Facebook
TwitterThe Tanzania Demographic and Health Survey (TDHS) is part of the worldwide Demographic and Health Surveys (DHS) programme, which is designed to collect data on fertility, family planning, and maternal and child health.
The primary objective of the 1999 TRCHS was to collect data at the national level (with breakdowns by urban-rural and Mainland-Zanzibar residence wherever warranted) on fertility levels and preferences, family planning use, maternal and child health, breastfeeding practices, nutritional status of young children, childhood mortality levels, knowledge and behaviour regarding HIV/AIDS, and the availability of specific health services within the community.1 Related objectives were to produce these results in a timely manner and to ensure that the data were disseminated to a wide audience of potential users in governmental and nongovernmental organisations within and outside Tanzania. The ultimate intent is to use the information to evaluate current programmes and to design new strategies for improving health and family planning services for the people of Tanzania.
National. The sample was designed to provide estimates for the whole country, for urban and rural areas separately, and for Zanzibar and, in some cases, Unguja and Pemba separately.
Sample survey data
The TRCHS used a three-stage sample design. Overall, 176 census enumeration areas were selected (146 on the Mainland and 30 in Zanzibar) with probability proportional to size on an approximately self-weighting basis on the Mainland, but with oversampling of urban areas and Zanzibar. To reduce costs and maximise the ability to identify trends over time, these enumeration areas were selected from the 357 sample points that were used in the 1996 TDHS, which in turn were selected from the 1988 census frame of enumeration in a two-stage process (first wards/branches and then enumeration areas within wards/branches). Before the data collection, fieldwork teams visited the selected enumeration areas to list all the households. From these lists, households were selected to be interviewed. The sample was designed to provide estimates for the whole country, for urban and rural areas separately, and for Zanzibar and, in some cases, Unguja and Pemba separately. The health facilities component of the TRCHS involved visiting hospitals, health centres, and pharmacies located in areas around the households interviewed. In this way, the data from the two components can be linked and a richer dataset produced.
See detailed sample implementation in the APPENDIX A of the final report.
Face-to-face
The household survey component of the TRCHS involved three questionnaires: 1) a Household Questionnaire, 2) a Women’s Questionnaire for all individual women age 15-49 in the selected households, and 3) a Men’s Questionnaire for all men age 15-59.
The health facilities survey involved six questionnaires: 1) a Community Questionnaire administered to men and women in each selected enumeration area; 2) a Facility Questionnaire; 3) a Facility Inventory; 4) a Service Provider Questionnaire; 5) a Pharmacy Inventory Questionnaire; and 6) a questionnaire for the District Medical Officers.
All these instruments were based on model questionnaires developed for the MEASURE programme, as well as on the questionnaires used in the 1991-92 TDHS, the 1994 TKAP, and the 1996 TDHS. These model questionnaires were adapted for use in Tanzania during meetings with representatives from the Ministry of Health, the University of Dar es Salaam, the Tanzania Food and Nutrition Centre, USAID/Tanzania, UNICEF/Tanzania, UNFPA/Tanzania, and other potential data users. The questionnaires and manual were developed in English and then translated into and printed in Kiswahili.
The Household Questionnaire was used to list all the usual members and visitors in the selected households. Some basic information was collected on the characteristics of each person listed, including his/her age, sex, education, and relationship to the head of the household. The main purpose of the Household Questionnaire was to identify women and men who were eligible for individual interview and children under five who were to be weighed and measured. Information was also collected about the dwelling itself, such as the source of water, type of toilet facilities, materials used to construct the house, ownership of various consumer goods, and use of iodised salt. Finally, the Household Questionnaire was used to collect some rudimentary information about the extent of child labour.
The Women’s Questionnaire was used to collect information from women age 15-49. These women were asked questions on the following topics: · Background characteristics (age, education, religion, type of employment) · Birth history · Knowledge and use of family planning methods · Antenatal, delivery, and postnatal care · Breastfeeding and weaning practices · Vaccinations, birth registration, and health of children under age five · Marriage and recent sexual activity · Fertility preferences · Knowledge and behaviour concerning HIV/AIDS.
The Men’s Questionnaire covered most of these same issues, except that it omitted the sections on the detailed reproductive history, maternal health, and child health. The final versions of the English questionnaires are provided in Appendix E.
Before the questionnaires could be finalised, a pretest was done in July 1999 in Kibaha District to assess the viability of the questions, the flow and logical sequence of the skip pattern, and the field organisation. Modifications to the questionnaires, including wording and translations, were made based on lessons drawn from the exercise.
In all, 3,826 households were selected for the sample, out of which 3,677 were occupied. Of the households found, 3,615 were interviewed, representing a response rate of 98 percent. The shortfall is primarily due to dwellings that were vacant or in which the inhabitants were not at home despite of several callbacks.
In the interviewed households, a total of 4,118 eligible women (i.e., women age 15-49) were identified for the individual interview, and 4,029 women were actually interviewed, yielding a response rate of 98 percent. A total of 3,792 eligible men (i.e., men age 15-59), were identified for the individual interview, of whom 3,542 were interviewed, representing a response rate of 93 percent. The principal reason for nonresponse among both eligible men and women was the failure to find them at home despite repeated visits to the household. The lower response rate among men than women was due to the more frequent and longer absences of men.
The response rates are lower in urban areas due to longer absence of respondents from their homes. One-member households are more common in urban areas and are more difficult to interview because they keep their houses locked most of the time. In urban settings, neighbours often do not know the whereabouts of such people.
The estimates from a sample survey are affected by two types of errors: (1) non-sampling errors, and (2) sampling errors. Non-sampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the TRCHS to minimise this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the TRCHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the TRCHS sample is the result of a two-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the TRCHS is the ISSA Sampling Error Module (SAMPERR). This module used the Taylor linearisation method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rate
Note: See detailed sampling error calculation in the APPENDIX B
Facebook
TwitterThe main objective of the HEIS survey is to obtain detailed data on household expenditure and income, linked to various demographic and socio-economic variables, to enable computation of poverty indices and determine the characteristics of the poor and prepare poverty maps. Therefore, to achieve these goals, the sample had to be representative on the sub-district level. The raw survey data provided by the Statistical Office was cleaned and harmonized by the Economic Research Forum, in the context of a major research project to develop and expand knowledge on equity and inequality in the Arab region. The main focus of the project is to measure the magnitude and direction of change in inequality and to understand the complex contributing social, political and economic forces influencing its levels. However, the measurement and analysis of the magnitude and direction of change in this inequality cannot be consistently carried out without harmonized and comparable micro-level data on income and expenditures. Therefore, one important component of this research project is securing and harmonizing household surveys from as many countries in the region as possible, adhering to international statistics on household living standards distribution. Once the dataset has been compiled, the Economic Research Forum makes it available, subject to confidentiality agreements, to all researchers and institutions concerned with data collection and issues of inequality.
