This is a collection of all GPS- and computer-generated geospatial data specific to the Alpine Treeline Warming Experiment (ATWE), located on Niwot Ridge, Colorado, USA. The experiment ran between 2008 and 2016, and consisted of three sites spread across an elevation gradient. Geospatial data for all three experimental sites and cone/seed collection locations are included in this package. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Geospatial files include cone collection, experimental site, seed trap, and other GPS location/terrain data. File types include ESRI shapefiles, ESRI grid files or Arc/Info binary grids, TIFFs (.tif), and keyhole markup language (.kml) files. Trimble-imported data include plain text files (.txt), Trimble COR (CorelDRAW) files, and Trimble SSF (Standard Storage Format) files. Microsoft Excel (.xlsx) and comma-separated values (.csv) files corresponding to the attribute tables of many files within this package are also included. A complete list of files can be found in this document in the “Data File Organization” section in the included Data User's Guide. Maps are also included in this data package for reference and use. These maps are separated into two categories, 2021 maps and legacy maps, which were made in 2010. Each 2021 map has one copy in portable network graphics (.png) format, and the other in .pdf format. All legacy maps are in .pdf format. .png image files can be opened with any compatible programs, such as Preview (Mac OS) and Photos (Windows). All GIS files were imported into geopackages (.gpkg) using QGIS, and double-checked for compatibility and data/attribute integrity using ESRI ArcGIS Pro. Note that files packaged within geopackages will open in ArcGIS Pro with “main.” preceding each file name, and an extra column named “geom” defining geometry type in the attribute table. The contents of each geospatial file remain intact, unless otherwise stated in “niwot_geospatial_data_list_07012021.pdf/.xlsx”. This list of files can be found as an .xlsx and a .pdf in this archive. As an open-source file format, files within gpkgs (TIFF, shapefiles, ESRI grid or “Arc/Info Binary”) can be read using both QGIS and ArcGIS Pro, and any other geospatial softwares. Text and .csv files can be read using TextEdit/Notepad/any simple text-editing software; .csv’s can also be opened using Microsoft Excel and R. .kml files can be opened using Google Maps or Google Earth, and Trimble files are most compatible with Trimble’s GPS Pathfinder Office software. .xlsx files can be opened using Microsoft Excel. PDFs can be opened using Adobe Acrobat Reader, and any other compatible programs. A selection of original shapefiles within this archive were generated using ArcMap with associated FGDC-standardized metadata (xml file format). We are including these original files because they contain metadata only accessible using ESRI programs at this time, and so that the relationship between shapefiles and xml files is maintained. Individual xml files can be opened (without a GIS-specific program) using TextEdit or Notepad. Since ESRI’s compatibility with FGDC metadata has changed since the generation of these files, many shapefiles will require upgrading to be compatible with ESRI’s latest versions of geospatial software. These details are also noted in the “niwot_geospatial_data_list_07012021” file.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The map of potential natural vegetation of eastern Africa (V4A) gives the distribution of potential natural vegetation in Ethiopia, Kenya, Tanzania, Uganda, Rwanda, Burundi, Malawi and Zambia.
The map is based on national and local vegetation maps constructed from botanical field surveys - mainly carried out in the two decades after 1950 - in combination with input from national botanical experts. Potential natural vegetation (PNV) is defined as “vegetation that would persist under the current conditions without human interventions”. As such, it can be considered a baseline or null model to assess the vegetation that could be present in a landscape under the current climate and edaphic conditions and used as an input to model vegetation distribution under changing climate.
Vegetation types are defined by their tree species composition, and the documentation of the maps thus includes the potential distribution for more than a thousand tree and shrub species, see the documentation (https://vegetationmap4africa.org/species.html)
The map distinguishes 48 vegetation types, divided in four main vegetation groups: 16 forest types, 15 woodland and wooded grassland types, 5 bushland and thicket types and 12 other types. The map is available in various formats. The online version (https://vegetationmap4africa.org/vegetation_map.html) and for PDF versions of the map, see the documentation (https://vegetationmap4africa.org/documentation.html). Version 2.0 of the potential natural vegetation map and the woody species selection tool was published in 2015 (https://vegetationmap4africa.org/docs/versionhistory/). The original data layers include country-specific vegetation types to maintain the maximum level of information available. This map might be most suitable when carrying out analysis at the national or sub-national level.
When using V4A in your work, cite the publication: Lillesø, J-P.B., van Breugel, P., Kindt, R., Bingham, M., Demissew, S., Dudley, C., Friis, I., Gachathi, F., Kalema, J., Mbago, F., Minani, V., Moshi, H., Mulumba, J., Namaganda, M., Ndangalasi, H., Ruffo, C., Jamnadass, R. & Graudal, L. 2011, Potential Natural Vegetation of Eastern Africa (Ethiopia, Kenya, Malawi, Rwanda, Tanzania, Uganda and Zambia). Volume 1: The Atlas. 61 ed. Forest & Landscape, University of Copenhagen. 155 p. (Forest & Landscape Working Papers; 61 - as well as this repository using the DOI https://doi.org/10.5281/zenodo.11125645.
