100+ datasets found
  1. Open-Source Spatial Analytics (R) - Datasets - AmericaView - CKAN

    • ckan.americaview.org
    Updated Sep 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.americaview.org (2022). Open-Source Spatial Analytics (R) - Datasets - AmericaView - CKAN [Dataset]. https://ckan.americaview.org/dataset/open-source-spatial-analytics-r
    Explore at:
    Dataset updated
    Sep 10, 2022
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In this course, you will learn to work within the free and open-source R environment with a specific focus on working with and analyzing geospatial data. We will cover a wide variety of data and spatial data analytics topics, and you will learn how to code in R along the way. The Introduction module provides more background info about the course and course set up. This course is designed for someone with some prior GIS knowledge. For example, you should know the basics of working with maps, map projections, and vector and raster data. You should be able to perform common spatial analysis tasks and make map layouts. If you do not have a GIS background, we would recommend checking out the West Virginia View GIScience class. We do not assume that you have any prior experience with R or with coding. So, don't worry if you haven't developed these skill sets yet. That is a major goal in this course. Background material will be provided using code examples, videos, and presentations. We have provided assignments to offer hands-on learning opportunities. Data links for the lecture modules are provided within each module while data for the assignments are linked to the assignment buttons below. Please see the sequencing document for our suggested order in which to work through the material. After completing this course you will be able to: prepare, manipulate, query, and generally work with data in R. perform data summarization, comparisons, and statistical tests. create quality graphs, map layouts, and interactive web maps to visualize data and findings. present your research, methods, results, and code as web pages to foster reproducible research. work with spatial data in R. analyze vector and raster geospatial data to answer a question with a spatial component. make spatial models and predictions using regression and machine learning. code in the R language at an intermediate level.

  2. u

    Data from: Non-spatial data for "Remapping and visualizing baseball labor"

    • iro.uiowa.edu
    zip
    Updated Dec 13, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Katherine Walden (2017). Non-spatial data for "Remapping and visualizing baseball labor" [Dataset]. https://iro.uiowa.edu/esploro/outputs/dataset/Non-spatial-data-for-Remapping-and-visualizing/9983736671102771
    Explore at:
    zip(30443 bytes)Available download formats
    Dataset updated
    Dec 13, 2017
    Dataset provided by
    University of Iowa
    Authors
    Katherine Walden
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Time period covered
    2019
    Description

    Recent baseball scholarship has drawn attention to U.S. professional baseball’s complex twentieth century labor dynamics and expanding global presence. From debates around desegregation to discussions about the sport’s increasingly multicultural identity and global presence, the cultural politics of U.S. professional baseball is connected to the problem of baseball labor. However, most scholars address these topics by focusing on Major League Baseball (MLB), ignoring other teams and leagues—Minor League Baseball (MiLB)—that develop players for Major League teams. Considering Minor League Baseball is critical to understanding the professional game in the United States, since players who populate Major League rosters constitute a fraction of U.S. professional baseball’s entire labor force. As a digital humanities dissertation on baseball labor and globalization, this project uses digital humanities approaches and tools to analyze and visualize a quantitative data set, exploring how Minor League Baseball relates to and complicates MLB-dominated narratives around globalization and diversity in U.S. professional baseball labor. This project addresses how MiLB demographics and global dimensions shifted over time, as well as how the timeline and movement of foreign-born players through the Minor Leagues differs from their U.S.-born counterparts. This project emphasizes the centrality and necessity of including MiLB data in studies of baseball’s labor and ideological significance or cultural meaning, making that argument by drawing on data analysis, visualization, and mapping to address how MiLB labor complicates or supplements existing understandings of the relationship between U.S. professional baseball’s global reach and “national pastime” claims.

