name of the file: Legend_LC-classes.txt.
Experimental design, materials and methods
The first essential step to create the dataset is the automatic classification of a satellite image mosaic of all available Sentinel-2 images from May to September 2018 with a maximum cloud cover of 60 percent. Points from the 2018 LUCAS (Land use and land cover survey) dataset from Eurostat [1] were used as reference and validation data. Using Random Forest (RF) classifier [2], seven land use classes (Deciduous wood, Coniferous wood, Herbaceous vegetation (low perennial vegetation), Built-up, Open soil, Water, Arable land (low seasonal vegetation)) were first derived, which is methodologically in line with the procedure used to create the dataset "Land Cover DE - Sentinel-2 - Germany, 2015" [3]. The overall accuracy of the data is 93 % [4].
Two downstream post-processing steps served to further qualify the product. The first step included the selective verification of pixels of the classes arable land and water. These are often misidentified by the classifier due to radiometric similarities with other land covers; in particular, radiometric signatures of water surfaces often resemble shadows or asphalt surfaces. Due to the heterogeneous inner-city structures, pixels are also frequently misclassified as cropland.
To mitigate these errors, all pixels classified as water and arable land were matched with another data source. This consisted of binary land cover masks for these two land cover classes originating from the Monitor of Settlement and Open Space Development (IOER Monitor). For all water and cropland pixels that were outside of their respective masks, the frequencies of class assignments from the RF classifier were checked. If the assignment frequency to water or arable land was at least twice that to the subsequent class, the classification was preserved. Otherwise, the classification strength was considered too weak and the pixel was recoded to the land cover with the second largest assignment frequency.
Furthermore, an additional land cover class "Built-up with significant vegetation share" was introduced. For this purpose, all pixels of the Built-up class were intersected with the NDVI of the satellite image mosaic and assigned to the new category if an NDVI threshold was exceeded in the pixel. The associated NDVI threshold was previously determined using highest resolution reference data of urban green structures in the cities of Dresden, Leipzig and Potsdam, which were first used to determine the true green fractions within the 10m Sentinel pixels, and based on this to determine an NDVI value that could be used as an indicator of a significant green fraction within the built-up pixel. However, due to the wide dispersion of green fraction values within the built-up areas, it is not possible to establish a universally valid green percentage value for the land cover class of Built-up with significant vegetation share. Thus, the class essentially serves to the visual differentiability of densely and loosely (i.e., vegetation-dominated) built-up areas.
Acknowledgments
This work was supported by the Federal Institute for Research on Building, Urban Affairs and Spatial Development (BBSR) [10.06.03.18.101].The provided data has been developed and created in the framework of the research project “Wie grün sind bundesdeutsche Städte?- Fernerkundliche Erfassung und stadträumlich-funktionale Differenzierung der Grünausstattung von Städten in Deutschland (Erfassung der urbanen Grünausstattung)“ (How green are German cities?- Remote sensing and urban-functional differentiation of the green infrastructure of cities in Germany (Urban Green Infrastructure Inventory)). Further persons involved in the project were: Fabian Dosch (funding administrator at BBSR), Stefan Fina (research partner, group leader at ILS Dortmund), Annett Frick, Kathrin Wagner (research partners at LUP Potsdam).
