Facebook
TwitterThe previous review in this series introduced the notion of data description and outlined some of the more common summary measures used to describe a dataset. However, a dataset is typically only of interest for the information it provides regarding the population from which it was drawn. The present review focuses on estimation of population values from a sample.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Excel township population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Excel township across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Excel township was 300, a 0.99% decrease year-by-year from 2022. Previously, in 2022, Excel township population was 303, a decline of 0.98% compared to a population of 306 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Excel township increased by 17. In this period, the peak population was 308 in the year 2020. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Excel township Population by Year. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Combined Locks population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Combined Locks across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Combined Locks was 3,654, a 0.11% decrease year-by-year from 2022. Previously, in 2022, Combined Locks population was 3,658, an increase of 0.83% compared to a population of 3,628 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Combined Locks increased by 1,198. In this period, the peak population was 3,658 in the year 2022. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Combined Locks Population by Year. You can refer the same here
Facebook
TwitterThis brief provides more information about a how a State may, for planning purposes, calculate a sample size for the NYTD follow-up population. Metadata-only record linking to the original dataset. Open original dataset below.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Lebanon population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Lebanon across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Lebanon was 182, a 0.55% increase year-by-year from 2022. Previously, in 2022, Lebanon population was 181, a decline of 0% compared to a population of 181 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Lebanon decreased by 120. In this period, the peak population was 302 in the year 2000. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Lebanon Population by Year. You can refer the same here
Facebook
Twitteranalyze the current population survey (cps) annual social and economic supplement (asec) with r the annual march cps-asec has been supplying the statistics for the census bureau's report on income, poverty, and health insurance coverage since 1948. wow. the us census bureau and the bureau of labor statistics ( bls) tag-team on this one. until the american community survey (acs) hit the scene in the early aughts (2000s), the current population survey had the largest sample size of all the annual general demographic data sets outside of the decennial census - about two hundred thousand respondents. this provides enough sample to conduct state- and a few large metro area-level analyses. your sample size will vanish if you start investigating subgroups b y state - consider pooling multiple years. county-level is a no-no. despite the american community survey's larger size, the cps-asec contains many more variables related to employment, sources of income, and insurance - and can be trended back to harry truman's presidency. aside from questions specifically asked about an annual experience (like income), many of the questions in this march data set should be t reated as point-in-time statistics. cps-asec generalizes to the united states non-institutional, non-active duty military population. the national bureau of economic research (nber) provides sas, spss, and stata importation scripts to create a rectangular file (rectangular data means only person-level records; household- and family-level information gets attached to each person). to import these files into r, the parse.SAScii function uses nber's sas code to determine how to import the fixed-width file, then RSQLite to put everything into a schnazzy database. you can try reading through the nber march 2012 sas importation code yourself, but it's a bit of a proc freak show. this new github repository contains three scripts: 2005-2012 asec - download all microdata.R down load the fixed-width file containing household, family, and person records import by separating this file into three tables, then merge 'em together at the person-level download the fixed-width file containing the person-level replicate weights merge the rectangular person-level file with the replicate weights, then store it in a sql database create a new variable - one - in the data table 2012 asec - analysis examples.R connect to the sql database created by the 'download all microdata' progr am create the complex sample survey object, using the replicate weights perform a boatload of analysis examples replicate census estimates - 2011.R connect to the sql database created by the 'download all microdata' program create the complex sample survey object, using the replicate weights match the sas output shown in the png file below 2011 asec replicate weight sas output.png statistic and standard error generated from the replicate-weighted example sas script contained in this census-provided person replicate weights usage instructions document. click here to view these three scripts for