  3. f

    fdata-02-00044_Parallel Processing Strategies for Big Geospatial Data.pdf

    • frontiersin.figshare.com
    pdf
    Updated Jun 3, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Martin Werner (2023). fdata-02-00044_Parallel Processing Strategies for Big Geospatial Data.pdf [Dataset]. http://doi.org/10.3389/fdata.2019.00044.s001
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    Frontiers
    Authors
    Martin Werner
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This paper provides an abstract analysis of parallel processing strategies for spatial and spatio-temporal data. It isolates aspects such as data locality and computational locality as well as redundancy and locally sequential access as central elements of parallel algorithm design for spatial data. Furthermore, the paper gives some examples from simple and advanced GIS and spatial data analysis highlighting both that big data systems have been around long before the current hype of big data and that they follow some design principles which are inevitable for spatial data including distributed data structures and messaging, which are, however, incompatible with the popular MapReduce paradigm. Throughout this discussion, the need for a replacement or extension of the MapReduce paradigm for spatial data is derived. This paradigm should be able to deal with the imperfect data locality inherent to spatial data hindering full independence of non-trivial computational tasks. We conclude that more research is needed and that spatial big data systems should pick up more concepts like graphs, shortest paths, raster data, events, and streams at the same time instead of solving exactly the set of spatially separable problems such as line simplifications or range queries in manydifferent ways.

  4. G

    QGIS Training Tutorials: Using Spatial Data in Geographic Information...

    • open.canada.ca
    • datasets.ai
    • +1more
    html
    Updated Oct 5, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2021). QGIS Training Tutorials: Using Spatial Data in Geographic Information Systems [Dataset]. https://open.canada.ca/data/en/dataset/89be0c73-6f1f-40b7-b034-323cb40b8eff
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Oct 5, 2021
    Dataset provided by
    Statistics Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.

  5. Geodatabase for the Baltimore Ecosystem Study Spatial Data

    • search.dataone.org
    • portal.edirepository.org
    Updated Apr 1, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Spatial Analysis Lab; Jarlath O'Neal-Dunne; Morgan Grove (2020). Geodatabase for the Baltimore Ecosystem Study Spatial Data [Dataset]. https://search.dataone.org/view/https%3A%2F%2Fpasta.lternet.edu%2Fpackage%2Fmetadata%2Feml%2Fknb-lter-bes%2F3120%2F150
    Explore at:
    Dataset updated
    Apr 1, 2020
    Dataset provided by
    Long Term Ecological Research Networkhttp://www.lternet.edu/
    Authors
    Spatial Analysis Lab; Jarlath O'Neal-Dunne; Morgan Grove
    Time period covered
    Jan 1, 1999 - Jun 1, 2014
    Area covered
    Description