The development of V4A was mainly funded by the Rockefeller Foundation and supported by University of Copenhagen
If you want to use the potential natural vegetation map of eastern Africa for your analysis, you can download the spatial data layers in raster format as well as in vector format from this repository https://doi.org/10.5281/zenodo.11125645
A simplified version of the map can be found on Figshare https://doi.org/10.6084/m9.figshare.1306936.v1. That version aggregates country specific vegetation types into regional types. This might be the better option when doing regional-level assessments.
This dataset contains open vector data for railways, forests and power lines, as well an open digital elevation model (DEM) for a small area around a sample forest range in Europe (Germany, Upper Bavaria, Kochel Forest Range, some 70 km south of München, at the edge of Bavarian Alps). The purpose of this dataset is to provide a documented sample dataset in order to demonstrate geospatial preprocessing at FOSS4G2019 based on open data and software. This sample has been produced based on several existing open data sources (detailed below), therefore documenting the sources for obtaining some data needed for computations related to forest accessibility and wood harvesting. For example, they can be used with the open methodology and QGIS plugin Seilaplan for optimising the geometric layout cable roads or with additional open software for computing the forest accessibility for wood harvesting. The vector data (railways, forests and power lines) was extracted from OpenStreetMap (data copyrighted OpenStreetMap contributors and available from https://www.openstreetmap.org). The railways and forests were downloaded and extracted on 18.05.2019 using the open sources QGIS (https://www.qgis.org) with the QuickOSM plugin, while the power lines were downloaded a couple of days later on 23.05.2019.
Additional notes for vector data: Please note that OpenStreeMap data extracts such as forests, roads and railways (except power lines) can also be downloaded in a GIS friendly format (Shapefile) from http://download.geofabrik.de/ or using the QGIS built-in download function for OpenStreetMap data. The most efficient way to retrieve specific OSM tags (such as power=line) is to use the QuickOSM plugin for QGIS (using the Overpass API - https://wiki.openstreetmap.org/wiki/Overpass_API) or directly using overpass turbo (https://overpass-turbo.eu/). Finally, the digitised perimeter of the sample forest range is also made available for reproducibility purposes, although any perimeter or area can be digitised freely using the QGIS editing toolbar.
The DEM was originally adapted and modified also with QGIS (https://www.qgis.org) based on the elevation data available from two different sources, by reprojecting and downsampling datasets to 25m then selecting, for each individual raster cell, the elevation value that was closer to the average. These two different elevation sources are:
This methodology was chosen as a way of performing a basic quality check, by comparing the EU-DEM v.1.1 derived from globally available DEM data (such as SRTM) with more authoritative data for the randomly selected region, since using authoritative data is preferred (if open and available). For other sample regions, where authoritative open data is not available, such comparisons cannot longer be performed.
Additional notes DEM: a very good DEM open data source for Germany is the open data set collected and resampled by Sonny (sonnyy7@gmail.com) and made available on the Austrian Open Data Portal http://data.opendataportal.at/dataset/dtm-germany. In order to simplify end-to-end reproducibility of the paper planned for FOSS4G2019, we use and distribute an adapted (reprojected and resampled to 25 meters) sample of the above mentioned dataset for the selected forest range.
This sample dataset is accompanied by software in Python, as a Jupiter Notebook that generates harmonized output rasters with the same extent from the input data. The extent is given by the polygon vector dataset (Perimeter). These output rasters, such as obstacles, aspect, slope, forest cover, can serve as input data for later computations related to forest accessibility and wood harvesting questions. The obstacles output is obtained by transforming line vector datasets (railway lines, high voltage power lines) to raster. Aspect and slope are both derived from the sample digital elevation model.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
One important reason for performing GIS analysis is to determine proximity. Often, this type of analysis is done using vector data and possibly the Buffer or Near tools. In this course, you will learn how to calculate distance using raster datasets as inputs in order to assign cells a value based on distance to the nearest source (e.g., city, campground). You will also learn how to allocate cells to a particular source and to determine the compass direction from a cell in a raster to a source.What if you don't want to just measure the straight line from one place to another? What if you need to determine the best route to a destination, taking speed limits, slope, terrain, and road conditions into consideration? In cases like this, you could use the cost distance tools in order to assign a cost (such as time) to each raster cell based on factors like slope and speed limit. From these calculations, you could create a least-cost path from one place to another. Because these tools account for variables that could affect travel, they can help you determine that the shortest path may not always be the best path.After completing this course, you will be able to:Create straight-line distance, direction, and allocation surfaces.Determine when to use Euclidean and weighted distance tools.Perform a least-cost path analysis.