more detail about the current population survey - annual social and economic supplement (cps-asec), visit: the census bureau's current population survey page the bureau of labor statistics' current population survey page the current population survey's wikipedia article notes: interviews are conducted in march about experiences during the previous year. the file labeled 2012 includes information (income, work experience, health insurance) pertaining to 2011. when you use the current populat ion survey to talk about america, subract a year from the data file name. as of the 2010 file (the interview focusing on america during 2009), the cps-asec contains exciting new medical out-of-pocket spending variables most useful for supplemental (medical spending-adjusted) poverty research. confidential to sas, spss, stata, sudaan users: why are you still rubbing two sticks together after we've invented the butane lighter? time to transition to r. :D
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Abstract: The aim of this study is to gain insights into the attitudes of the population towards big data practices and the factors influencing them. To this end, a nationwide survey (N = 1,331), representative of the population of Germany, addressed the attitudes about selected big data practices exemplified by four scenarios, which may have a direct impact on the personal lifestyle. The scenarios contained price discrimination in retail, credit scoring, differentiations in health insurance, and differentiations in employment. The attitudes about the scenarios were set into relation to demographic characteristics, personal value orientations, knowledge about computers and the internet, and general attitudes about privacy and data protection. Another focus of the study is on the institutional framework of privacy and data protection, because the realization of benefits or risks of big data practices for the population also depends on the knowledge about the rights the institutional framework provided to the population and the actual use of those rights. As results, several challenges for the framework by big data practices were confirmed, in particular for the elements of informed consent with privacy policies, purpose limitation, and the individuals’ rights to request information about the processing of personal data and to have these data corrected or erased. TechnicalRemarks: TYPE OF SURVEY AND METHODS The data set includes responses to a survey conducted by professionally trained interviewers of a social and market research company in the form of computer-aided telephone interviews (CATI) from 2017-02 to 2017-04. The target population was inhabitants of Germany aged 18 years and more, who were randomly selected by using the sampling approaches ADM eASYSAMPLe (based on the Gabler-Häder method) for landline connections and eASYMOBILe for mobile connections. The 1,331 completed questionnaires comprise 44.2 percent mobile and 55.8 percent landline phone respondents. Most questions had options to answer with a 5-point rating scale (Likert-like) anchored with ‘Fully agree’ to ‘Do not agree at all’, or ‘Very uncomfortable’ to ‘Very comfortable’, for instance. Responses by the interviewees were weighted to obtain a representation of the entire German population (variable ‘gewicht’ in the data sets). To this end, standard weighting procedures were applied to reduce differences between the sample and the entire population with regard to known rates of response and non-response depending on household size, age, gender, educational level, and place of residence. RELATED PUBLICATION AND FURTHER DETAILS The questionnaire, analysis and results will be published in the corresponding report (main text in English language, questionnaire in Appendix B in German language of the interviews and English translation). The report will be available as open access publication at KIT Scientific Publishing (https://www.ksp.kit.edu/). Reference: Orwat, Carsten; Schankin, Andrea (2018): Attitudes towards big data practices and the institutional framework of privacy and data protection - A population survey, KIT Scientific Report 7753, Karlsruhe: KIT Scientific Publishing. FILE FORMATS The data set of responses is saved for the repository KITopen at 2018-11 in the following file formats: comma-separated values (.csv), tapulator-separated values (.dat), Excel (.xlx), Excel 2007 or newer (.xlxs), and SPSS Statistics (.sav). The questionnaire is saved in the following file formats: comma-separated values (.csv), Excel (.xlx), Excel 2007 or newer (.xlxs), and Portable Document Format (.pdf). PROJECT AND FUNDING The survey is part of the project Assessing Big Data (ABIDA) (from 2015-03 to 2019-02), which receives funding from the Federal Ministry of Education and Research (BMBF), Germany (grant no. 01IS15016A-F). http://www.abida.de
Facebook
TwitterBy Health [source]
The Behavioral Risk Factor Surveillance System (BRFSS) offers an expansive collection of data on the health-related quality of life (HRQOL) from 1993 to 2010. Over this time period, the Health-Related Quality of Life dataset consists of a comprehensive survey reflecting the health and well-being of non-institutionalized US adults aged 18 years or older. The data collected can help track and identify unmet population health needs, recognize trends, identify disparities in healthcare, determine determinants of public health, inform decision making and policy development, as well as evaluate programs within public healthcare services.