References
[1] Eurostat (2021): Land cover / land use statistics database LUCAS. URL: https://ec.europa.eu/eurostat/web/lucas/data/database
[2] L. Breiman (2001). Random forests, Mach. Learn., 45, pp. 5-32
[3] M. Weigand, M. Wurm (2020). Land Cover DE - Sentinel-2—Germany, 2015 [Data set]. German Aerospace Center (DLR). doi: 10.15489/1CCMLAP3MN39
[4] M. Weigand, J. Staab, M. Wurm, H. Taubenböck, (2020). Spatial and semantic effects of LUCAS samples on fully automated land use/land cover classification in high-resolution Sentinel-2 data. Int J Appl Earth Obs, 88, 102065. doi: https://doi.org/10.1016/j.jag.2020.102065
[5] L. Eichler., T. Krüger, G. Meinel, G. (2020). Wie grün sind deutsche Städte? Indikatorgestützte fernerkundliche Erfassung des Stadtgrüns. AGIT Symposium 2020, 6, 306–315. doi: 10.14627/537698030
[6] H. Taubenböck, M. Reiter, F. Dosch, T. Leichtle, M. Weigand, M. Wurm (2021). Which city is the greenest? A multi-dimensional deconstruction of city rankings. Comput Environ Urban Syst, 89, 101687. doi: 10.1016/j.compenvurbsys.2021.101687
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Based primarily on the most recent release of LANDFIRE v2.0.0, this generalized land cover dataset provides full coverage of California including to the three nautical mile limit offshore. It represents a ground condition of 2016 divided into 30mx30m cells across the entire state. The state is grouped into the following land cover classes: forests, shrublands and chaparral, grasslands, croplands, wetlands, seagrasses and seaweeds, developed lands, and sparsely vegetated lands. The mapped area has been extended offshore to three nautical miles. Lakes, reservoirs, rivers, and oceans that do not overlay seagrasses and seaweeds are identified in as “open water.” LANDFIRE v.2.0.0 provides the source for much of the land cover and is an integrated dataset with many layers. The Existing Vegetation Type (EVT) and Biophysical Settings (BPS) layers provide inputs to this data set. The EVT layer contains data on life form (tree, shrub, herb, developed, agriculture, sparse, barren, snow-ice, or water), a named vegetation type, and notes on recent disturbance. These are used to assign a likely generalized land cover type to each pixel. This result is then refined using the BPS layer to suggest the land cover that might exist in recently disturbed (fire or logging) areas absent that disturbance. These results are then supplemented through the creation of a seagrasses and seaweeds dataset by combining data on the presence of eelgrass and kelp canopy and replacing the water category with seagrasses and seaweeds where it is present.These data result from the integration of remote sensing (satellite imagery analysis), with field data, using computer algorithms under the oversight of the LANDFIRE team or the teams developing the seagrass and kelp maps. Errors are expected in all data and while every attempt is made to minimize and understand them, they cannot be eliminated. As a result, the cells in the data represent an estimate of what is on the ground at that specific location. Validation techniques used in the production of the data help identify and allow for correction of gross errors, but individual pixels, or even small groupings of them may differ from real world conditions. Similarly, while efforts are made to be consistent with the selection of the source satellite data, the difference between seasons or a wet versus dry year do impact the final maps, notably water and wetlands.Data SourcesLANDFIRE: LANDFIRE Existing Vegetation Type layer.(2013 - 2021). U.S. Department of Interior, Geological Survey.[Online]. Available: https://landfire.gov/version_download.php [Accessed: February 3, 2021].LANDFIRE: LANDFIRE Biophysical Setting layer.(2013 - 2021). U.S. Department of Interior, Geological Survey.[Online]. Available: https://landfire.gov/version_download.php [Accessed: February 3, 2021].Bell, T, K. Cavanaugh, D. Siegel. 2020. SBC LTER: Time series of quarterly NetCDF files of kelp biomass in the canopy from Landsat 5, 7 and 8, since 1984 (ongoing) ver 13. Environmental Data Initiative. https://doi.org/10.6073/pasta/5d3fb6fd293bd403a0714d870a4dd7d8. Accessed 2021-04-08. (Data extraction performed by T. Bell April 8, 2021)Eelgrass Survey GIS Data version 2.0 (2017, updated 2020), National Marine Fisheries Service West Coast Region. Available: https://www.sfei.org/data/eelgrass-survey-gis-data#sthash.u94SjLu7.afUwqGJA.dpbs [Accessed: April 6, 2021)
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides high-resolution, nationwide land use/land cover (LULC) and terrestrial carbon stock maps of Pakistan for four epochs: 1990, 2000, 2010, and 2020. Developed using multi-sensor satellite imagery and advanced classification techniques in Google Earth Engine (GEE), the dataset presents a comprehensive analysis of land cover changes driven by urbanization and their impacts on carbon storage capacity over 30 years.
The LULC data includes nine distinct classes, covering key land cover types such as forest cover, agriculture, rangeland, wetlands, barren lands, water bodies, built-up areas, and snow/ice. Classification was performed using a hybrid machine learning approach, and the accuracy of the land cover maps was validated using a stratified random sampling approach.
The carbon stock maps were derived using the InVEST model, which estimated carbon storage in four major carbon pools (above-ground biomass, below-ground biomass, soil organic carbon, and dead organic matter) based on the LULC maps. The results showed a significant decline in carbon storage due to rapid urban expansion, particularly in major cities like Karachi and Lahore, where substantial forest and agricultural lands were converted into urban areas. The study estimates that Pakistan lost approximately -5% of its carbon storage capacity over this period, with urban areas growing by over ~1040%.