The Imagery Hybrid (WGS84) (World Edition) web map provides a world reference map with highways, major roads, minor roads, railways, water features, cities, parks, landmarks, and administrative boundaries overlaid on one meter or better satellite and aerial imagery in many parts of the world and lower resolution satellite imagery worldwide.This basemap uses the Hybrid Reference Layer (WGS84) vector tile layer and the World Imagery (WGS84) raster tile layer.The vector tile layer in this web map is built using the same data sources used for other Esri Vector Basemaps. For details on data sources contributed by the GIS community, view the map of Community Maps Basemap Contributors. Esri Vector Basemaps WGS84 are updated quarterly.Check out other WGS84 basemaps in the World Basemaps (WGS84) group. Use this MapThis map is designed to be used as a basemap for overlaying other layers of information or as a stand-alone reference map. You can add layers to this web map and save as your own map. If you like, you can add this web map to a custom basemap gallery for others in your organization to use in creating web maps. If you would like to add this map as a layer in other maps you are creating, you may use the layers referenced in this map.Precise Tile Registration The map uses the improved tiling scheme “WGS84 Geographic, Version 2” to ensure proper tile positioning at higher resolutions (neighborhood level and beyond). The new tiling scheme is much more precise than tiling schemes of the legacy basemaps Esri released years ago. We recommend that you start using this new basemap for any new web maps in WGS84 that you plan to author. Due to the number of differences between the old and new tiling schemes, some web clients will not be able to overlay tile layers in the old and new tiling schemes in one web map.
Abstract
The Urban Green Raster Germany is a land cover classification for Germany that addresses in particular the urban vegetation areas. The raster dataset covers the terrestrial national territory of Germany and has a spatial resolution of 10 meters. The dataset is based on a fully automated classification of Sentinel-2 satellite data from a full 2018 vegetation period using reference data from the European LUCAS land use and land cover point dataset. The dataset identifies eight land cover classes. These include Built-up, Built-up with significant green share, Coniferous wood, Deciduous wood, Herbaceous vegetation (low perennial vegetation), Water, Open soil, Arable land (low seasonal vegetation). The land cover dataset provided here is offered as an integer raster in GeoTiff format. The assignment of the number coding to the corresponding land cover class is explained in the legend file.
Data acquisition
The data acquisition comprises two main processing steps: (1) Collection, processing, and automated classification of the multispectral Sentinel 2 satellite data with the “Land Cover DE method”, resulting in the raw land cover classification dataset, NDVI layer, and RF assignment frequency vector raster. (2) GIS-based postprocessing including discrimination of (densely) built-up and loosely built-up pixels according NDVI threshold, and creating water-body and arable-land masks from geo-topographical base-data (ATKIS Basic DLM) and reclassification of water and arable land pixels based on the assignment frequency.
Data collection
Satellite data were searched and downloaded from the Copernicus Open Access Hub (https://scihub.copernicus.eu/).
The LUCAS reference and validation points were loaded from the Eurostat platform (https://ec.europa.eu/eurostat/web/lucas/data/database).
The processing of the satellite data was performed at the DLR data center in Oberpfaffenhofen.
GIS-based post-processing of the automatic classification result was performed at IOER in Dresden.
Value of the data
The dataset can be used to quantify the amount of green areas within cities on a homogeneous data base [5].
Thus it is possible to compare cities of different sizes regarding their greenery and with respect to their ratio of green and built-up areas [6].
Built-up areas within cities can be discriminated regarding their built-up density (dense built-up vs. built-up with higher green share).
Data description
A Raster dataset in GeoTIFF format: The dataset is stored as an 8 bit integer raster with values ranging from 1 to 8 for the eight different land cover classes. The nomenclature of the coded values is as follows: 1 = Built-up, 2=open soil; 3=Coniferous wood, 4= Deciduous wood, 5=Arable land (low seasonal vegetation), 6=Herbaceous vegetation (low perennial vegetation), 7=Water, 8=Built-up with significant green share. Name of the file ugr2018_germany.tif. The dataset is zipped alongside with accompanying files: *.twf (geo-referencing world-file), *.ovr (Overlay file for quick data preview in GIS), *.clr (Color map file).
A text file with the integer value assignment of the land cover classes. Name of the file: Legend_LC-classes.txt.
Experimental design, materials and methods
The first essential step to create the dataset is the automatic classification of a satellite image mosaic of all available Sentinel-2 images from May to September 2018 with a maximum cloud cover of 60 percent. Points from the 2018 LUCAS (Land use and land cover survey) dataset from Eurostat [1] were used as reference and validation data. Using Random Forest (RF) classifier [2], seven land use classes (Deciduous wood, Coniferous wood, Herbaceous vegetation (low perennial vegetation), Built-up, Open soil, Water, Arable land (low seasonal vegetation)) were first derived, which is methodologically in line with the procedure used to create the dataset "Land Cover DE - Sentinel-2 - Germany, 2015" [3]. The overall accuracy of the data is 93 % [4].
Two downstream post-processing steps served to further qualify the product. The first step included the selective verification of pixels of the classes arable land and water. These are often misidentified by the classifier due to radiometric similarities with other land covers; in particular, radiometric signatures of water surfaces often resemble shadows or asphalt surfaces. Due to the heterogeneous inner-city structures, pixels are also frequently misclassified as cropland.