Data collected through the survey helped in achieving the following objectives: 1. Provide data weights that reflect the relative importance of consumer expenditure items used in the preparation of the consumer price index 2. Study the consumer expenditure pattern prevailing in the society and the impact of demographic and socio-economic variables on those patterns 3. Calculate the average annual income of the household and the individual, and assess the relationship between income and different economic and social factors, such as profession and educational level of the head of the household and other indicators 4. Study the distribution of individuals and households by income and expenditure categories and analyze the factors associated with it 5. Provide the necessary data for the national accounts related to overall consumption and income of the household sector 6. Provide the necessary income data to serve in calculating poverty indices and identifying the poor characteristics as well as drawing poverty maps 7. Provide the data necessary for the formulation, follow-up and evaluation of economic and social development programs, including those addressed to eradicate poverty
National
Sample survey data [ssd]
The Household Expenditure and Income survey sample for 2010, was designed to serve the basic objectives of the survey through providing a relatively large sample in each sub-district to enable drawing a poverty map in Jordan. The General Census of Population and Housing in 2004 provided a detailed framework for housing and households for different administrative levels in the country. Jordan is administratively divided into 12 governorates, each governorate is composed of a number of districts, each district (Liwa) includes one or more sub-district (Qada). In each sub-district, there are a number of communities (cities and villages). Each community was divided into a number of blocks. Where in each block, the number of houses ranged between 60 and 100 houses. Nomads, persons living in collective dwellings such as hotels, hospitals and prison were excluded from the survey framework.
A two stage stratified cluster sampling technique was used. In the first stage, a cluster sample proportional to the size was uniformly selected, where the number of households in each cluster was considered the weight of the cluster. At the second stage, a sample of 8 households was selected from each cluster, in addition to another 4 households selected as a backup for the basic sample, using a systematic sampling technique. Those 4 households were sampled to be used during the first visit to the block in case the visit to the original household selected is not possible for any reason. For the purposes of this survey, each sub-district was considered a separate stratum to ensure the possibility of producing results on the sub-district level. In this respect, the survey framework adopted that provided by the General Census of Population and Housing Census in dividing the sample strata. To estimate the sample size, the coefficient of variation and the design effect of the expenditure variable provided in the Household Expenditure and Income Survey for the year 2008 was calculated for each sub-district. These results were used to estimate the sample size on the sub-district level so that the coefficient of variation for the expenditure variable in each sub-district is less than 10%, at a minimum, of the number of clusters in the same sub-district (6 clusters). This is to ensure adequate presentation of clusters in different administrative areas to enable drawing an indicative poverty map.
It should be noted that in addition to the standard non response rate assumed, higher rates were expected in areas where poor households are concentrated in major cities. Therefore, those were taken into consideration during the sampling design phase, and a higher number of households were selected from those areas, aiming at well covering all regions where poverty spreads.
Face-to-face [f2f]
Raw Data: - Organizing forms/questionnaires: A compatible archive system was used to classify the forms according to different rounds throughout the year. A registry was prepared to indicate different stages of the process of data checking, coding and entry till forms were back to the archive system. - Data office checking: This phase was achieved concurrently with the data collection phase in the field where questionnaires completed in the field were immediately sent to data office checking phase. - Data coding: A team was trained to work on the data coding phase, which in this survey is only limited to education specialization, profession and economic activity. In this respect, international classifications were used, while for the rest of the questions, coding was predefined during the design phase. - Data entry/validation: A team consisting of system analysts, programmers and data entry personnel were working on the data at this stage. System analysts and programmers started by identifying the survey framework and questionnaire fields to help build computerized data entry forms. A set of validation rules were added to the entry form to ensure accuracy of data entered. A team was then trained to complete the data entry process. Forms prepared for data entry were provided by the archive department to ensure forms are correctly extracted and put back in the archive system. A data validation process was run on the data to ensure the data entered is free of errors. - Results tabulation and dissemination: After the completion of all data processing operations, ORACLE was used to tabulate the survey final results. Those results were further checked using similar outputs from SPSS to ensure that tabulations produced were correct. A check was also run on each table to guarantee consistency of figures presented, together with required editing for tables' titles and report formatting.
Harmonized Data: - The Statistical Package for Social Science (SPSS) was used to clean and harmonize the datasets. - The harmonization process started with cleaning all raw data files received from the Statistical Office. - Cleaned data files were then merged to produce one data file on the individual level containing all variables subject to harmonization. - A country-specific program was generated for each dataset to generate/compute/recode/rename/format/label harmonized variables. - A post-harmonization cleaning process was run on the data. - Harmonized data was saved on the household as well as the individual level, in SPSS and converted to STATA format.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Key Table Information.Table Title.Manufacturing: E-Commerce Statistics for the U.S.: 2022.Table ID.ECNECOMM2022.EC2231ECOMM.Survey/Program.Economic Census.Year.2022.Dataset.ECN Core Statistics Manufacturing: E-Commerce Statistics for the U.S.: 2022.Release Date.2025-01-23.Release Schedule.The Economic Census occurs every five years, in years ending in 2 and 7.The data in this file come from the 2022 Economic Census data files released on a flow basis starting in January 2024 with First Look Statistics. Preliminary U.S. totals released in January 2024 are superseded with final data shown in the releases of later economic census statistics through March 2026.For more information about economic census planned data product releases, see 2022 Economic Census Release Schedule..Dataset Universe.The dataset universe consists of all establishments that are in operation for at least some part of 2022, are located in one of the 50 U.S. states, associated offshore areas, or the District of Columbia, have paid employees, and are classified in one of nineteen in-scope sectors defined by the 2022 North American Industry Classification System (NAICS)..Methodology.Data Items and Other Identifying Records.Sales, value of shipments, or revenue ($1,000)E-Shipments value ($1,000) E-Shipments as percent of total sales, value of shipments, or revenue (%) Range indicating imputed percentage of total sales, value of shipments, or revenueDefinitions can be found by clicking on the column header in the table or by accessing the Economic Census Glossary..Unit(s) of Observation.The reporting units for the economic census are employer establishments. An establishment is generally a single physical location where business is conducted or where services or industrial operations are performed. A company or firm is comprised of one or more in-scope establishments that operate under the ownership or control of a single organization. For some industries, the reporting units are instead groups of all establishments in the same industry belonging to the same firm..Geography Coverage.The data are shown for the U.S. level only. For information about economic census geographies, including changes for 2022, see Geographies..Industry Coverage.The data are shown at the 2- through 3-digit 2022 NAICS code levels for the U.S. For information about NAICS, see Economic Census Code Lists..Sampling.The 2022 Economic Census sample includes all active operating establishments of multi-establishment firms and approximately 1.7 million single-establishment firms, stratified by industry and state. Establishments selected to the sample receive a questionnaire. For all data on this table, establishments not selected into the sample are represented with administrative data. For more information about the sample design, see 2022 Economic Census Methodology..Confidentiality.The Census Bureau has reviewed this data product to ensure appropriate access, use, and disclosure avoidance protection of the confidential source data (Project No. 7504609, Disclosure Review Board (DRB) approval number: CBDRB-FY23-099).To protect confidentiality, the U.S. Census Bureau suppresses cell values to minimize the risk of identifying a particular business’ data or identity.To comply with disclosure avoidance guidelines, data rows with fewer than three contributing firms or three contributing establishments are not presented. Additionally, establishment counts are suppressed when other select statistics in the same row are suppressed. More information on disclosure avoidance is available in the 2022 Economic Census Methodology..Technical Documentation/Methodology.For detailed information about the methods used to collect data and produce statistics, survey questionnaires, Primary Business Activity/NAICS codes, NAPCS codes, and more, see Economic Census Technical Documentation..Weights.No weighting applied as establishments not sampled are represented with administrative data..Table Information.FTP Download.https://www2.census.gov/programs-surveys/economic-census/data/2022/sector31/.API Information.Economic census data are housed in the Census Bureau Application Programming Interface (API)..Symbols.D - Withheld to avoid disclosing data for individual companies; data are included in higher level totalsN - Not available or not comparableS - Estimate does not meet publication standards because of high sampling variability, poor response quality, or other concerns about the estimate quality. Unpublished estimates derived from this table by subtraction are subject to these same limitations and should not be attributed to the U.S. Census Bureau. For a description of publication standards and the total quantity response rate, see link to program methodology page.X - Not applicableA - Relative standard error of 100% or morer - Reviseds - Relative standard error exceeds 40%For a complete list of symbols, see Economic Census Data Dictionary..Data-Specific Notes.Data users who create their own es...