This dataset is a valuable resource for researchers, policymakers, and environmental managers, providing crucial insights into the long-term impacts of urbanization on land cover and carbon sequestration. It is expected to support future land management strategies, urban planning, and climate change mitigation efforts. The high temporal and spatial resolution of the dataset makes it ideal for monitoring land cover dynamics and assessing ecosystem services over time.
This dataset is aslo available as Google Earth Engine application. For more details check:
> Github Project repository: https://github.com/waleedgeo/lulc_pk
> Paper DOI: https://doi.org/10.1016/j.eiar.2023.107396
> Paper PDF: https://waleedgeo.com/papers/waleed2024_paklulc.pdf
If you find this work useful, please consider citing it as Waleed, M., Sajjad, M., & Shazil, M. S. (2024). Urbanization-led land cover change impacts terrestrial carbon storage capacity: A high-resolution remote sensing-based nation-wide assessment in Pakistan (1990–2020). Environmental Impact Assessment Review, 105, 107396.
Contributors:
Mirza Waleed (email) (Linkedin)
Muhammad Sajjad (email) (Linkedin)
Muhammad Shareef Shazil
To check other work, please check:
My Webpage & Google Scholar
Facebook
TwitterJurisdictional Unit, 2022-05-21. For use with WFDSS, IFTDSS, IRWIN, and InFORM.This is a feature service which provides Identify and Copy Feature capabilities. If fast-drawing at coarse zoom levels is a requirement, consider using the tile (map) service layer located at https://nifc.maps.arcgis.com/home/item.html?id=3b2c5daad00742cd9f9b676c09d03d13.OverviewThe Jurisdictional Agencies dataset is developed as a national land management geospatial layer, focused on representing wildland fire jurisdictional responsibility, for interagency wildland fire applications, including WFDSS (Wildland Fire Decision Support System), IFTDSS (Interagency Fuels Treatment Decision Support System), IRWIN (Interagency Reporting of Wildland Fire Information), and InFORM (Interagency Fire Occurrence Reporting Modules). It is intended to provide federal wildland fire jurisdictional boundaries on a national scale. The agency and unit names are an indication of the primary manager name and unit name, respectively, recognizing that:There may be multiple owner names.Jurisdiction may be held jointly by agencies at different levels of government (ie State and Local), especially on private lands, Some owner names may be blocked for security reasons.Some jurisdictions may not allow the distribution of owner names. Private ownerships are shown in this layer with JurisdictionalUnitIdentifier=null,JurisdictionalUnitAgency=null, JurisdictionalUnitKind=null, and LandownerKind="Private", LandownerCategory="Private". All land inside the US country boundary is covered by a polygon.Jurisdiction for privately owned land varies widely depending on state, county, or local laws and ordinances, fire workload, and other factors, and is not available in a national dataset in most cases.For publicly held lands the agency name is the surface managing agency, such as Bureau of Land Management, United States Forest Service, etc. The unit name refers to the descriptive name of the polygon (i.e. Northern California District, Boise National Forest, etc.).These data are used to automatically populate fields on the WFDSS Incident Information page.This data layer implements the NWCG Jurisdictional Unit Polygon Geospatial Data Layer Standard.Relevant NWCG Definitions and StandardsUnit2. A generic term that represents an organizational entity that only has meaning when it is contextualized by a descriptor, e.g. jurisdictional.Definition Extension: When referring to an organizational entity, a unit refers to the smallest area or lowest level. Higher levels of an organization (region, agency, department, etc) can be derived from a unit based on organization hierarchy.Unit, JurisdictionalThe governmental entity having overall land and resource management responsibility for a specific geographical area as provided by law.Definition Extension: 1) Ultimately responsible for the fire report to account for statistical fire occurrence; 2) Responsible for setting fire management objectives; 3) Jurisdiction cannot be re-assigned by agreement; 4) The nature and extent of the incident determines jurisdiction (for example, Wildfire vs. All Hazard); 5) Responsible for signing a Delegation of Authority to the Incident Commander.See also: Unit, Protecting; LandownerUnit IdentifierThis data standard specifies the standard format and rules for Unit Identifier, a code used within the wildland