To mitigate these errors, all pixels classified as water and arable land were matched with another data source. This consisted of binary land cover masks for these two land cover classes originating from the Monitor of Settlement and Open Space Development (IOER Monitor). For all water and cropland pixels that were outside of their respective masks, the frequencies of class assignments from the RF classifier were checked. If the assignment frequency to water or arable land was at least twice that to the subsequent class, the classification was preserved. Otherwise, the classification strength was considered too weak and the pixel was recoded to the land cover with the second largest assignment frequency.
Furthermore, an additional land cover class "Built-up with significant vegetation share" was introduced. For this purpose, all pixels of the Built-up class were intersected with the NDVI of the satellite image mosaic and assigned to the new category if an NDVI threshold was exceeded in the pixel. The associated NDVI threshold was previously determined using highest resolution reference data of urban green structures in the cities of Dresden, Leipzig and Potsdam, which were first used to determine the true green fractions within the 10m Sentinel pixels, and based on this to determine an NDVI value that could be used as an indicator of a significant green fraction within the built-up pixel. However, due to the wide dispersion of green fraction values within the built-up areas, it is not possible to establish a universally valid green percentage value for the land cover class of Built-up with significant vegetation share. Thus, the class essentially serves to the visual differentiability of densely and loosely (i.e., vegetation-dominated) built-up areas.
Acknowledgments
This work was supported by the Federal Institute for Research on Building, Urban Affairs and Spatial Development (BBSR) [10.06.03.18.101].The provided data has been developed and created in the framework of the research project “Wie grün sind bundesdeutsche Städte?- Fernerkundliche Erfassung und stadträumlich-funktionale Differenzierung der Grünausstattung von Städten in Deutschland (Erfassung der urbanen Grünausstattung)“ (How green are German cities?- Remote sensing and urban-functional differentiation of the green infrastructure of cities in Germany (Urban Green Infrastructure Inventory)). Further persons involved in the project were: Fabian Dosch (funding administrator at BBSR), Stefan Fina (research partner, group leader at ILS Dortmund), Annett Frick, Kathrin Wagner (research partners at LUP Potsdam).
References
[1] Eurostat (2021): Land cover / land use statistics database LUCAS. URL: https://ec.europa.eu/eurostat/web/lucas/data/database
[2] L. Breiman (2001). Random forests, Mach. Learn., 45, pp. 5-32
[3] M. Weigand, M. Wurm (2020). Land Cover DE - Sentinel-2—Germany, 2015 [Data set]. German Aerospace Center (DLR). doi: 10.15489/1CCMLAP3MN39
[4] M. Weigand, J. Staab, M. Wurm, H. Taubenböck, (2020). Spatial and semantic effects of LUCAS samples on fully automated land use/land cover classification in high-resolution Sentinel-2 data. Int J Appl Earth Obs, 88, 102065. doi: https://doi.org/10.1016/j.jag.2020.102065
[5] L. Eichler., T. Krüger, G. Meinel, G. (2020). Wie grün sind deutsche Städte? Indikatorgestützte fernerkundliche Erfassung des Stadtgrüns. AGIT Symposium 2020, 6, 306–315. doi: 10.14627/537698030
[6] H. Taubenböck, M. Reiter, F. Dosch, T. Leichtle, M. Weigand, M. Wurm (2021). Which city is the greenest? A multi-dimensional deconstruction of city rankings. Comput Environ Urban Syst, 89, 101687. doi: 10.1016/j.compenvurbsys.2021.101687
Natural Earth is a public domain map dataset available at 1:10m, 1:50m, and 1:110 million scales. Featuring tightly integrated vector and raster data, with Natural Earth you can make a variety of visually pleasing, well-crafted maps with cartography or GIS software.
Natural Earth was built through a collaboration of many volunteers and is supported by NACIS (North American Cartographic Information Society).
Natural Earth Vector comes in ESRI shapefile format, the de facto standard for vector geodata. Character encoding is Windows-1252.
Natural Earth Vector includes features corresponding to the following:
Cultural Vector Data Thremes:
Physical Vector Data Themes:
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
The Hills of Governor's Island Dataset for GRASS GIS
This geospatial dataset contains raster and vector data for the Hills region of Governor's Island, New York City, USA. The top level directory governors_island_hills_for_grass is a GRASS GIS location for NAD_1983_StatePlane_New_York_Long_Island_FIPS_3104_Feet in US Surveyor's Feet with EPSG code 2263. Inside the location there is the PERMANENT mapset, a license file, data record, readme file, workspace, color table, category rules, and scripts for data processing. This dataset was created for the course GIS for Designers.
Instructions
Install GRASS GIS, unzip this archive, and move the location into your GRASS GIS database
directory. If you are new to GRASS GIS read the first time users guide.