The HRQOL surveillance system has developed a compact set of HRQOL measures such as a summary measure indicating unhealthy days which have been validated for population health surveillance purposes and have been widely implemented in practice since 1993. Within this study's dataset you will be able to access information such as year recorded, location abbreviations & descriptions, category & topic overviews, questions asked in surveys and much more detailed information including types & units regarding data values retrieved from respondents along with their sample sizes & geographical locations involved!
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset tracks the Health-Related Quality of Life (HRQOL) from 1993 to 2010 using data from the Behavioral Risk Factor Surveillance System (BRFSS). This dataset includes information on the year, location abbreviation, location description, type and unit of data value, sample size, category and topic of survey questions.
Using this dataset on BRFSS: HRQOL data between 1993-2010 will allow for a variety of analyses related to population health needs. The compact set of HRQOL measures can be used to identify trends in population health needs as well as determine disparities among various locations. Additionally, responses to survey questions can be used to inform decision making and program and policy development in public health initiatives.
- Analyzing trends in HRQOL over the years by location to identify disparities in health outcomes between different populations and develop targeted policy interventions.
- Developing new models for predicting HRQOL indicators at a regional level, and using this information to inform medical practice and public health implementation efforts.
- Using the data to understand differences between states in terms of their HRQOL scores and establish best practices for healthcare provision based on that understanding, including areas such as access to care, preventative care services availability, etc
If you use this dataset in your research, please credit the original authors. Data Source
See the dataset description for more information.
File: rows.csv | Column name | Description | |:-------------------------------|:----------------------------------------------------------| | Year | Year of survey. (Integer) | | LocationAbbr | Abbreviation of location. (String) | | LocationDesc | Description of location. (String) | | Category | Category of survey. (String) | | Topic | Topic of survey. (String) | | Question | Question asked in survey. (String) | | DataSource | Source of data. (String) | | Data_Value_Unit | Unit of data value. (String) | | Data_Value_Type | Type of data value. (String) | | Data_Value_Footnote_Symbol | Footnote symbol for data value. (String) | | Data_Value_Std_Err | Standard error of the data value. (Float) | | Sample_Size | Sample size used in sample. (Integer) | | Break_Out | Break out categories used. (String) | | Break_Out_Category | Type break out assessed. (String) | | **GeoLocation*...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract This paper contributes to the existing literature by reviewing the research methodology and the literature review with the focus on potential applications for the novelty technology of the single platform E-payment. These included, but were not restricted to the subjects, population, sample size requirement, data collection method and measurement of variables, pilot study and statistical techniques for data analysis. The reviews will shed some light and potential applications for future researchers, students and others to conceptualize, operationalize and analyze the underlying research methodology to assist in the development of their research methodology.
Facebook
TwitterThe primary data consist of allele or haplotype frequencies for N=1036 anonymized U.S. population samples. Additional files are supplements to the associated publications. Any changes to spreadsheets are listed in the "Change Log" tab within each spreadsheet. DOI numbers for associated publications are listed below, under "References".
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The dataset has been created by using the open-source code released by LNDS (Luxembourg National Data Service). It is meant to be an example of the dataset structure anyone can generate and personalize in terms of some fixed parameter, including the sample size. The file format is .csv, and the data are organized by individual profiles on the rows and their personal features on the columns. The information in the dataset has been generated based on the statistical information about the age-structure distribution, the number of populations over municipalities, the number of different nationalities present in Luxembourg, and salary statistics per municipality. The STATEC platform, the statistics portal of Luxembourg, is the public source we used to gather the real information that we ingested into our synthetic generation model. Other features like Date of birth, Social matricule, First name, Surname, Ethnicity, and physical attributes have been obtained by a logical relationship between variables without exploiting any additional real information. We are in compliance with the law in putting close to zero the risk of identifying a real person completely by chance.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
China Population Statistics: Sample Survey: Sampling Fraction data was reported at 0.105 % in 2023. This records an increase from the previous number of 0.102 % for 2022. China Population Statistics: Sample Survey: Sampling Fraction data is updated yearly, averaging 0.100 % from Dec 1982 (Median) to 2023, with 37 observations. The data reached an all-time high of 100.000 % in 2020 and a record low of 0.063 % in 1994. China Population Statistics: Sample Survey: Sampling Fraction data remains active status in CEIC and is reported by National Bureau of Statistics. The data is categorized under China Premium Database’s Socio-Demographic – Table CN.GA: Population: Sample Survey: Level of Education.