Facebook
TwitterIn Austria a population census takes place every 10 years; this census contains a program of important statistical data on population and employment. They roughly corresponds to the information in the Mikrozensus standard survey but are more detailed (for instance with question on the connection of the place of residence and the workplace, questions on education, confession, etc.) Population and Mikrozensus are closely linked which the name already implies: Mikrozensus means a small-scale population census; this should demonstrate that what the population census reports only every 10 years, the Mikrozensus reports through the method of ongoing sampling. These ongoing sample are also collected in the years of the population census. The Mikrozensus however is far more detailed than the survey program of the population census because the Mikrozensus special surveys offer the possibility of asking questions which are fare beyond the scope of the population census. This complementary function of Mikrozensus and population census becomes especially obvious in the June-survey: certain questions that could not be posed in the population census due to the limited program were answered in the Mikrozensus via sampling. These were the topics: questions on the social stratification of the population questions on fertility and succession of birth questions on the silent Human Resources
Facebook
TwitterRound 1 of the Afrobarometer survey was conducted from July 1999 through June 2001 in 12 African countries, to solicit public opinion on democracy, governance, markets, and national identity. The full 12 country dataset released was pieced together out of different projects, Round 1 of the Afrobarometer survey,the old Southern African Democracy Barometer, and similar surveys done in West and East Africa.
The 7 country dataset is a subset of the Round 1 survey dataset, and consists of a combined dataset for the 7 Southern African countries surveyed with other African countries in Round 1, 1999-2000 (Botswana, Lesotho, Malawi, Namibia, South Africa, Zambia and Zimbabwe). It is a useful dataset because, in contrast to the full 12 country Round 1 dataset, all countries in this dataset were surveyed with the identical questionnaire
Botswana Lesotho Malawi Namibia South Africa Zambia Zimbabwe
Basic units of analysis that the study investigates include: individuals and groups
Sample survey data [ssd]
A new sample has to be drawn for each round of Afrobarometer surveys. Whereas the standard sample size for Round 3 surveys will be 1200 cases, a larger sample size will be required in societies that are extremely heterogeneous (such as South Africa and Nigeria), where the sample size will be increased to 2400. Other adaptations may be necessary within some countries to account for the varying quality of the census data or the availability of census maps.
The sample is designed as a representative cross-section of all citizens of voting age in a given country. The goal is to give every adult citizen an equal and known chance of selection for interview. We strive to reach this objective by (a) strictly applying random selection methods at every stage of sampling and by (b) applying sampling with probability proportionate to population size wherever possible. A randomly selected sample of 1200 cases allows inferences to national adult populations with a margin of sampling error of no more than plus or minus 2.5 percent with a confidence level of 95 percent. If the sample size is increased to 2400, the confidence interval shrinks to plus or minus 2 percent.
Sample Universe
The sample universe for Afrobarometer surveys includes all citizens of voting age within the country. In other words, we exclude anyone who is not a citizen and anyone who has not attained this age (usually 18 years) on the day of the survey. Also excluded are areas determined to be either inaccessible or not relevant to the study, such as those experiencing armed conflict or natural disasters, as well as national parks and game reserves. As a matter of practice, we have also excluded people living in institutionalized settings, such as students in dormitories and persons in prisons or nursing homes.
What to do about areas experiencing political unrest? On the one hand we want to include them because they are politically important. On the other hand, we want to avoid stretching out the fieldwork over many months while we wait for the situation to settle down. It was agreed at the 2002 Cape Town Planning Workshop that it is difficult to come up with a general rule that will fit all imaginable circumstances. We will therefore make judgments on a case-by-case basis on whether or not to proceed with fieldwork or to exclude or substitute areas of conflict. National Partners are requested to consult Core Partners on any major delays, exclusions or substitutions of this sort.
Sample Design
The sample design is a clustered, stratified, multi-stage, area probability sample.
To repeat the main sampling principle, the objective of the design is to give every sample element (i.e. adult citizen) an equal and known chance of being chosen for inclusion in the sample. We strive to reach this objective by (a) strictly applying random selection methods at every stage of sampling and by (b) applying sampling with probability proportionate to population size wherever possible.
In a series of stages, geographically defined sampling units of decreasing size are selected. To ensure that the sample is representative, the probability of selection at various stages is adjusted as follows:
The sample is stratified by key social characteristics in the population such as sub-national area (e.g. region/province) and residential locality (urban or rural). The area stratification reduces the likelihood that distinctive ethnic or language groups are left out of the sample. And the urban/rural stratification is a means to make sure that these localities are represented in their correct proportions. Wherever possible, and always in the first stage of sampling, random sampling is conducted with probability proportionate to population size (PPPS). The purpose is to guarantee that larger (i.e., more populated) geographical units have a proportionally greater probability of being chosen into the sample. The sampling design has four stages
A first-stage to stratify and randomly select primary sampling units;
A second-stage to randomly select sampling start-points;
A third stage to randomly choose households;
A final-stage involving the random selection of individual respondents
We shall deal with each of these stages in turn.
STAGE ONE: Selection of Primary Sampling Units (PSUs)
The primary sampling units (PSU's) are the smallest, well-defined geographic units for which reliable population data are available. In most countries, these will be Census Enumeration Areas (or EAs). Most national census data and maps are broken down to the EA level. In the text that follows we will use the acronyms PSU and EA interchangeably because, when census data are employed, they refer to the same unit.
We strongly recommend that NIs use official national census data as the sampling frame for Afrobarometer surveys. Where recent or reliable census data are not available, NIs are asked to inform the relevant Core Partner before they substitute any other demographic data. Where the census is out of date, NIs should consult a demographer to obtain the best possible estimates of population growth rates. These should be applied to the outdated census data in order to make projections of population figures for the year of the survey. It is important to bear in mind that population growth rates vary by area (region) and (especially) between rural and urban localities. Therefore, any projected census data should include adjustments to take such variations into account.
Indeed, we urge NIs to establish collegial working relationships within professionals in the national census bureau, not only to obtain the most recent census data, projections, and maps, but to gain access to sampling expertise. NIs may even commission a census statistician to draw the sample to Afrobarometer specifications, provided that provision for this service has been made in the survey budget.