Data Sources
Maps
License
This dataset is licensed under the ODC Public Domain Dedication and License 1.0 (PDDL) by Brendan Harmon.
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
This archive contains an ArcGIS Pro project with a geodatabase of raster and vector data for the Hills region of Governor's Island, New York City, USA. The SRS is NAD83 / New York Long Island (ftUS) with the EPSG code 2263.
The Streets (with Relief - WGS84) (World Edition) web map is presented with a classic Esri street map style that portrays elevation as an artistic hillshade. The comprehensive street map includes highways, major roads, minor roads, railways, water features, cities, parks, landmarks, building footprints, and administrative boundaries. This basemap, included in the ArcGIS Living Atlas of the World, uses the World Street Map (with Relief - WGS84) vector tile layer and World Hillshade (WGS84) raster tile layer.The vector tile layer in this web map is built using the same data sources used for other Esri Vector Basemaps. For details on data sources contributed by the GIS community, view the map of Community Maps Basemap Contributors. Esri Vector Basemaps WGS84 are updated quarterly.Check out other WGS84 basemaps in the World Basemaps (WGS84) group. Use this MapThis map is designed to be used as a basemap for overlaying other layers of information or as a stand-alone reference map. You can add layers to this web map and save as your own map. If you like, you can add this web map to a custom basemap gallery for others in your organization to use in creating web maps. If you would like to add this map as a layer in other maps you are creating, you may use the layers referenced in this map.Precise Tile Registration The map uses the improved tiling scheme “WGS84 Geographic, Version 2” to ensure proper tile positioning at higher resolutions (neighborhood level and beyond). The new tiling scheme is much more precise than tiling schemes of the legacy basemaps Esri released years ago. We recommend that you start using this new basemap for any new web maps in WGS84 that you plan to author. Due to the number of differences between the old and new tiling schemes, some web clients will not be able to overlay tile layers in the old and new tiling schemes in one web map.
The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. We converted the photointerpreted data into a GIS-usable format employing three fundamental processes; (1) orthorectify, (2) digitize, and (3) database enhancement. All digital map automation was projected in Universal Transverse Mercator (UTM) projection, Zone 12, using North American Datum of 1983 (NAD83). To produce a polygon vector coverage for use in GIS, we converted each raster-based image mosaic of orthorectified overlays containing the photointerpreted data into a grid format using ArcInfo (Version 8.0.2, Environmental Systems Research Institute, Redlands, California). In ArcTools, we used the ArcScan utility to trace the polygon data and produce ArcInfo vector-based coverages. We digitally assigned map attribute codes (both map class codes and physiognomic modifier codes) to the polygons, and checked the digital data against the photointerpreted overlays for line and attribute consistency. Ultimately, we merged the 78 individual coverages into a seamless map coverage of GNP and immediate environs. We synchronized polygons and attributes along the boundary between the GNP and WLNP map coverages. Although GNP and WLNP are two separate map coverages, they are seamless in the sense they edge tie perfectly in both polygon location and map attribute.
Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information
Basic Global Dataset for GRASS GIS This geospatial dataset contains global raster and vector data. The top level directory global-dataset is a GRASS GIS location for the World Geodetic System 1984 (WGS84) with EPSG code 4326. Inside the location there is the PERMANENT mapset, a license file, and readme file. Instructions Install GRASS GIS, unzip this archive, and move the location into your GRASS GIS database directory. If you are new to GRASS GIS read the first time users guide. Data Source Natural Earth License This dataset is licensed under the ODC Public Domain Dedication and License 1.0 (PDDL) by Brendan Harmon.