Facebook
TwitterThe dataset is a relational dataset of 8,000 households households, representing a sample of the population of an imaginary middle-income country. The dataset contains two data files: one with variables at the household level, the other one with variables at the individual level. It includes variables that are typically collected in population censuses (demography, education, occupation, dwelling characteristics, fertility, mortality, and migration) and in household surveys (household expenditure, anthropometric data for children, assets ownership). The data only includes ordinary households (no community households). The dataset was created using REaLTabFormer, a model that leverages deep learning methods. The dataset was created for the purpose of training and simulation and is not intended to be representative of any specific country.
The full-population dataset (with about 10 million individuals) is also distributed as open data.
The dataset is a synthetic dataset for an imaginary country. It was created to represent the population of this country by province (equivalent to admin1) and by urban/rural areas of residence.
Household, Individual
The dataset is a fully-synthetic dataset representative of the resident population of ordinary households for an imaginary middle-income country.
ssd
The sample size was set to 8,000 households. The fixed number of households to be selected from each enumeration area was set to 25. In a first stage, the number of enumeration areas to be selected in each stratum was calculated, proportional to the size of each stratum (stratification by geo_1 and urban/rural). Then 25 households were randomly selected within each enumeration area. The R script used to draw the sample is provided as an external resource.
other
The dataset is a synthetic dataset. Although the variables it contains are variables typically collected from sample surveys or population censuses, no questionnaire is available for this dataset. A "fake" questionnaire was however created for the sample dataset extracted from this dataset, to be used as training material.
The synthetic data generation process included a set of "validators" (consistency checks, based on which synthetic observation were assessed and rejected/replaced when needed). Also, some post-processing was applied to the data to result in the distributed data files.
This is a synthetic dataset; the "response rate" is 100%.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
'Dataset2' associated with: Who Tweets with Their Location? Understanding the Relationship Between Demographic Characteristics and the Use of Geoservices and Geotagging on Twitter
Luke Sloan and Jeffrey Morgan.
Facebook
TwitterThis TB describes how ACF will identify and finalize each cohort of youth in the NYTD follow-up population (or follow-up population sample for those States that opt to sample) for the purposes of assessing States' compliance with NYTD data collection and reporting requirements. The TB also specifies how States may opt to sample the baseline population for the purposes of collecting information on the follow-up population.
Metadata-only record linking to the original dataset. Open original dataset below.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In this article, we propose a multiscale adaptive test to detect differences between two samples of intrinsically smoothed image data in high-dimensional context. The test aggregates data from nearby locations using adaptive weights, significantly enhancing statistical power. We demonstrate that the test statistic converges to a Gumbel extreme value distribution under the null hypothesis. Moreover, we investigate its multiscale nature, showing that the chosen scales can grow at a specific polynomial rate of the sample size. We also evaluate its power against sparse alternatives and establish that with probability approaching one, the proposed method can identify the locations where the two means differ from each other. Additionally, we extend the proposed method to multi-sample ANOVA tests. Simulation results suggest that the proposed test outperforms the non-multiscale method that ignores spatial features of imaging data. The procedures are illustrated using a real dataset from the Alzheimer’s Disease Neuroimaging Initiative study. Supplementary materials for this article are available online, including a standardized description of the materials available for reproducing the work.