    The establishment of a BES Multi-User Geodatabase (BES-MUG) allows for the storage, management, and distribution of geospatial data associated with the Baltimore Ecosystem Study. At present, BES data is distributed over the internet via the BES website. While having geospatial data available for download is a vast improvement over having the data housed at individual research institutions, it still suffers from some limitations. BES-MUG overcomes these limitations; improving the quality of the geospatial data available to BES researches, thereby leading to more informed decision-making. BES-MUG builds on Environmental Systems Research Institute's (ESRI) ArcGIS and ArcSDE technology. ESRI was selected because its geospatial software offers robust capabilities. ArcGIS is implemented agency-wide within the USDA and is the predominant geospatial software package used by collaborating institutions. Commercially available enterprise database packages (DB2, Oracle, SQL) provide an efficient means to store, manage, and share large datasets. However, standard database capabilities are limited with respect to geographic datasets because they lack the ability to deal with complex spatial relationships. By using ESRI's ArcSDE (Spatial Database Engine) in conjunction with database software, geospatial data can be handled much more effectively through the implementation of the Geodatabase model. Through ArcSDE and the Geodatabase model the database's capabilities are expanded, allowing for multiuser editing, intelligent feature types, and the establishment of rules and relationships. ArcSDE also allows users to connect to the database using ArcGIS software without being burdened by the intricacies of the database itself. For an example of how BES-MUG will help improve the quality and timeless of BES geospatial data consider a census block group layer that is in need of updating. Rather than the researcher downloading the dataset, editing it, and resubmitting to through ORS, access rules will allow the authorized user to edit the dataset over the network. Established rules will ensure that the attribute and topological integrity is maintained, so that key fields are not left blank and that the block group boundaries stay within tract boundaries. Metadata will automatically be updated showing who edited the dataset and when they did in the event any questions arise. Currently, a functioning prototype Multi-User Database has been developed for BES at the University of Vermont Spatial Analysis Lab, using Arc SDE and IBM's DB2 Enterprise Database as a back end architecture. This database, which is currently only accessible to those on the UVM campus network, will shortly be migrated to a Linux server where it will be accessible for database connections over the Internet. Passwords can then be handed out to all interested researchers on the project, who will be able to make a database connection through the Geographic Information Systems software interface on their desktop computer. This database will include a very large number of thematic layers. Those layers are currently divided into biophysical, socio-economic and imagery categories. Biophysical includes data on topography, soils, forest cover, habitat areas, hydrology and toxics. Socio-economics includes political and administrative boundaries, transportation and infrastructure networks, property data, census data, household survey data, parks, protected areas, land use/land cover, zoning, public health and historic land use change. Imagery includes a variety of aerial and satellite imagery. See the readme: http://96.56.36.108/geodatabase_SAL/readme.txt See the file listing: http://96.56.36.108/geodatabase_SAL/diroutput.txt

  6. BLM Alaska Public Land Survey System (PLSS) Cadastral National Spatial Data...

    • statewide-geoportal-1-soa-dnr.hub.arcgis.com
    • gimi9.com
    • +3more
    Updated Apr 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of Land Management (2025). BLM Alaska Public Land Survey System (PLSS) Cadastral National Spatial Data Infrastructure (CadNSDI) [Dataset]. https://statewide-geoportal-1-soa-dnr.hub.arcgis.com/maps/b656d43688c441e4ba445d617ffb0181
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset authored and provided by
    Bureau of Land Managementhttp://www.blm.gov/
    Area covered
    Description

    BLM Alaska PLSS Intersected: This dataset represents the GIS Version of the Public Land Survey System including both rectangular and non-rectangular surveys. The primary source for the data is cadastral survey records housed by the BLM supplemented with local records and geographic control coordinates from states, counties as well as other federal agencies such as the USGS and USFS. The data has been converted from source documents to digital form and transferred into a GIS format that is compliant with FGDC Cadastral Data Content Standards and Guidelines for publication. This data is optimized for data publication and sharing rather than for specific "production" or operation and maintenance. This data set includes the following: PLSS Fully Intersected (all of the PLSS feature at the atomic or smallest polygon level), PLSS Townships, First Divisions and Second Divisions (the hierarchical break down of the PLSS Rectangular surveys) PLSS Special surveys (non rectangular components of the PLSS) Meandered Water, Corners and Conflicted Areas (known areas of gaps or overlaps between Townships or state boundaries). The Entity-Attribute section of this metadata describes these components in greater detail.

  7. Data from: Excel spreadsheet of confusion matrices

    • figshare.com
    xlsx
    Updated Dec 19, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Francisco Javier Ariza López; José Luis García Balboa; María Virtudes Alba Fernández; José Rodríguez Avi (2019). Excel spreadsheet of confusion matrices [Dataset]. http://doi.org/10.6084/m9.figshare.11316875.v2
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Dec 19, 2019
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Francisco Javier Ariza López; José Luis García Balboa; María Virtudes Alba Fernández; José Rodríguez Avi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Excel spreadsheet which only contains numeric data from a set of confusion matrices (one sheet per matrix).It is the same quantitative data stored in a field of a table in the database. Only is provided as a complement to the database in order to access to the quantitative data in a more convenient format.

  8. g

    Spatial data from An Inventory of U.S. Geological Survey Three-Dimensional...