A 6-in resolution 8-class land cover dataset derived from the 2017 Light Detection and Ranging (LiDAR) data capture. This dataset was developed as part of an updated urban tree canopy assessment and therefore represents a ''top-down" mapping perspective in which tree canopy overhanging features is assigned to the tree canopy class. The eight land cover classes mapped were: (1) Tree Canopy, (2) Grass\Shrubs, (3) Bare Soil, (4) Water, (5) Buildings, (6) Roads, (7) Other Impervious, and (8) Railroads. The primary sources used to derive this land cover layer were 2017 LiDAR (1-ft post spacing) and 2016 4-band orthoimagery (0.5-ft resolution). Object based image analysis was used to automate land-cover features using LiDAR point clouds and derivatives, orthoimagery, and vector GIS datasets -- City Boundary (2017, NYC DoITT) Buildings (2017, NYC DoITT) Hydrography (2014, NYC DoITT) LiDAR Hydro Breaklines (2017, NYC DoITT) Transportation Structures (2014, NYC DoITT) Roadbed (2014, NYC DoITT) Road Centerlines (2014, NYC DoITT) Railroads (2014, NYC DoITT) Green Roofs (date unknown, NYC Parks) Parking Lots (2014, NYC DoITT) Parks (2016, NYC Parks) Sidewalks (2014, NYC DoITT) Synthetic Turf (2018, NYC Parks) Wetlands (2014, NYC Parks) Shoreline (2014, NYC DoITT) Plazas (2014, NYC DoITT) Utility Poles (2014, ConEdison via NYCEM) Athletic Facilities (2017, NYC Parks) For the purposes of classification, only vegetation > 8 ft were classed as Tree Canopy. Vegetation below 8 ft was classed as Grass/Shrub. To learn more about this dataset, visit the interactive "Understanding the 2017 New York City LiDAR Capture" Story Map -- https://maps.nyc.gov/lidar/2017/ Please see the following link for additional documentation on this dataset -- https://github.com/CityOfNewYork/nyc-geo-metadata/blob/master/Metadata/Metadata_LandCover.md
This National Geographic Style Map (World Edition) web map provides a reference map for the world that includes administrative boundaries, cities, protected areas, highways, roads, railways, water features, buildings, and landmarks, overlaid on shaded relief and a colorized physical ecosystems base for added context to conservation and biodiversity topics. Alignment of boundaries is a presentation of the feature provided by our data vendors and does not imply endorsement by Esri, National Geographic or any governing authority.This basemap, included in the ArcGIS Living Atlas of the World, uses the National Geographic Style vector tile layer and the National Geographic Style Base and World Hillshade raster tile layers.The vector tile layer in this web map is built using the same data sources used for other Esri Vector Basemaps. For details on data sources contributed by the GIS community, view the map of Community Maps Basemap Contributors. Esri Vector Basemaps are updated monthly.Use this MapThis map is designed to be used as a basemap for overlaying other layers of information or as a stand-alone reference map. You can add layers to this web map and save as your own map. If you like, you can add this web map to a custom basemap gallery for others in your organization to use in creating web maps. If you would like to add this map as a layer in other maps you are creating, you may use the tile layers referenced in this map.
The 2001 Madera County land use survey data set was developed by DWR through its Division of Planning and Local Assistance (DPLA). The data was gathered using aerial photography and extensive field visits, the land use boundaries and attributes were digitized, and the resultant data went through standard quality control procedures before finalizing. The land uses that were gathered were detailed agricultural land uses, and lesser detailed urban and native vegetation land uses. The data was gathered and digitized by staff of DWR’s San Joaquin District. Quality control procedures were performed jointly by staff at DWR’s DPLA headquarters and San Joaquin District. The finalized data include a shapefile of western Madera County (land use vector data), and JPEG files (raster data from aerial imagery). In May 2013, errors in acreage calculations were found in the original finalized data. The “Calculated Geometry” function of ArcGIS was used to correct the errors. The name of the original shapefile was 01ma.shp. The name of the revised shapefile is 01ma_v2.shp. Important Points about Using this Data Set: 1. The land use boundaries were drawn on-screen using developed photoquads. They were drawn to depict observable areas of the same land use. They were not drawn to represent legal parcel (ownership) boundaries, or meant to be used as parcel boundaries. 2. This survey was a "snapshot" in time. The indicated land use attributes of each delineated area (polygon) were based upon what the surveyor saw in the field at that time, and, to an extent possible, whatever additional information the aerial photography might provide. For example, the surveyor might have seen a cropped field in the photograph, and the field visit showed a field of corn, so the field was given a corn attribute. In another field, the photograph might have shown a crop that was golden in color (indicating grain prior to harvest), and the field visit showed newly planted corn. This field would be given an attribute showing a double crop, grain followed by corn. The DWR land use attribute structure allows for up to three crops per delineated area (polygon). In the cases where there were crops grown before the survey took place, the surveyor may or may not have been able to detect them from the field or the photographs. For crops planted after the survey date, the surveyor could not account for these crops. Thus, although the data is very accurate for that point in time, it may not be an accurate determination of what was grown in the fields for the whole year. If the area being surveyed does have double or multicropping systems, it is likely that there are more crops grown than could be surveyed with a "snapshot". 3. If the data is to be brought into a GIS for analysis of cropped (or planted) acreage, two things must be understood: a. The acreage of each field delineated is the gross area of the field. The amount of actual planted and irrigated acreage will always be less than the gross acreage, because of ditches, farm roads, other roads, farmsteads, etc. Thus, a delineated corn field may have a GIS calculated acreage of 40 acres but will have a smaller cropped (or net) acreage, maybe 38 acres. b. Double and multicropping must be taken into account. A delineated field of 40 acres might have been cropped first with grain, then with corn, and coded as such. To estimate actual cropped acres, the two crops are added together (38 acres of grain and 38 acres of corn) which results in a total of 76 acres of net crop (or planted) acres. 4. If the data is compared to the previous digital survey (i.e. the two coverages intersected for change detection determination), there will be land use changes that may be unexpected. The linework was created independently, so even if a field’s physical boundary hasn’t changed between surveys, the lines may differ due to difference in digitizing. Numerous thin polygons (with very little area) will result. A result could be UV1 (paved roads) to F1 (cotton). In reality, paved roads are not converted to cotton fields, but these small polygons would be created due to the differences in digitizing the linework for each survey. Additionally, this kind of comparison may yield polygons of significant size with unexpected changes. These changes will almost always involve non-cropped land, mainly U (urban), UR1 (single family homes on 1 – 5 acres), UV (urban vacant), NV (native vegetation), and I1 (land not cropped that year, but cropped within the past three years). The unexpected results (such as U to NV, or UR1 to NV) occur mainly because of interpretation of those non-cropped land uses with aerial imagery. Newer surveys or well funded surveys have had the advantage of using improved quality (higher resolution) imagery or additional labor, where more accurate identification of land use is possible, and more accurate linework is created. For example, an older survey may have a large polygon identified as UR, where the actual land use was a mixture of houses and vacant land. A newer survey may have, for that same area, delineated separately those land uses into smaller polygons. The result of an intersection would include changes from UR to UV (which is normally an unlikely change). It is important to understand that the main purpose of DWR performing land use surveys is to aid in development of agricultural water use data. Thus, given our goals and budget, our emphasis is on obtaining accurate agricultural land uses with less emphasis on obtaining accurate non-agricultural land uses (urban and native areas). 5. Water source information was not collected for this survey. 6. Not all land use codes will be represented in the survey.