Regardless of who draws the sample, the NIs should thoroughly acquaint themselves with the strengths and weaknesses of the available census data and the availability and quality of EA maps. The country and methodology reports should cite the exact census data used, its known shortcomings, if any, and any projections made from the data. At minimum, the NI must know the size of the population and the urban/rural population divide in each region in order to specify how to distribute population and PSU's in the first stage of sampling. National investigators should obtain this written data before they attempt to stratify the sample.
Once this data is obtained, the sample population (either 1200 or 2400) should be stratified, first by area (region/province) and then by residential locality (urban or rural). In each case, the proportion of the sample in each locality in each region should be the same as its proportion in the national population as indicated by the updated census figures.
Having stratified the sample, it is then possible to determine how many PSU's should be selected for the country as a whole, for each region, and for each urban or rural locality.
The total number of PSU's to be selected for the whole country is determined by calculating the maximum degree of clustering of interviews one can accept in any PSU. Because PSUs (which are usually geographically small EAs) tend to be socially homogenous we do not want to select too many people in any one place. Thus, the Afrobarometer has established a standard of no more than 8 interviews per PSU. For a sample size of 1200, the sample must therefore contain 150 PSUs/EAs (1200 divided by 8). For a sample size of 2400, there must be 300 PSUs/EAs.
These PSUs should then be allocated proportionally to the urban and rural localities within each regional stratum of the sample. Let's take a couple of examples from a country with a sample size of 1200. If the urban locality of Region X in this country constitutes 10 percent of the current national population, then the sample for this stratum should be 15 PSUs (calculated as 10 percent of 150 PSUs). If the rural population of Region Y constitutes 4 percent of the current national population, then the sample for this stratum should be 6 PSU's.
The next step is to select particular PSUs/EAs using random methods. Using the above example of the rural localities in Region Y, let us say that you need to pick 6 sample EAs out of a census list that contains a total of 240 rural EAs in Region Y. But which 6? If the EAs created by the national census bureau are of equal or roughly equal population size, then selection is relatively straightforward. Just number all EAs consecutively, then make six selections using a table of random numbers. This procedure, known as simple random sampling (SRS), will
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Key Table Information.Table Title.Information: Summary Statistics for the U.S., States, and Selected Geographies: 2022.Table ID.ECNBASIC2022.EC2251BASIC.Survey/Program.Economic Census.Year.2022.Dataset.ECN Core Statistics Summary Statistics for the U.S., States, and Selected Geographies: 2022.Source.U.S. Census Bureau, 2022 Economic Census, Core Statistics.Release Date.2024-12-05.Dataset Universe.The dataset universe consists of all establishments that are in operation for at least some part of 2022, are located in one of the 50 U.S. states, associated offshore areas, or the District of Columbia, have paid employees, and are classified in one of nineteen in-scope sectors defined by the 2022 North American Industry Classification System (NAICS)..Methodology.Data Items and Other Identifying Records.Number of firmsNumber of establishmentsSales, value of shipments, or revenue ($1,000)Annual payroll ($1,000)First-quarter payroll ($1,000)Number of employeesRange indicating imputed percentage of total sales, value of shipments, or revenueRange indicating imputed percentage of total annual payrollRange indicating imputed percentage of total employeesDefinitions can be found by clicking on the column header in the table or by accessing the Economic Census Glossary..Unit(s) of Observation.The reporting units for the economic census are employer establishments. An establishment is generally a single physical location where business is conducted or where services or industrial operations are performed. A company or firm is comprised of one or more in-scope establishments that operate under the ownership or control of a single organization. For some industries, the reporting units are instead groups of all establishments in the same industry belonging to the same firm..Geography Coverage.The data are shown for the U.S., State, Combined Statistical Area, Metropolitan and Micropolitan Statistical Area, Metropolitan Division, Consolidated City, County (and equivalent), and Economic Place (and equivalent; incorporated and unincorporated) levels that vary by industry. For information about economic census geographies, including changes for 2022, see Geographies..Industry Coverage.The data are shown at the 2- through 6-digit 2022 NAICS code levels and selected 7-digit 2022 NAICS-based code levels. For information about NAICS, see Economic Census Code Lists..Sampling.The 2022 Economic Census sample includes all active operating establishments of multi-establishment firms and approximately 1.7 million single-establishment firms, stratified by industry and state. Establishments selected to the sample receive a questionnaire. For all data on this table, establishments not selected into the sample are represented with administrative data. For more information about the sample design, see 2022 Economic Census Methodology..Confidentiality.The Census Bureau has reviewed this data product to ensure appropriate access, use, and disclosure avoidance protection of the confidential source data (Project No. 7504609, Disclosure Review Board (DRB) approval number: CBDRB-FY23-099).To protect confidentiality, the U.S. Census Bureau suppresses cell values to minimize the risk of identifying a particular business’ data or identity.To comply with disclosure avoidance guidelines, data rows with fewer than three contributing firms or three contributing establishments are not presented. Additionally, establishment counts are suppressed when other select statistics in the same row are suppressed. More information on disclosure avoidance is available in the 2022 Economic Census Methodology..Technical Documentation/Methodology.For detailed information about the methods used to collect data and produce statistics, survey questionnaires, Primary Business Activity/NAICS codes, NAPCS codes, and more, see Economic Census Technical Documentation..Weights.No weighting applied as establishments not sampled are represented with administrative data..Table Information.FTP Download.https://www2.census.gov/programs-surveys/economic-census/data/2022/.API Information.Economic census data are housed in the Census Bureau Application Programming Interface (API)..Symbols.D - Withheld to avoid disclosing data for individual companies; data are included in higher level totalsN - Not available or not comparableS - Estimate does not meet publication standards because of high sampling variability, poor response quality, or other concerns about the estimate quality. Unpublished estimates derived from this table by subtraction are subject to these same limitations and should not be attributed to the U.S. Census Bureau. For a description of publication standards and the total quantity response rate, see link to program methodology page.X - Not applicableA - Relative standard error of 100% or morer - Reviseds - Relative standard error exceeds 40%For a complete list of symbols, see Economic Census Data Dictionary..Data-Specific Notes.Data users who create their own estimates us...
Facebook
Twitter2013-2023 Virginia Non-Single Occupancy Vehicle (SOV) Travel Percent by Census Urban Area. Contains estimates. Workers 16 years and over, commuting to work, who are NOT using a car, truck, or van when driving alone.
U.S. Census Bureau; American Community Survey, American Community Survey 5-Year Estimates, Table DP03, Column DP03_0019PE Data accessed from: Census Bureau's API for American Community Survey (https://www.census.gov/data/developers/data-sets.html)
Documentation of the method to calculate Non-SOV is provided by the Federal Highway Administration (https://www.fhwa.dot.gov/tpm/guidance/hif18024.pdf) page 38 explains the calculation of the Non-SOV Travel measure.
Urban areas with values of -666,666,666 or 0 have blanks calculated for Non-SOV values.
The United States Census Bureau's American Community Survey (ACS): -What is the American Community Survey? (https://www.census.gov/programs-surveys/acs/about.html) -Geography & ACS (https://www.census.gov/programs-surveys/acs/geography-acs.html) -Technical Documentation (https://www.census.gov/programs-surveys/acs/technical-documentation.html)
Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section. (https://www.census.gov/programs-surveys/acs/technical-documentation/code-lists.html)
Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section. (https://www.census.gov/acs/www/methodology/sample_size_and_data_quality/)
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties.
Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation https://www.census.gov/programs-surveys/acs/technical-documentation.html). The effect of nonsampling error is not represented in these tables.
Facebook
TwitterDataset quality **: Medium/high quality dataset, not quality checked or modified by the EIDC team
Census data plays a pivotal role in academic data research, particularly when exploring relationships between different demographic characteristics. The significance of this particular dataset lies in its ability to facilitate the merging of various datasets with basic census information, thereby streamlining the research process and eliminating the need for separate API calls.
The American Community Survey is an ongoing survey conducted by the U.S. Census Bureau, which provides detailed social, economic, and demographic data about the United States population. The ACS collects data continuously throughout the decade, gathering information from a sample of households across the country, covering a wide range of topics
The Census Data Application Programming Interface (API) is an API that gives the public access to raw statistical data from various Census Bureau data programs.
We used this API to collect various demographic and socioeconomic variables from both the ACS and the Deccenial survey on different geographical levels:
ZCTAs:
ZIP Code Tabulation Areas (ZCTAs) are generalized areal representations of United States Postal Service (USPS) ZIP Code service areas. The USPS ZIP Codes identify the individual post office or metropolitan area delivery station associated with mailing addresses. USPS ZIP Codes are not areal features but a collection of mail delivery routes.
Census Tract:
Census Tracts are small, relatively permanent statistical subdivisions of a county or statistically equivalent entity that can be updated by local participants prior to each decennial census as part of the Census Bureau’s Participant Statistical Areas Program (PSAP).
Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. A census tract usually covers a contiguous area; however, the spatial size of census tracts varies widely depending on the density of settlement. Census tract boundaries are delineated with the intention of being maintained over a long time so that statistical comparisons can be made from census to census.
Block Groups:
Block groups (BGs) are the next level above census blocks in the geographic hierarchy (see Figure 2-1 in Chapter 2). A BG is a combination of census blocks that is a subdivision of a census tract or block numbering area (BNA). (A county or its statistically equivalent entity contains either census tracts or BNAs; it can not contain both.) A BG consists of all census blocks whose numbers begin with the same digit in a given census tract or BNA; for example, BG 3 includes all census blocks numbered in the 300s. The BG is the smallest geographic entity for which the decennial census tabulates and publishes sample data.
Census Blocks:
Census blocks, the smallest geographic area for which the Bureau of the Census collects and tabulates decennial census data, are formed by streets, roads, railroads, streams and other bodies of water, other visible physical and cultural features, and the legal boundaries shown on Census Bureau maps.
Facebook
Twitter2013-2023 Virginia Median Household Income based on the past 12 months by Census Block Group. Contains estimates and margins of error.
Special data considerations: Large negative values do exist (more detail below) and should be addressed prior to graphing or aggregating the data.
A value of -666,666,666 in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.
A value of -222,222,222 in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.
U.S. Census Bureau; American Community Survey, American Community Survey 5-Year Estimates, Table B19013 Data accessed from: Census Bureau's API for American Community Survey (https://www.census.gov/data/developers/data-sets.html)
The United States Census Bureau's American Community Survey (ACS): -What is the American Community Survey? (https://www.census.gov/programs-surveys/acs/about.html) -Geography & ACS (https://www.census.gov/programs-surveys/acs/geography-acs.html) -Technical Documentation (https://www.census.gov/programs-surveys/acs/technical-documentation.html)
Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section. (https://www.census.gov/programs-surveys/acs/technical-documentation/code-lists.html)
Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section. (https://www.census.gov/acs/www/methodology/sample_size_and_data_quality/)
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties.
Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation https://www.census.gov/programs-surveys/acs/technical-documentation.html). The effect of nonsampling error is not represented in these tables.
Annotation values are character representations of estimates and have values when non-integer information needs to be represented. Below are a few examples. Complete information is available on the ACS website under Notes on ACS Estimate and Annotation Values. (https://www.census.gov/data/developers/data-sets/acs-1year/notes-on-acs-estimate-and-annotation-values.html).
Facebook
Twitter2013-2023 Virginia Population by Means of Transportation to Work by Number of Vehicles Available by Census Tract. Contains estimates and margins of error.
U.S. Census Bureau; American Community Survey, American Community Survey 5-Year Estimates, Table B08141 Data accessed from: Census Bureau's API for American Community Survey (https://www.census.gov/data/developers/data-sets.html)
The United States Census Bureau's American Community Survey (ACS): -What is the American Community Survey? (https://www.census.gov/programs-surveys/acs/about.html) -Geography & ACS (https://www.census.gov/programs-surveys/acs/geography-acs.html) -Technical Documentation (https://www.census.gov/programs-surveys/acs/technical-documentation.html)
Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section. (https://www.census.gov/programs-surveys/acs/technical-documentation/code-lists.html)
Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section. (https://www.census.gov/acs/www/methodology/sample_size_and_data_quality/)
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties.
Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation https://www.census.gov/programs-surveys/acs/technical-documentation.html). The effect of nonsampling error is not represented in these tables.
Facebook
TwitterCensuses are principal means of collecting basic population and housing statistics required for social and economic development, policy interventions, their implementation and evaluation. The Post-Apartheid South African government has conducted three Censuses, in 1996, 2001 and 2011.
The South African Census 2011 has national coverage.
Households and individuals
The South African Census 2011 covered every person present in South Africa on Census Night, 9-31 October 2011 including all de jure household members and residents of institutions.
Census/enumeration data
The sampling frame for the PES was the complete list of Census 2011 EAs, amounting to 103 576 EAs. The primary sampling units (PSUs) were the Census EAs. The principle for selecting the PES sample is that the EA boundaries for sampled EAs should have well defined boundaries, and these boundaries should correspond with those of Census EAs to allow for item-by-item comparison between the Census and PES records. The stratification and sampling process followed will allow for the provision of estimates at national, provincial, urban (geography type = urban) and non-urban (geography type = farm and traditional) levels, but estimates will only be reliable at national and provincial levels. The sample of 600 EAs was selected and allocated to the provinces based on expected standard errors which were based on those obtained in PES 2001. Populations in institutions (other than Workers' Hostels), floating and homeless individuals were excluded from the PES sample.
The data files in the dataset include Household, Person, and Mortality files. The 10% sample for the Mortality data file was sampled separately and is not the same as the 10% sample for Household file and Person file.
Face-to-face
Three sets of questionnaires were developed for Census 2011: 1. Questionnaire A - the household questionnaire - administed to the population in a household set-up including those households that were found within an institution, such as staff residences 2. Questionnaire B - the population in transit (departing) and those on holiday on reference night (9/10 October 2011). The homeless were also enumerated using this set of questions 3. Questionnaire C - the institutions questionnaire administered to the population in collective living quarters (people who spent census night 9/10 October 2011 at the institution)
A Post-Enumeration Survey was carried out after the census, which used a PES questionnaire.