Facebook
TwitterOpen Access# Data and R code used in: Plant geographic distribution influences chemical defenses in native and introduced Plantago lanceolata populations ## Description of the data and file structure * 00_ReadMe_DescriptonVariables.csv: A list with the description of variables from each file used. * 00_Metadata_Coordinates.csv : A dataset that includes the coordinates of each Plantago lanceolata population used. * 00_Metadata_Climate.csv : A dataset that includes coordinates, bioclimatic parameters, and the results of PCA. The dataset was created based on the script '1_Environmental variables.qmd' * 00_Metadata_Individuals.csv: A dataset that includes general information about each plant individual. Information about root traits and chemistry is missing in four samples since we lost the samples. * 01_Datset_PlantTraits.csv: Size-related and resource allocation traits measured of Plantago lanceolata and herbivore damage. * 02_Dataset_TargetedCompounds.csv: Phytohormones, Iridoid glycosides, Verbascoside and Flavonoids quantification of the leaves and roots of Plantago lanceolata. Data generated from HPLC * 03_Dataset_Volatiles_Area.csv: Area of identified volatile compounds. Data generated from GC-FID * 03_Dataset_Volatiles_Compounds.csv: Information on identified volatile compounds. Data generated from GC-MS. * 04_Dataset_Metabolome_Negative_Metadata.txt: Metadata for files in negative mode * 04_Dataset_Metabolome_Negative_Intensity.xlsx : File with the intensity of the metabolite features in negative mode. The file was generated from Metaboscape and adapted as required for the Notame package. * 04_Dataset_Metabolome_Negative_Intensity_filtered.xlsx: File generated after preprocessing of features in negative mode. During the notadame pacakged preprossesing 0 were converted to na * 04_Dataset_Metabolome_Negative.msmsonly.csv: File with a intensity of the the metabolite features in negative mode with ms/ms data. File generated from Metaboscape. * 04_Results_Metabolome_Negative_canopus_compound_summary.tsv: Feature classification. Results generated from Sirius software. * 04_Results_Metabolome_Negative_compound_identifications.tsv: Feature identification. Results generated from Sirius software. * 05_Dataset_Metabolome_Positive_Metadata.txt: Metadata for files in positive mode * 05_DatasetMetabolome_Positive_Intensity.xlsx : File with a intensity of the the metabolite features in positive mode. File generated from Metaboscape and adapted as required for the Notame package. * 05_Dataset_Metabolome_Positive_Intensity_filtered: File generated after preprocessing of features in positive mode.During the notadame pacakged preprossesing 0 were converted to na ## ## Code/Software * 1_Environmental vairables.qmd: Rscript to Retrieve bioclimatic variables from based on the coordinates of each population and then perform a principal components analysis to reduce the axes variation and included the first principal component as an explanatory variable in our model to estimate trait differences between native and introduced populations. Figure 1b and 1d * 2_PlantTraits_and_Herbivory: Rscript for statistical anaylsis of size-related traits, resource allocation traits and herbivore damage. Figure 2. It needs to source: Model_1_Fucntion.R, Model_2_Fucntion.R, Plot_Function.R * 3_Metabolome: Rscript for statistical anaylsis of Plantago lanceolata metabolome. Figure 3. It needs to source: Metabolome_preprocessing_R, Model_1_Fucntion.R, Model_2_Fucntion.R, Plot_Function.R. * 4_TargetedCompounds: Rscript for statistical anaylsis of Plantago lanceolata targeted compounds. Figure 4. It needs to source: Model_1_Fucntion.R, Model_2_Fucntion.R, Plot_Function.R * 5_Volatilome: Rscript for statistical anaylsis of Plantago lanceolata metabolome. Figure 5. It needs to source: Model_1_Fucntion.R, Model_2_Fucntion.R, Plot_Function.R * Model_1_Function.R : Function to run statistical models * Model_2_Function.R : Function to run statistical models * Plots_Function.R : Function to run plot graphs * Metabolome_prepocessing.R: Script to preprocess features
Facebook
TwitterThe main objective of the HEIS survey is to obtain detailed data on household expenditure and income, linked to various demographic and socio-economic variables, to enable computation of poverty indices and determine the characteristics of the poor and prepare poverty maps. Therefore, to achieve these goals, the sample had to be representative on the sub-district level. The raw survey data provided by the Statistical Office was cleaned and harmonized by the Economic Research Forum, in the context of a major research project to develop and expand knowledge on equity and inequality in the Arab region. The main focus of the project is to measure the magnitude and direction of change in inequality and to understand the complex contributing social, political and economic forces influencing its levels. However, the measurement and analysis of the magnitude and direction of change in this inequality cannot be consistently carried out without harmonized and comparable micro-level data on income and expenditures. Therefore, one important component of this research project is securing and harmonizing household surveys from as many countries in the region as possible, adhering to international statistics on household living standards distribution. Once the dataset has been compiled, the Economic Research Forum makes it available, subject to confidentiality agreements, to all researchers and institutions concerned with data collection and issues of inequality.