The Federal Emergency Management Agency (FEMA) produces Flood Insurance Rate maps and identifies Special Flood Hazard Areas as part of the National Flood Insurance Program's floodplain management. Special Flood Hazard Areas have regulations that include the mandatory purchase of flood insurance for holders of federally regulated mortgages. In addition, in the USA, this layer can help planners and firms avoid areas of flood risk and also avoid additional cost to carry insurance for certain planned activities.Dataset SummaryPhenomenon Mapped: Flood Hazard AreasUnits: NoneCell Sizes: 10 meters (default), 30 meters, and 90 metersSource Type: ThematicPixel Type: Unsigned integerData Coordinate System: USA Contiguous Albers Equal Area Conic USGS version (contiguous US, Puerto Rico, US Virgin Islands), WGS 1984 Albers (Alaska), Hawaii Albers Equal Area Conic (Hawaii), Western Pacific Albers Equal Area Conic (Guam, Northern Mariana Islands, and American Samoa)Mosaic Projection: Web Mercator Auxiliary SphereExtents: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Northern Mariana Islands and American Samoa.Source: Federal Emergency Management Agency (FEMA)Publication Date: June 27, 2024ArcGIS Server URL: https://landscape11.arcgis.com/arcgis/This layer is derived from the June 27, 2024 version Flood Insurance Rate Map feature class S_FLD_HAZ_AR. The vector data were then flagged with an index of 88 classes, representing a unique combination of values displayed by three renderers. (In three resolutions the three renderers make nine processing templates.) Repair Geometry was run on the set of features, then the features were rasterized using the 88 class index at a resolutions of 10, 30, and 90 meters, using the Polygon to Raster tool and the "MAXIMUM_COMBINED_AREA" option. Not every part of the United States is covered by flood rate maps. This layer compiles all the flood insurance maps available at the time of publication. To make analysis easier, areas that were NOT mapped by FEMA for flood insurance rates no longer are served as NODATA but are filled in with a value of 250, representing any unmapped areas which appear in the US Census' boundary of the USA states and territories. The attribute table corresponding to value 250 will indicate that the area was not mapped.What can you do with this Layer? This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "flood hazard areas" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "flood hazard areas" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.Processing TemplatesCartographic Renderer - The default. These are meaningful classes grouped by FEMA which group its own Flood Zone Type and Subtype fields. This renderer uses FEMA's own cartographic interpretations of its flood zone and zone subtype fields to help you identify and assess risk. Flood Zone Type Renderer - Specifically renders FEMA FLD_ZONE (flood zone) attribute, which distinguishes the original, broadest categories of flood zones. This renderer displays high level categories of flood zones, and is less nuanced than the Cartographic Renderer. For example, a fld_zone value of X can either have moderate or low risk depending on location. This renderer will simply render fld_zone X as its own color without identifying "500 year" flood zones within that category.Flood Insurance Requirement Renderer - Shows Special Flood Hazard Area (SFHA) true-false status. This may be helpful if you want to show just the places where flood insurance is required. A value of True means flood insurance is mandatory in a majority of the area covered by each 10m pixel.Each of these three renderers have templates at three different raster resolutions depending on your analysis needs. To include the layer in web maps to serve maps and queries, the 10 meter renderers are the preferred option. These are served with overviews and render at all resolutions. However, when doing analysis of larger areas, we now offer two coarser resolutions of 30 and 90 meters in processing templates for added convenience and time savings.
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
New Orleans Dataset for GRASS GIS This geospatial dataset contains raster and vector data for New Orleans, Louisiana, USA. The top level directory new-orleans-dataset is a GRASS GIS location for the North American Datum of 1983 (NAD 83) / Louisiana South State Plane Feet with EPSG code 3452. Inside the location there are the PERMANENT mapset with citywide data, a vieux_carre mapset with data for the French Quarter, Python scripts for data processing, data records, a color table, a license file, and readme file.