Comparison of Census 2011 with previous Censuses requires alignment of the data to 2011 municipal boundaries Questions on disability asked in former censuses were replaced in census 2011 with General health and functioning questions. Misreporting on general health and functioning for children younger than five years means data for this variable are only profiled for persons five years and older.
The dataset does not have a code list for the “geotype” variable which has 3 values (1,2,3).
Facebook
TwitterThe dataset is a relational dataset of 8,000 households households, representing a sample of the population of an imaginary middle-income country. The dataset contains two data files: one with variables at the household level, the other one with variables at the individual level. It includes variables that are typically collected in population censuses (demography, education, occupation, dwelling characteristics, fertility, mortality, and migration) and in household surveys (household expenditure, anthropometric data for children, assets ownership). The data only includes ordinary households (no community households). The dataset was created using REaLTabFormer, a model that leverages deep learning methods. The dataset was created for the purpose of training and simulation and is not intended to be representative of any specific country.
The full-population dataset (with about 10 million individuals) is also distributed as open data.
The dataset is a synthetic dataset for an imaginary country. It was created to represent the population of this country by province (equivalent to admin1) and by urban/rural areas of residence.
Household, Individual
The dataset is a fully-synthetic dataset representative of the resident population of ordinary households for an imaginary middle-income country.
ssd
The sample size was set to 8,000 households. The fixed number of households to be selected from each enumeration area was set to 25. In a first stage, the number of enumeration areas to be selected in each stratum was calculated, proportional to the size of each stratum (stratification by geo_1 and urban/rural). Then 25 households were randomly selected within each enumeration area. The R script used to draw the sample is provided as an external resource.
other
The dataset is a synthetic dataset. Although the variables it contains are variables typically collected from sample surveys or population censuses, no questionnaire is available for this dataset. A "fake" questionnaire was however created for the sample dataset extracted from this dataset, to be used as training material.
The synthetic data generation process included a set of "validators" (consistency checks, based on which synthetic observation were assessed and rejected/replaced when needed). Also, some post-processing was applied to the data to result in the distributed data files.
This is a synthetic dataset; the "response rate" is 100%.
Facebook
TwitterThis intermediate level data set was extracted from the census bureau database. There are 48842 instances of data set, mix of continuous and discrete (train=32561, test=16281).
The data set has 15 attribute which include age, sex, education level and other relevant details of a person. The data set will help to improve your skills in Exploratory Data Analysis, Data Wrangling, Data Visualization and Classification Models.
Feel free to explore the data set with multiple supervised and unsupervised learning techniques. The Following description gives more details on this data set:
age: the age of an individual.workclass: The type of work or employment of an individual. It can have the following categories:
Final Weight: The weights on the CPS files are controlled to independent estimates of the civilian noninstitutional population of the US. These are prepared monthly for us by Population Division here at the Census Bureau. We use 3 sets of controls.These are: 1. A single cell estimate of the population 16+ for each state. 2. Controls for Hispanic Origin by age and sex. 3. Controls by Race, age and sex.
We use all three sets of controls in our weighting program and "rake" through them 6 times so that by the end we come back to all the controls we used.
People with similar demographic characteristics should have similar weights. There is one important caveat to remember about this statement. That is that since the CPS sample is actually a collection of 51 state samples, each with its own probability of selection, the statement only applies within state.
education: The highest level of education completed. education-num: The number of years of education completed. marital-status: The marital status. occupation: Type of work performed by an individual.relationship: The relationship status.race: The race of an individual. sex: The gender of an individual.capital-gain: The amount of capital gain (financial profit).capital-loss: The amount of capital loss an individual has incurred.hours-per-week: The number of hours works per week.native-country: The country of origin or the native country.income: The income level of an individual and serves as the target variable. It indicates whether the income is greater than $50,000 or less than or equal to $50,000, denoted as (>50K, <=50K).
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The ChinaSP dataset integrates two samples derived from the China 1990 Census, one sample for every 100th person, and one sample for every 100th household. The data was originally shared in a collaboration between the China State Statistical Bureau and G. W. Skinner for use in hierarchical regional space analysis. The ChinaSP dataset is in the process of being archived, for limited, site-only use at Harvard University, and detailed application forms and Data Use Agreements will be posted at this URL when they become available.
Facebook
Twitterhttps://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.7910/DVN/RCHDXXhttps://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.7910/DVN/RCHDXX
This dataset contains replication files for "A Practical Method to Reduce Privacy Loss when Disclosing Statistics Based on Small Samples" by Raj Chetty and John Friedman. For more information, see https://opportunityinsights.org/paper/differential-privacy/. A summary of the related publication follows. Releasing statistics based on small samples – such as estimates of social mobility by Census tract, as in the Opportunity Atlas – is very valuable for policy but can potentially create privacy risks by unintentionally disclosing information about specific individuals. To mitigate such risks, we worked with researchers at the Harvard Privacy Tools Project and Census Bureau staff to develop practical methods of reducing the risks of privacy loss when releasing such data. This paper describes the methods that we developed, which can be applied to disclose any statistic of interest that is estimated using a sample with a small number of observations. We focus on the case where the dataset can be broken into many groups (“cells”) and one is interested in releasing statistics for one or more of these cells. Building on ideas from the differential privacy literature, we add noise to the statistic of interest in proportion to the statistic’s maximum observed sensitivity, defined as the maximum change in the statistic from adding or removing a single observation across all the cells in the data. Intuitively, our approach permits the release of statistics in arbitrarily small samples by adding sufficient noise to the estimates to protect privacy. Although our method does not offer a formal privacy guarantee, it generally outperforms widely used methods of disclosure limitation such as count-based cell suppression both in terms of privacy loss and statistical bias. We illustrate how the method can be implemented by discussing how it was used to release estimates of social mobility by Census tract in the Opportunity Atlas. We also provide a step-by-step guide and illustrative Stata code to implement our approach.