    • gimi9.com
    Updated Sep 8, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Spatial data from An Inventory of U.S. Geological Survey Three-Dimensional Geologic Models, Volume 1, 2004–2022 | gimi9.com [Dataset]. https://gimi9.com/dataset/data-gov_spatial-data-from-an-inventory-of-u-s-geological-survey-three-dimensional-geologic-models-/
    Explore at:
    Dataset updated
    Sep 8, 2022
    Description

    Within the U.S. Geological Survey (USGS), three-dimensional (3D) geologic models are created as part of geologic framework studies, to support energy, minerals, or water resource assessments, and to inform geologic hazard assessments. Such models are often used within the organization as digital input into process and predictive models. 3D geological modeling typically supports research and project work within a specific part of the USGS – called Mission Areas – and as a result, 3D modeling activities are decentralized and model results are released on a project-by-project basis. This digital data release inventories and catalogs, for the first time, 3D geological models constructed by the USGS across all Mission Areas. This inventory assembles in catalog form the spatial locations and salient characteristics of previously published USGS 3D geological models. This inventory covers the time period from 2004, the date of the earliest published model through 2022. This digital dataset contains spatial extents of the 3D geologic models as polygon features that are attributed with unique identifiers that link the spatial data to nonspatial tables that define the data sources used and describe various aspects of each published model. The nonspatial DataSources table includes full citation and URL address for both published model reports and any digital model data released as a separate publication. The nonspatial ModelAttributes table classifies the type of model, using several classification schemes, identifies the model purpose and originating agency, and describes the spatial extent, depth, and number of layers included in each model. A tabular glossary defines terms used in the dataset. A tabular data dictionary describes the entity and attribute information for all attributes of the geospatial data and the accompanying nonspatial tables.

  9. u

    Landscape Change Monitoring System (LCMS) Conterminous United States Cause...