fire community to uniquely identify a particular government organizational unit.Landowner Kind & CategoryThis data standard provides a two-tier classification (kind and category) of landownership. Attribute Fields JurisdictionalAgencyKind Describes the type of unit Jurisdiction using the NWCG Landowner Kind data standard. There are two valid values: Federal, and Other. A value may not be populated for all polygons.JurisdictionalAgencyCategoryDescribes the type of unit Jurisdiction using the NWCG Landowner Category data standard. Valid values include: ANCSA, BIA, BLM, BOR, DOD, DOE, NPS, USFS, USFWS, Foreign, Tribal, City, County, OtherLoc (other local, not in the standard), State. A value may not be populated for all polygons.JurisdictionalUnitNameThe name of the Jurisdictional Unit. Where an NWCG Unit ID exists for a polygon, this is the name used in the Name field from the NWCG Unit ID database. Where no NWCG Unit ID exists, this is the “Unit Name” or other specific, descriptive unit name field from the source dataset. A value is populated for all polygons.JurisdictionalUnitIDWhere it could be determined, this is the NWCG Standard Unit Identifier (Unit ID). Where it is unknown, the value is ‘Null’. Null Unit IDs can occur because a unit may not have a Unit ID, or because one could not be reliably determined from the source data. Not every land ownership has an NWCG Unit ID. Unit ID assignment rules are available from the Unit ID standard, linked above.LandownerKindThe landowner category value associated with the polygon. May be inferred from jurisdictional agency, or by lack of a jurisdictional agency. A value is populated for all polygons. There are three valid values: Federal, Private, or Other.LandownerCategoryThe landowner kind value associated with the polygon. May be inferred from jurisdictional agency, or by lack of a jurisdictional agency. A value is populated for all polygons. Valid values include: ANCSA, BIA, BLM, BOR, DOD, DOE, NPS, USFS, USFWS, Foreign, Tribal, City, County, OtherLoc (other local, not in the standard), State, Private.DataSourceThe database from which the polygon originated. Be as specific as possible, identify the geodatabase name and feature class in which the polygon originated.SecondaryDataSourceIf the Data Source is an aggregation from other sources, use this field to specify the source that supplied data to the aggregation. For example, if Data Source is "PAD-US 2.1", then for a USDA Forest Service polygon, the Secondary Data Source would be "USDA FS Automated Lands Program (ALP)". For a BLM polygon in the same dataset, Secondary Source would be "Surface Management Agency (SMA)."SourceUniqueIDIdentifier (GUID or ObjectID) in the data source. Used to trace the polygon back to its authoritative source.MapMethod:Controlled vocabulary to define how the geospatial feature was derived. Map method may help define data quality. MapMethod will be Mixed Method by default for this layer as the data are from mixed sources. Valid Values include: GPS-Driven; GPS-Flight; GPS-Walked; GPS-Walked/Driven; GPS-Unknown Travel Method; Hand Sketch; Digitized-Image; DigitizedTopo; Digitized-Other; Image Interpretation; Infrared Image; Modeled; Mixed Methods; Remote Sensing Derived; Survey/GCDB/Cadastral; Vector; Phone/Tablet; OtherDateCurrentThe last edit, update, of this GIS record. Date should follow the assigned NWCG Date Time data standard, using 24 hour clock, YYYY-MM-DDhh.mm.ssZ, ISO8601 Standard.CommentsAdditional information describing the feature. GeometryIDPrimary key for linking geospatial objects with other database systems. Required for every feature. This field may be renamed for each standard to fit the feature.JurisdictionalUnitID_sansUSNWCG Unit ID with the "US" characters removed from the beginning. Provided for backwards compatibility.JoinMethodAdditional information on how the polygon was matched information in the NWCG Unit ID database.LocalNameLocalName for the polygon provided from PADUS or other source.LegendJurisdictionalAgencyJurisdictional Agency but smaller landholding agencies, or agencies of indeterminate status are grouped for more intuitive use in a map legend or summary table.LegendLandownerAgencyLandowner Agency but smaller landholding agencies, or agencies of indeterminate status are grouped for more intuitive use in a map legend or summary table.DataSourceYearYear that the source data for the polygon were acquired.Data InputThis dataset is based on an aggregation of 4 spatial data sources: Protected Areas Database US (PAD-US 2.1), data from Bureau of Indian Affairs regional offices, the BLM Alaska Fire Service/State of Alaska, and Census Block-Group Geometry. NWCG Unit ID and Agency Kind/Category data are tabular and sourced from UnitIDActive.txt, in the WFMI Unit ID application (https://wfmi.nifc.gov/unit_id/Publish.html). Areas of with unknown Landowner Kind/Category and Jurisdictional Agency Kind/Category are assigned LandownerKind and LandownerCategory values of "Private" by use of the non-water polygons from the Census Block-Group geometry.PAD-US 2.1:This dataset is based in large part on the USGS Protected Areas Database of the United States - PAD-US 2.