Data collected through the survey helped in achieving the following objectives: 1. Provide data weights that reflect the relative importance of consumer expenditure items used in the preparation of the consumer price index 2. Study the consumer expenditure pattern prevailing in the society and the impact of demographic and socio-economic variables on those patterns 3. Calculate the average annual income of the household and the individual, and assess the relationship between income and different economic and social factors, such as profession and educational level of the head of the household and other indicators 4. Study the distribution of individuals and households by income and expenditure categories and analyze the factors associated with it 5. Provide the necessary data for the national accounts related to overall consumption and income of the household sector 6. Provide the necessary income data to serve in calculating poverty indices and identifying the poor characteristics as well as drawing poverty maps 7. Provide the data necessary for the formulation, follow-up and evaluation of economic and social development programs, including those addressed to eradicate poverty
National
Sample survey data [ssd]
The Household Expenditure and Income survey sample for 2010, was designed to serve the basic objectives of the survey through providing a relatively large sample in each sub-district to enable drawing a poverty map in Jordan. The General Census of Population and Housing in 2004 provided a detailed framework for housing and households for different administrative levels in the country. Jordan is administratively divided into 12 governorates, each governorate is composed of a number of districts, each district (Liwa) includes one or more sub-district (Qada). In each sub-district, there are a number of communities (cities and villages). Each community was divided into a number of blocks. Where in each block, the number of houses ranged between 60 and 100 houses. Nomads, persons living in collective dwellings such as hotels, hospitals and prison were excluded from the survey framework.
A two stage stratified cluster sampling technique was used. In the first stage, a cluster sample proportional to the size was uniformly selected, where the number of households in each cluster was considered the weight of the cluster. At the second stage, a sample of 8 households was selected from each cluster, in addition to another 4 households selected as a backup for the basic sample, using a systematic sampling technique. Those 4 households were sampled to be used during the first visit to the block in case the visit to the original household selected is not possible for any reason. For the purposes of this survey, each sub-district was considered a separate stratum to ensure the possibility of producing results on the sub-district level. In this respect, the survey framework adopted that provided by the General Census of Population and Housing Census in dividing the sample strata. To estimate the sample size, the coefficient of variation and the design effect of the expenditure variable provided in the Household Expenditure and Income Survey for the year 2008 was calculated for each sub-district. These results were used to estimate the sample size on the sub-district level so that the coefficient of variation for the expenditure variable in each sub-district is less than 10%, at a minimum, of the number of clusters in the same sub-district (6 clusters). This is to ensure adequate presentation of clusters in different administrative areas to enable drawing an indicative poverty map.
It should be noted that in addition to the standard non response rate assumed, higher rates were expected in areas where poor households are concentrated in major cities. Therefore, those were taken into consideration during the sampling design phase, and a higher number of households were selected from those areas, aiming at well covering all regions where poverty spreads.
Face-to-face [f2f]
Raw Data: - Organizing forms/questionnaires: A compatible archive system was used to classify the forms according to different rounds throughout the year. A registry was prepared to indicate different stages of the process of data checking, coding and entry till forms were back to the archive system. - Data office checking: This phase was achieved concurrently with the data collection phase in the field where questionnaires completed in the field were immediately sent to data office checking phase. - Data coding: A team was trained to work on the data coding phase, which in this survey is only limited to education specialization, profession and economic activity. In this respect, international classifications were used, while for the rest of the questions, coding was predefined during the design phase. - Data entry/validation: A team consisting of system analysts, programmers and data entry personnel were working on the data at this stage. System analysts and programmers started by identifying the survey framework and questionnaire fields to help build computerized data entry forms. A set of validation rules were added to the entry form to ensure accuracy of data entered. A team was then trained to complete the data entry process. Forms prepared for data entry were provided by the archive department to ensure forms are correctly extracted and put back in the archive system. A data validation process was run on the data to ensure the data entered is free of errors. - Results tabulation and dissemination: After the completion of all data processing operations, ORACLE was used to tabulate the survey final results. Those results were further checked using similar outputs from SPSS to ensure that tabulations produced were correct. A check was also run on each table to guarantee consistency of figures presented, together with required editing for tables' titles and report formatting.