    • agdatacommons.nal.usda.gov
    • catalog.data.gov
    • +4more
    bin
    Updated Oct 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Landscape Change Monitoring System (LCMS) Conterminous United States Cause of Change (Image Service) [Dataset]. https://agdatacommons.nal.usda.gov/articles/dataset/Landscape_Change_Monitoring_System_LCMS_CONUS_Cause_of_Change_Image_Service_/26885563
    Explore at:
    binAvailable download formats
    Dataset updated
    Oct 23, 2025
    Dataset authored and provided by
    U.S. Forest Service
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Note: This LCMS CONUS Cause of Change image service has been deprecated. It has been replaced by the LCMS CONUS Annual Change image service, which provides updated and consolidated change data.Please refer to the new service here: https://usfs.maps.arcgis.com/home/item.html?id=085626ec50324e5e9ad6323c050ac84dThis product is part of the Landscape Change Monitoring System (LCMS) data suite. It shows LCMS change attribution classes for each year. See additional information about change in the Entity_and_Attribute_Information or Fields section below.LCMS is a remote sensing-based system for mapping and monitoring landscape change across the United States. Its objective is to develop a consistent approach using the latest technology and advancements in change detection to produce a "best available" map of landscape change. Because no algorithm performs best in all situations, LCMS uses an ensemble of models as predictors, which improves map accuracy across a range of ecosystems and change processes (Healey et al., 2018). The resulting suite of LCMS change, land cover, and land use maps offer a holistic depiction of landscape change across the United States over the past four decades.Predictor layers for the LCMS model include outputs from the LandTrendr and CCDC change detection algorithms and terrain information. These components are all accessed and processed using Google Earth Engine (Gorelick et al., 2017). To produce annual composites, the cFmask (Zhu and Woodcock, 2012), cloudScore, and TDOM (Chastain et al., 2019) cloud and cloud shadow masking methods are applied to Landsat Tier 1 and Sentinel 2a and 2b Level-1C top of atmosphere reflectance data. The annual medoid is then computed to summarize each year into a single composite. The composite time series is temporally segmented using LandTrendr (Kennedy et al., 2010; Kennedy et al., 2018; Cohen et al., 2018). All cloud and cloud shadow free values are also temporally segmented using the CCDC algorithm (Zhu and Woodcock, 2014). LandTrendr, CCDC and terrain predictors can be used as independent predictor variables in a Random Forest (Breiman, 2001) model. LandTrendr predictor variables include fitted values, pair-wise differences, segment duration, change magnitude, and slope. CCDC predictor variables include CCDC sine and cosine coefficients (first 3 harmonics), fitted values, and pairwise differences from the Julian Day of each pixel used in the annual composites and LandTrendr. Terrain predictor variables include elevation, slope, sine of aspect, cosine of aspect, and topographic position indices (Weiss, 2001) from the USGS 3D Elevation Program (3DEP) (U.S. Geological Survey, 2019). Reference data are collected using TimeSync, a web-based tool that helps analysts visualize and interpret the Landsat data record from 1984-present (Cohen et al., 2010).Outputs fall into three categories: change, land cover, and land use. Change relates specifically to vegetation cover and includes slow loss (not included for PRUSVI), fast loss (which also includes hydrologic changes such as inundation or desiccation), and gain. These values are predicted for each year of the time series and serve as the foundational products for LCMS. References: Breiman, L. (2001). Random Forests. In Machine Learning (Vol. 45, pp. 5-32). https://doi.org/10.1023/A:1010933404324Chastain, R., Housman, I., Goldstein, J., Finco, M., and Tenneson, K. (2019). Empirical cross sensor comparison of Sentinel-2A and 2B MSI, Landsat-8 OLI, and Landsat-7 ETM top of atmosphere spectral characteristics over the conterminous United States. In Remote Sensing of Environment (Vol. 221, pp. 274-285). https://doi.org/10.1016/j.rse.2018.11.012Cohen, W. B., Yang, Z., and Kennedy, R. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync - Tools for calibration and validation. In Remote Sensing of Environment (Vol. 114, Issue 12, pp. 2911-2924). https://doi.org/10.1016/j.rse.2010.07.010Cohen, W. B., Yang, Z., Healey, S. P., Kennedy, R. E., and Gorelick, N. (2018). A LandTrendr multispectral ensemble for forest disturbance detection. In Remote Sensing of Environment (Vol. 205, pp. 131-140). https://doi.org/10.1016/j.rse.2017.11.015Foga, S., Scaramuzza, P.L., Guo, S., Zhu, Z., Dilley, R.D., Beckmann, T., Schmidt, G.L., Dwyer, J.L., Hughes, M.J., Laue, B. (2017). Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sensing of Environment, 194, 379-390. https://doi.org/10.1016/j.rse.2017.03.026Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. In Remote Sensing of Environment (Vol. 202, pp. 18-27). https://doi.org/10.1016/j.rse.2017.06.031Healey, S. P., Cohen, W. B., Yang, Z., Kenneth Brewer, C., Brooks, E. B., Gorelick, N., Hernandez, A. J., Huang, C., Joseph Hughes, M., Kennedy, R. E., Loveland, T. R., Moisen, G. G., Schroeder, T. A., Stehman, S. V., Vogelmann, J. E., Woodcock, C. E., Yang, L., and Zhu, Z. (2018). Mapping forest change using stacked generalization: An ensemble approach. In Remote Sensing of Environment (Vol. 204, pp. 717-728). https://doi.org/10.1016/j.rse.2017.09.029Kennedy, R. E., Yang, Z., and Cohen, W. B. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr - Temporal segmentation algorithms. In Remote Sensing of Environment (Vol. 114, Issue 12, pp. 2897-2910). https://doi.org/10.1016/j.rse.2010.07.008Kennedy, R., Yang, Z., Gorelick, N., Braaten, J., Cavalcante, L., Cohen, W., and Healey, S. (2018). Implementation of the LandTrendr Algorithm on Google Earth Engine. In Remote Sensing (Vol. 10, Issue 5, p. 691). https://doi.org/10.3390/rs10050691Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., and Wulder, M. A. (2014). Good practices for estimating area and assessing accuracy of land change. In Remote Sensing of Environment (Vol. 148, pp. 42-57). https://doi.org/10.1016/j.rse.2014.02.015Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M. and Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. In Journal of Machine Learning Research (Vol. 12, pp. 2825-2830).Pengra, B. W., Stehman, S. V., Horton, J. A., Dockter, D. J., Schroeder, T. A., Yang, Z., Cohen, W. B., Healey, S. P., and Loveland, T. R. (2020). Quality control and assessment of interpreter consistency of annual land cover reference data in an operational national monitoring program. In Remote Sensing of Environment (Vol. 238, p. 111261). https://doi.org/10.1016/j.rse.2019.111261U.S. Geological Survey. (2019). USGS 3D Elevation Program Digital Elevation Model, accessed August 2022 at https://developers.google.com/earth-engine/datasets/catalog/USGS_3DEP_10mWeiss, A.D. (2001). Topographic position and landforms analysis Poster Presentation, ESRI Users Conference, San Diego, CAZhu, Z., and Woodcock, C. E. (2012). Object-based cloud and cloud shadow detection in Landsat imagery. In Remote Sensing of Environment (Vol. 118, pp. 83-94). https://doi.org/10.1016/j.rse.2011.10.028Zhu, Z., and Woodcock, C. E. (2014). Continuous change detection and classification of land cover using all available Landsat data. In Remote Sensing of Environment (Vol. 144, pp. 152-171). https://doi.org/10.1016/j.rse.2014.01.011This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService For complete information, please visit https://data.gov.