`. PAD-US is a compilation of authoritative protected areas data between agencies and organizations that ultimately results in a comprehensive and accurate inventory of protected areas for the United States to meet a variety of needs (e.g. conservation, recreation, public health, transportation, energy siting, ecological, or watershed assessments and planning). Extensive documentation on PAD-US processes and data sources is available.How these data were aggregated:Boundaries, and their descriptors, available in spatial databases (i.e. shapefiles or geodatabase feature classes) from land management agencies are the desired and primary data sources in PAD-US. If these authoritative sources are unavailable, or the agency recommends another source, data may be incorporated by other aggregators such as non-governmental organizations. Data sources are tracked for each record in the PAD-US geodatabase (see below).BIA and Tribal Data:BIA and Tribal land management data are not available in PAD-US. As such, data were aggregated from BIA regional offices. These data date from 2012 and were substantially updated in 2022. Indian Trust Land affiliated with Tribes, Reservations, or BIA Agencies: These data are not considered the system of record and are not intended to be used as such. The Bureau of Indian Affairs (BIA), Branch of Wildland Fire Management (BWFM) is not the originator of these data. The
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Note: This LCMS CONUS Cause of Change image service has been deprecated. It has been replaced by the LCMS CONUS Annual Change image service, which provides updated and consolidated change data.Please refer to the new service here: https://usfs.maps.arcgis.com/home/item.html?id=085626ec50324e5e9ad6323c050ac84dThis product is part of the Landscape Change Monitoring System (LCMS) data suite. It shows LCMS change attribution classes for each year. See additional information about change in the Entity_and_Attribute_Information or Fields section below.LCMS is a remote sensing-based system for mapping and monitoring landscape change across the United States. Its objective is to develop a consistent approach using the latest technology and advancements in change detection to produce a "best available" map of landscape change. Because no algorithm performs best in all situations, LCMS uses an ensemble of models as predictors, which improves map accuracy across a range of ecosystems and change processes (Healey et al., 2018). The resulting suite of LCMS change, land cover, and land use maps offer a holistic depiction of landscape change across the United States over the past four decades.Predictor layers for the LCMS model include outputs from the LandTrendr and CCDC change detection algorithms and terrain information. These components are all accessed and processed using Google Earth Engine (Gorelick et al., 2017). To produce annual composites, the cFmask (Zhu and Woodcock, 2012), cloudScore, and TDOM (Chastain et al., 2019) cloud and cloud shadow masking methods are applied to Landsat Tier 1 and Sentinel 2a and 2b Level-1C top of atmosphere reflectance data. The annual medoid is then computed to summarize each year into a single composite. The composite time series is temporally segmented using LandTrendr (Kennedy et al., 2010; Kennedy et al., 2018; Cohen et al., 2018). All cloud and cloud shadow free values are also temporally segmented using the CCDC algorithm (Zhu and Woodcock, 2014). LandTrendr, CCDC and terrain predictors can be used as independent predictor variables in a Random Forest (Breiman, 2001) model. LandTrendr predictor variables include fitted values, pair-wise differences, segment duration, change magnitude, and slope. CCDC predictor variables include CCDC sine and cosine coefficients (first 3 harmonics), fitted values, and pairwise differences from the Julian Day of each pixel used in the annual composites and LandTrendr. Terrain predictor variables include elevation, slope, sine of aspect, cosine of aspect, and topographic position indices (Weiss, 2001) from the USGS 3D Elevation Program (3DEP) (U.S. Geological Survey, 2019). Reference data are collected using TimeSync, a web-based tool that helps analysts visualize and interpret the Landsat data record from 1984-present (Cohen et al., 2010).Outputs fall into three categories: change, land cover, and land use. Change relates specifically to vegetation cover and includes slow loss (not included for PRUSVI), fast loss (which also includes hydrologic changes such as inundation or desiccation), and gain. These values are predicted for each year of the time series and serve as the foundational products for LCMS. References: Breiman, L. (2001). Random Forests. In Machine Learning (Vol. 45, pp. 5-32). https://doi.org/10.1023/A:1010933404324Chastain, R., Housman, I., Goldstein, J., Finco, M., and Tenneson, K. (2019). Empirical cross sensor comparison of Sentinel-2A and 2B MSI, Landsat-8 OLI, and Landsat-7 ETM top of atmosphere spectral characteristics over the conterminous United States. In Remote Sensing of Environment (Vol. 221, pp. 274-285). https://doi.org/10.1016/j.rse.2018.11.012Cohen, W. B., Yang, Z., and Kennedy, R. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync - Tools for calibration and validation. In Remote Sensing of Environment (Vol. 114, Issue 12, pp. 2911-2924). https://doi.org/10.1016/j.rse.2010.07.010Cohen, W. B., Yang, Z., Healey, S. P., Kennedy, R. E., and Gorelick, N. (2018). A LandTrendr multispectral ensemble for forest disturbance detection. In Remote Sensing of Environment (Vol. 205, pp. 131-140). https://doi.org/10.1016/j.rse.2017.11.015Foga, S., Scaramuzza, P.L., Guo, S., Zhu, Z., Dilley, R.D., Beckmann, T., Schmidt, G.L., Dwyer, J.L., Hughes, M.J., Laue, B. (2017). Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sensing of Environment, 194, 379-390. https://doi.org/10.1016/j.rse.2017.03.026Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. In Remote Sensing of Environment (Vol. 202, pp. 18-27). https://doi.org/10.1016/j.rse.2017.06.031Healey, S. P., Cohen, W. B., Yang, Z., Kenneth Brewer, C., Brooks, E. B., Gorelick, N., Hernandez, A. J., Huang, C., Joseph Hughes, M., Kennedy, R. E., Loveland, T. R., Moisen, G. G., Schroeder, T. A., Stehman, S. V., Vogelmann, J. E., Woodcock, C. E., Yang, L., and Zhu, Z. (2018). Mapping forest change using stacked generalization: An ensemble approach. In Remote Sensing of Environment (Vol. 204, pp. 717-728). https://doi.org/10.1016/j.rse.2017.09.029Kennedy, R. E., Yang, Z., and Cohen, W. B. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr - Temporal segmentation algorithms. In Remote Sensing of Environment (Vol. 114, Issue 12, pp. 2897-2910). https://doi.org/10.1016/j.rse.2010.07.008Kennedy, R., Yang, Z., Gorelick, N., Braaten, J., Cavalcante, L., Cohen, W., and Healey, S. (2018). Implementation of the LandTrendr Algorithm on Google Earth Engine. In Remote Sensing (Vol. 10, Issue 5, p. 691). https://doi.org/10.3390/rs10050691Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., and Wulder, M. A. (2014). Good practices for estimating area and assessing accuracy of land change. In Remote Sensing of Environment (Vol. 148, pp. 42-57). https://doi.org/10.1016/j.rse.2014.02.015Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M. and Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. In Journal of Machine Learning Research (Vol. 12, pp. 2825-2830).Pengra, B. W., Stehman, S. V., Horton, J. A., Dockter, D. J., Schroeder, T. A., Yang, Z., Cohen, W. B., Healey, S. P., and Loveland, T. R. (2020). Quality control and assessment of interpreter consistency of annual land cover reference data in an operational national monitoring program. In Remote Sensing of Environment (Vol. 238, p. 111261). https://doi.org/10.1016/j.rse.2019.111261U.S. Geological Survey. (2019). USGS 3D Elevation Program Digital Elevation Model, accessed August 2022 at https://developers.google.com/earth-engine/datasets/catalog/USGS_3DEP_10mWeiss, A.D. (2001). Topographic position and landforms analysis Poster Presentation, ESRI Users Conference, San Diego, CAZhu, Z., and Woodcock, C. E. (2012). Object-based cloud and cloud shadow detection in Landsat imagery. In Remote Sensing of Environment (Vol. 118, pp. 83-94). https://doi.org/10.1016/j.rse.2011.10.028Zhu, Z., and Woodcock, C. E. (2014). Continuous change detection and classification of land cover using all available Landsat data. In Remote Sensing of Environment (Vol. 144, pp. 152-171). https://doi.org/10.1016/j.rse.2014.01.011This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService For complete information, please visit https://data.gov.