Facebook
TwitterGeocoded for Baltimore County. The BES Household Survey 2003 is a telephone survey of metropolitan Baltimore residents consisting of 29 questions. The survey research firm, Hollander, Cohen, and McBride conducted the survey, asking respondents questions about their outdoor recreation activities, watershed knowledge, environmental behavior, neighborhood characteristics and quality of life, lawn maintenance, satisfaction with life, neighborhood, and the environment, and demographic information. The data from each respondent is also associated with a PRIZM(r) classification, census block group, and latitude-longitude. PRIZM(r) classifications categorize the American population using Census data, market research surveys, public opinion polls, and point-of-purchase receipts. The PRIZM(r) classification is spatially explicit allowing the survey data to be viewed and analyzed spatially and allowing specific neighborhood types to be identified and compared based on the survey data. The census block group and latitude-longitude data also allow us additional methods of presenting and analyzing the data spatially. The household survey is part of the core data collection of the Baltimore Ecosystem Study to classify and characterize social and ecological dimensions of neighborhoods (patches) over time and across space. This survey is linked to other core data including US Census data, remotely-sensed data, and field data collection, including the BES DemSoc Field Observation Survey. The BES 2003 telephone survey was conducted by Hollander, Cohen, and McBride from September 1-30, 2003. The sample was obtained from the professional sampling firm Claritas, in order that their "PRIZM" encoding would be appended to each piece of sample (telephone number) supplied. Mailing addresses were also obtained so that a postcard could be sent in advance of interviewers calling. The postcard briefly informed potential respondents about the survey, who was conducting it, and that they might receive a phone call in the next few weeks. A stratified sampling method was used to obtain between 50 - 150 respondents in each of the 15 main PRIZM classifications. This allows direct comparison of PRIZM classifications. Analysis of the data for the general metropolitan Baltimore area must be weighted to match the population proportions normally found in the region. They obtained a total of 9000 telephone numbers in the sample. All 9,000 numbers were dialed but contact was only made on 4,880. 1508 completed an interview, 2524 refused immediately, 147 broke off/incomplete, 84 respondents had moved and were no longer in the correct location, and a qualified respondent was not available on 617 calls. This resulted in a response rate of 36.1% compared with a response rate of 28.2% in 2000. The CATI software (Computer Assisted Terminal Interviewing) randomized the random sample supplied, and was programmed for at least 3 attempted callbacks per number, with emphasis on pulling available callback sample prior to accessing uncalled numbers. Calling was conducted only during evening and weekend hours, when most head of households are home. The use of CATI facilitated stratified sampling on PRIZM classifications, centralized data collection, standardized interviewer training, and reduced the overall cost of primary data collection. Additionally, to reduce respondent burden, the questionnaire was revised to be concise, easy to understand, minimize the use of open-ended responses, and require an average of 15 minutes to complete. The household survey is part of the core data collection of the Baltimore Ecosystem Study to classify and characterize social and ecological dimensions of neighborhoods (patches) over time and across space. This survey is linked to other core data, including US Census data, remotely-sensed data, and field data collection, including the BES DemSoc Field Observation Survey. Additional documentation of this database is attached to this metadata and includes 4 documents, 1) the telephone survey, 2) documentation of the telephone survey, 3) metadata for the telephone survey, and 4) a description of the attribute data in the BES survey 2003 survey. This database was created by joining the GDT geographic database of US Census Block Group geographies for the Baltimore Metropolitan Statisticsal Area (MSA), with the Claritas PRIZM database, 2003, of unique classifications of each Census Block Group, and the unique PRIZM code for each respondent from the BES Household Telephone Survey, 2003. The GDT database is preferred and used because of its higher spatial accuracy than other databases describing US Census geographies, including those provided by the US Census. This database includes data only for environmental behaviors: How likely would you be to take part in the following efforts to improve and maintain the quality of the watersheds ne... Visit https://dataone.org/datasets/knb-lter-bes.336.570 for complete metadata about this dataset.
Facebook
Twitter2013-2023 Virginia Population by Urban Area. Contains estimates.
U.S. Census Bureau; American Community Survey, American Community Survey 5-Year Estimates, Table B01001 Data accessed from: Census Bureau's API for American Community Survey (https://www.census.gov/data/developers/data-sets.html)
The United States Census Bureau's American Community Survey (ACS): -What is the American Community Survey? (https://www.census.gov/programs-surveys/acs/about.html) -Geography & ACS (https://www.census.gov/programs-surveys/acs/geography-acs.html) -Technical Documentation (https://www.census.gov/programs-surveys/acs/technical-documentation.html)
Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section. (https://www.census.gov/programs-surveys/acs/technical-documentation/code-lists.html)
Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section. (https://www.census.gov/acs/www/methodology/sample_size_and_data_quality/)
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties.
Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation https://www.census.gov/programs-surveys/acs/technical-documentation.html). The effect of nonsampling error is not represented in these tables.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Max Foundation is a Netherlands-based NGO that works towards a healthy start for every child in the most effective and long-lasting way. Over the past 15 years, our teams in Bangladesh and Ethiopia have reached almost 3 million people, supporting communities in reducing stunting and undernutrition by gaining better access to clean water, sanitation and hygiene, as well as healthy diets and care for mother and child.
Maximising our impact and cost efficiency are at the core of our work, which makes quantifying and analysing our programmes crucial. We therefore collect a lot of information on the communities we work with; to understand them better and see where and how we can improve as an organisation.
This data set is one of many we are making publicly available because we believe that data in the development sector should be open: not as a goal in itself, but as a way to help the sector be more effective and create more impact.
These data were collected between Q1 and Q3 in 2018 (with a few observations earlier and later) in the areas in Bangladesh where Max Foundation is active. The original data set is a census, and covers basically all households in the area (some could not be found or declined consent). In order to protect privacy, villages with fewer than 50 responses are excluded and only 15% of the data is present in this dataset, stratified by village. The data were collected because in 2018 Max Foundation scaled up its operations, both geographically and thematically (from a focus on WASH (water, sanitation and hygiene) to including nutrition and food security). The data give a detailed picture of the access to WASH in the area.
All of Max Foundation's data are collected and processed according to GDPR standards and explicit informed consent is given by all respondents. They are also clearly informed that choosing not to participate in data collection will in no way affect their eligibility for, or receiving of, products or services from Max Foundation.
Furthermore, we enforce strong privacy protections on our open data to minimise the risk of these data being used to cause harm or re-identify individuals. Concretely this means: - Administrative units up to the Union can be directly identified with the BD_ loc_xx data. The ward and village are masked by random numbers. However, to ensure it is still possible to compare our data sets, these random numbers are consistent across all data sets. This means that village '1' in this data is the same as village '1' in all of our other Bangladesh datasets, unless stated otherwise; - Household numbers are randomised and these are NOT kept the same between datasets; - Sensitive variables are omitted, censored or bucketed.
The column descriptions specify any transformations done to the data.
These data could have not been collected without the generous support from the Embassy of the Kingdom of the Netherlands in Dhaka and numerous other donors who have supported us over the years. Special thanks to our Bangladesh team for their excellent work in guiding the data collection process.
We invite you to share any interesting insights you have derived from the data with us. From visualising our impact, to uncovering which parts of our programmes are most strongly related with reducing stunting, to making new connections we may have not even considered; we are eager to hear how we can be more effective in what we do and how we do it.
More detailed data insights are available from our internal data, such as the linking of households between datasets. Please note that we would be happy to share more detailed data with researchers, students and many others once proper agreements are in place.
As we value impact above all else, we are happy to work with anyone who can help us to improve our impact. We are constantly adapting our approach based on internal and external findings, and invite you to join us on this journey. Together we can ensure that every child has a healthy start.
Facebook
Twitter2013-2023 Virginia Population by Race by Census Block Group. Contains estimates and margins of error.
U.S. Census Bureau; American Community Survey, American Community Survey 5-Year Estimates, Table B03002 Data accessed from: Census Bureau's API for American Community Survey (https://www.census.gov/data/developers/data-sets.html)
The United States Census Bureau's American Community Survey (ACS): -What is the American Community Survey? (https://www.census.gov/programs-surveys/acs/about.html) -Geography & ACS (https://www.census.gov/programs-surveys/acs/geography-acs.html) -Technical Documentation (https://www.census.gov/programs-surveys/acs/technical-documentation.html)
Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section. (https://www.census.gov/programs-surveys/acs/technical-documentation/code-lists.html)
Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section. (https://www.census.gov/acs/www/methodology/sample_size_and_data_quality/)
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties.
Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation https://www.census.gov/programs-surveys/acs/technical-documentation.html). The effect of nonsampling error is not represented in these tables.