  10. g

    DCCEEW_Geospatial - Referrals Spatial Database - Public | gimi9.com

    • gimi9.com
    Updated Dec 13, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2019). DCCEEW_Geospatial - Referrals Spatial Database - Public | gimi9.com [Dataset]. https://gimi9.com/dataset/au_erin-referrals-spatial-database-public/
    Explore at:
    Dataset updated
    Dec 13, 2019
    Description

    The Referrals Spatial Database - Public records locations of referrals submitted to the Department under the Environment Protection and Biodiversity Conservation (EPBC Act) 1999. A proponent (those who are proposing a development) must supply the maximum extent (location) of any proposed activities that need to be assessed under the EPBC Act through an application process.Referral boundaries should not be misinterpreted as development footprints but where referrals have been received by the Department. It should be noted that not all referrals captured within the Referrals Spatial Database, are assessed and approved by the Minister for the Environment, as some are withdrawn before assessment can take place. For more detailed information on a referral a URL is provided to the EPBC Act Public notices pages. Status and detailed planning documentation is available on the EPBC Act Public notices (http://epbcnotices.environment.gov.au/referralslist/).Post September 2019, this dataset is updated using a spatial data capture tool embedded within the Referral form on the department’s website. Users are able to supply spatial data in multiple formats, review spatial data online and submitted with the completed referral form automatically. Nightly processes update this dataset that are then available for internal staff to use (usually within 24 hours). Prior to September 2019, a manual process was employed to update this dataset. In the first instance where a proponent provides GIS data, this is loaded as the polygons for a referral. Where this doesn't exist other means to digitize boundaries are employed to provide a relatively accurate reflection of the maximum extent for which the referral may impact (it is not a development footprint). This sometimes takes the form of heads up digitizing planning documents, sourcing from other state databases (such as PSMA Australia) features and coordinates supplied through the application forms.Any variations to boundaries after the initial referral (i.e. during the assessment, approval or post-approval stages) are processed on an ad hoc basis through a manual update to the dataset. The REFERRALS_PUBLIC_MV layer is a materialized view that joins the spatial polygon data with the business data (e.g. name, case id, type etc.) about a referral. This layer is available for use by the public and is available via a web service and spatial data download. The data for the web service is updated weekly, while the data download is updated quarterly.