Harmonized Data: - The Statistical Package for Social Science (SPSS) was used to clean and harmonize the datasets. - The harmonization process started with cleaning all raw data files received from the Statistical Office. - Cleaned data files were then merged to produce one data file on the individual level containing all variables subject to harmonization. - A country-specific program was generated for each dataset to generate/compute/recode/rename/format/label harmonized variables. - A post-harmonization cleaning process was run on the data. - Harmonized data was saved on the household as well as the individual level, in SPSS and converted to STATA format.
Facebook
TwitterThis is an integration of 10 independent multi-country, multi-region, multi-cultural social surveys fielded by Gallup International between 2000 and 2013. The integrated data file contains responses from 535,159 adults living in 103 countries. In total, the harmonization project combined 571 social surveys.
These data have value in a number of longitudinal multi-country, multi-regional, and multi-cultural (L3M) research designs. Understood as independent, though non-random, L3M samples containing a number of multiple indicator ASQ (ask same questions) and ADQ (ask different questions) measures of human development, the environment, international relations, gender equality, security, international organizations, and democracy, to name a few [see full list below].
The data can be used for exploratory and descriptive analysis, with greatest utility at low levels of resolution (e.g. nation-states, supranational groupings). Level of resolution in analysis of these data should be sufficiently low to approximate confidence intervals.
These data can be used for teaching 3M methods, including data harmonization in L3M, 3M research design, survey design, 3M measurement invariance, analysis, and visualization, and reporting. Opportunities to teach about para data, meta data, and data management in L3M designs.
The country units are an unbalanced panel derived from non-probability samples of countries and respondents> Panels (countries) have left and right censorship and are thusly unbalanced. This design limitation can be overcome to the extent that VOTP panels are harmonized with public measurements from other 3M surveys to establish balance in terms of panels and occasions of measurement. Should L3M harmonization occur, these data can be assigned confidence weights to reflect the amount of error in these surveys.
Pooled public opinion surveys (country means), when combine with higher quality country measurements of the same concepts (ASQ, ADQ), can be leveraged to increase the statistical power of pooled publics opinion research designs (multiple L3M datasets)…that is, in studies of public, rather than personal, beliefs.
The Gallup Voice of the People survey data are based on uncertain sampling methods based on underspecified methods. Country sampling is non-random. The sampling method appears be primarily probability and quota sampling, with occasional oversample of urban populations in difficult to survey populations. The sampling units (countries and individuals) are poorly defined, suggesting these data have more value in research designs calling for independent samples replication and repeated-measures frameworks.
**The Voice of the People Survey Series is WIN/Gallup International Association's End of Year survey and is a global study that collects the public's view on the challenges that the world faces today. Ongoing since 1977, the purpose of WIN/Gallup International's End of Year survey is to provide a platform for respondents to speak out concerning government and corporate policies. The Voice of the People, End of Year Surveys for 2012, fielded June 2012 to February 2013, were conducted in 56 countries to solicit public opinion on social and political issues. Respondents were asked whether their country was governed by the will of the people, as well as their attitudes about their society. Additional questions addressed respondents' living conditions and feelings of safety around their living area, as well as personal happiness. Respondents' opinions were also gathered in relation to business development and their views on the effectiveness of the World Health Organization. Respondents were also surveyed on ownership and use of mobile devices. Demographic information includes sex, age, income, education level, employment status, and type of living area.
Facebook
TwitterDescriptive statistics for the healthy population sample (N = 40).
Facebook
TwitterThe previous review in this series introduced the notion of data description and outlined some of the more common summary measures used to describe a dataset. However, a dataset is typically only of interest for the information it provides regarding the population from which it was drawn. The present review focuses on estimation of population values from a sample.