Facebook
Twitter2013-2023 Virginia Median Household Income based on the past 12 months by Census County or County equivalent. Contains estimates and margins of error.
U.S. Census Bureau; American Community Survey, American Community Survey 5-Year Estimates, Table B19013 Data accessed from: Census Bureau's API for American Community Survey (https://www.census.gov/data/developers/data-sets.html)
The United States Census Bureau's American Community Survey (ACS): -What is the American Community Survey? (https://www.census.gov/programs-surveys/acs/about.html) -Geography & ACS (https://www.census.gov/programs-surveys/acs/geography-acs.html) -Technical Documentation (https://www.census.gov/programs-surveys/acs/technical-documentation.html)
Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section. (https://www.census.gov/programs-surveys/acs/technical-documentation/code-lists.html)
Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section. (https://www.census.gov/acs/www/methodology/sample_size_and_data_quality/)
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties.
Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation https://www.census.gov/programs-surveys/acs/technical-documentation.html). The effect of nonsampling error is not represented in these tables.
Annotation values are character representations of estimates and have values when non-integer information needs to be represented. Below are a few examples. Complete information is available on the ACS website under Notes on ACS Estimate and Annotation Values. (https://www.census.gov/data/developers/data-sets/acs-1year/notes-on-acs-estimate-and-annotation-values.html)
A value of -666,666,666 in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.
A value of -222,222,222 in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.
Facebook
TwitterThe Tanzania Demographic and Health Survey (TDHS) is part of the worldwide Demographic and Health Surveys (DHS) programme, which is designed to collect data on fertility, family planning, and maternal and child health.
The primary objective of the 1999 TRCHS was to collect data at the national level (with breakdowns by urban-rural and Mainland-Zanzibar residence wherever warranted) on fertility levels and preferences, family planning use, maternal and child health, breastfeeding practices, nutritional status of young children, childhood mortality levels, knowledge and behaviour regarding HIV/AIDS, and the availability of specific health services within the community.1 Related objectives were to produce these results in a timely manner and to ensure that the data were disseminated to a wide audience of potential users in governmental and nongovernmental organisations within and outside Tanzania. The ultimate intent is to use the information to evaluate current programmes and to design new strategies for improving health and family planning services for the people of Tanzania.
National. The sample was designed to provide estimates for the whole country, for urban and rural areas separately, and for Zanzibar and, in some cases, Unguja and Pemba separately.
Sample survey data
The TRCHS used a three-stage sample design. Overall, 176 census enumeration areas were selected (146 on the Mainland and 30 in Zanzibar) with probability proportional to size on an approximately self-weighting basis on the Mainland, but with oversampling of urban areas and Zanzibar. To reduce costs and maximise the ability to identify trends over time, these enumeration areas were selected from the 357 sample points that were used in the 1996 TDHS, which in turn were selected from the 1988 census frame of enumeration in a two-stage process (first wards/branches and then enumeration areas within wards/branches). Before the data collection, fieldwork teams visited the selected enumeration areas to list all the households. From these lists, households were selected to be interviewed. The sample was designed to provide estimates for the whole country, for urban and rural areas separately, and for Zanzibar and, in some cases, Unguja and Pemba separately. The health facilities component of the TRCHS involved visiting hospitals, health centres, and pharmacies located in areas around the households interviewed. In this way, the data from the two components can be linked and a richer dataset produced.
See detailed sample implementation in the APPENDIX A of the final report.
Face-to-face
The household survey component of the TRCHS involved three questionnaires: 1) a Household Questionnaire, 2) a Women’s Questionnaire for all individual women age 15-49 in the selected households, and 3) a Men’s Questionnaire for all men age 15-59.
The health facilities survey involved six questionnaires: 1) a Community Questionnaire administered to men and women in each selected enumeration area; 2) a Facility Questionnaire; 3) a Facility Inventory; 4) a Service Provider Questionnaire; 5) a Pharmacy Inventory Questionnaire; and 6) a questionnaire for the District Medical Officers.
All these instruments were based on model questionnaires developed for the MEASURE programme, as well as on the questionnaires used in the 1991-92 TDHS, the 1994 TKAP, and the 1996 TDHS. These model questionnaires were adapted for use in Tanzania during meetings with representatives from the Ministry of Health, the University of Dar es Salaam, the Tanzania Food and Nutrition Centre, USAID/Tanzania, UNICEF/Tanzania, UNFPA/Tanzania, and other potential data users. The questionnaires and manual were developed in English and then translated into and printed in Kiswahili.
The Household Questionnaire was used to list all the usual members and visitors in the selected households. Some basic information was collected on the characteristics of each person listed, including his/her age, sex, education, and relationship to the head of the household. The main purpose of the Household Questionnaire was to identify women and men who were eligible for individual interview and children under five who were to be weighed and measured. Information was also collected about the dwelling itself, such as the source of water, type of toilet facilities, materials used to construct the house, ownership of various consumer goods, and use of iodised salt. Finally, the Household Questionnaire was used to collect some rudimentary information about the extent of child labour.
The Women’s Questionnaire was used to collect information from women age 15-49. These women were asked questions on the following topics: · Background characteristics (age, education, religion, type of employment) · Birth history · Knowledge and use of family planning methods · Antenatal, delivery, and postnatal care · Breastfeeding and weaning practices · Vaccinations, birth registration, and health of children under age five · Marriage and recent sexual activity · Fertility preferences · Knowledge and behaviour concerning HIV/AIDS.
The Men’s Questionnaire covered most of these same issues, except that it omitted the sections on the detailed reproductive history, maternal health, and child health. The final versions of the English questionnaires are provided in Appendix E.
Before the questionnaires could be finalised, a pretest was done in July 1999 in Kibaha District to assess the viability of the questions, the flow and logical sequence of the skip pattern, and the field organisation. Modifications to the questionnaires, including wording and translations, were made based on lessons drawn from the exercise.
In all, 3,826 households were selected for the sample, out of which 3,677 were occupied. Of the households found, 3,615 were interviewed, representing a response rate of 98 percent. The shortfall is primarily due to dwellings that were vacant or in which the inhabitants were not at home despite of several callbacks.
In the interviewed households, a total of 4,118 eligible women (i.e., women age 15-49) were identified for the individual interview, and 4,029 women were actually interviewed, yielding a response rate of 98 percent. A total of 3,792 eligible men (i.e., men age 15-59), were identified for the individual interview, of whom 3,542 were interviewed, representing a response rate of 93 percent. The principal reason for nonresponse among both eligible men and women was the failure to find them at home despite repeated visits to the household. The lower response rate among men than women was due to the more frequent and longer absences of men.
The response rates are lower in urban areas due to longer absence of respondents from their homes. One-member households are more common in urban areas and are more difficult to interview because they keep their houses locked most of the time. In urban settings, neighbours often do not know the whereabouts of such people.
The estimates from a sample survey are affected by two types of errors: (1) non-sampling errors, and (2) sampling errors. Non-sampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the TRCHS to minimise this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the TRCHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the TRCHS sample is the result of a two-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the TRCHS is the ISSA Sampling Error Module (SAMPERR). This module used the Taylor linearisation method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rate
Note: See detailed sampling error calculation in the APPENDIX B