Instructions Install GRASS GIS, unzip this archive, and move the location into your GRASS GIS database directory. If you are new to GRASS GIS read the first time users guide.
Data Sources
U.S. Army Corps of Engineers 2012 Lidar Survey of New Orleans
New Orleans Open Data
License This dataset is licensed under the ODC Public Domain Dedication and License 1.0 (PDDL) by Brendan Harmon. The scripts are licensed under the GNU General Public License 3.0 by Brendan Harmon. The graphics are licensed under the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0) by Brendan Harmon.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This land cover data set was derived from the Advanced Very High Resolution Radiometer (AVHRR) sensor operating on board the United States National Oceanic and Atmospheric Administration (NOAA) satellites. Information on the NOAA series of satellites can be found at www.noaa.gov/satellites.html The vegetation and land cover information set has been classified into twelve categories. Information on the classification of the vegetation and land cover, raster to vector conversion, generalization for cartographic presentations is included in the paper "The Canada Vegetation and Land Cover: A Raster and Vector Data Set for GIS Applications - Uses in Agriculture" (https://geogratis.cgdi.gc.ca/download/landcover/scale/gis95ppr.pdf). A soil quality evaluation was obtained by cross-referencing the AVHRR information with Census of Agriculture records and biophysical (Soil Landscapes of Canada) data and is also included in the above paper. AVHRR Land Cover Data approximates a 1:2M scale and was done originally for Agriculture Canada. The projection used is Lambert Conformal Conic (LCC) 49/77 with origin at 49N 95W.
Outcrop geology was obtained directly from the following 1:250 000 map sheets: Marble Bar, Nullagine, Port Hedland and Yarrie. This dataset consists of both raster and vector data. Raster data which is unsigned 8 bit integer, can be viewed in Arc/Info, ArcView, MapInfo, ERMapper, ERViewer and ArcExplorer. Raster data which is 4 byte real data, can only be viewed and manipulated with an image processing package such as ERMapper.
This is a collection of all GPS- and computer-generated geospatial data specific to the Alpine Treeline Warming Experiment (ATWE), located on Niwot Ridge, Colorado, USA. The experiment ran between 2008 and 2016, and consisted of three sites spread across an elevation gradient. Geospatial data for all three experimental sites and cone/seed collection locations are included in this package. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Geospatial files include cone collection, experimental site, seed trap, and other GPS location/terrain data. File types include ESRI shapefiles, ESRI grid files or Arc/Info binary grids, TIFFs (.tif), and keyhole markup language (.kml) files. Trimble-imported data include plain text files (.txt), Trimble COR (CorelDRAW) files, and Trimble SSF (Standard Storage Format) files. Microsoft Excel (.xlsx) and comma-separated values (.csv) files corresponding to the attribute tables of many files within this package are also included. A complete list of files can be found in this document in the “Data File Organization” section in the included Data User's Guide. Maps are also included in this data package for reference and use. These maps are separated into two categories, 2021 maps and legacy maps, which were made in 2010. Each 2021 map has one copy in portable network graphics (.png) format, and the other in .pdf format. All legacy maps are in .pdf format. .png image files can be opened with any compatible programs, such as Preview (Mac OS) and Photos (Windows). All GIS files were imported into geopackages (.gpkg) using QGIS, and double-checked for compatibility and data/attribute integrity using ESRI ArcGIS Pro. Note that files packaged within geopackages will open in ArcGIS Pro with “main.” preceding each file name, and an extra column named “geom” defining geometry type in the attribute table. The contents of each geospatial file remain intact, unless otherwise stated in “niwot_geospatial_data_list_07012021.pdf/.xlsx”. This list of files can be found as an .xlsx and a .pdf in this archive. As an open-source file format, files within gpkgs (TIFF, shapefiles, ESRI grid or “Arc/Info Binary”) can be read using both QGIS and ArcGIS Pro, and any other geospatial softwares. Text and .csv files can be read using TextEdit/Notepad/any simple text-editing software; .csv’s can also be opened using Microsoft Excel and R. .kml files can be opened using Google Maps or Google Earth, and Trimble files are most compatible with Trimble’s GPS Pathfinder Office software. .xlsx files can be opened using Microsoft Excel. PDFs can be opened using Adobe Acrobat Reader, and any other compatible programs. A selection of original shapefiles within this archive were generated using ArcMap with associated FGDC-standardized metadata (xml file format). We are including these original files because they contain metadata only accessible using ESRI programs at this time, and so that the relationship between shapefiles and xml files is maintained. Individual xml files can be opened (without a GIS-specific program) using TextEdit or Notepad. Since ESRI’s compatibility with FGDC metadata has changed since the generation of these files, many shapefiles will require upgrading to be compatible with ESRI’s latest versions of geospatial software. These details are also noted in the “niwot_geospatial_data_list_07012021” file.