  11. d

    Data from: Digital data for the Salinas Valley Geological Framework,...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Oct 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Digital data for the Salinas Valley Geological Framework, California [Dataset]. https://catalog.data.gov/dataset/digital-data-for-the-salinas-valley-geological-framework-california
    Explore at:
    Dataset updated
    Oct 29, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Salinas, Salinas Valley, California
    Description

    This digital dataset was created as part of a U.S. Geological Survey study, done in cooperation with the Monterey County Water Resource Agency, to conduct a hydrologic resource assessment and develop an integrated numerical hydrologic model of the hydrologic system of Salinas Valley, CA. As part of this larger study, the USGS developed this digital dataset of geologic data and three-dimensional hydrogeologic framework models, referred to here as the Salinas Valley Geological Framework (SVGF), that define the elevation, thickness, extent, and lithology-based texture variations of nine hydrogeologic units in Salinas Valley, CA. The digital dataset includes a geospatial database that contains two main elements as GIS feature datasets: (1) input data to the 3D framework and textural models, within a feature dataset called “ModelInput”; and (2) interpolated elevation, thicknesses, and textural variability of the hydrogeologic units stored as arrays of polygonal cells, within a feature dataset called “ModelGrids”. The model input data in this data release include stratigraphic and lithologic information from water, monitoring, and oil and gas wells, as well as data from selected published cross sections, point data derived from geologic maps and geophysical data, and data sampled from parts of previous framework models. Input surface and subsurface data have been reduced to points that define the elevation of the top of each hydrogeologic units at x,y locations; these point data, stored in a GIS feature class named “ModelInputData”, serve as digital input to the framework models. The location of wells used a sources of subsurface stratigraphic and lithologic information are stored within the GIS feature class “ModelInputData”, but are also provided as separate point feature classes in the geospatial database. Faults that offset hydrogeologic units are provided as a separate line feature class. Borehole data are also released as a set of tables, each of which may be joined or related to well location through a unique well identifier present in each table. Tables are in Excel and ascii comma-separated value (CSV) format and include separate but related tables for well location, stratigraphic information of the depths to top and base of hydrogeologic units intercepted downhole, downhole lithologic information reported at 10-foot intervals, and information on how lithologic descriptors were classed as sediment texture. Two types of geologic frameworks were constructed and released within a GIS feature dataset called “ModelGrids”: a hydrostratigraphic framework where the elevation, thickness, and spatial extent of the nine hydrogeologic units were defined based on interpolation of the input data, and (2) a textural model for each hydrogeologic unit based on interpolation of classed downhole lithologic data. Each framework is stored as an array of polygonal cells: essentially a “flattened”, two-dimensional representation of a digital 3D geologic framework. The elevation and thickness of the hydrogeologic units are contained within a single polygon feature class SVGF_3DHFM, which contains a mesh of polygons that represent model cells that have multiple attributes including XY location, elevation and thickness of each hydrogeologic unit. Textural information for each hydrogeologic unit are stored in a second array of polygonal cells called SVGF_TextureModel. The spatial data are accompanied by non-spatial tables that describe the sources of geologic information, a glossary of terms, a description of model units that describes the nine hydrogeologic units modeled in this study. A data dictionary defines the structure of the dataset, defines all fields in all spatial data attributer tables and all columns in all nonspatial tables, and duplicates the Entity and Attribute information contained in the metadata file. Spatial data are also presented as shapefiles. Downhole data from boreholes are released as a set of tables related by a unique well identifier, tables are in Excel and ascii comma-separated value (CSV) format.

  12. d

    An inventory of subsurface geologic data: structure contour and isopach...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Nov 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). An inventory of subsurface geologic data: structure contour and isopach datasets, U.S. Geological Survey [Dataset]. https://catalog.data.gov/dataset/an-inventory-of-subsurface-geologic-data-structure-contour-and-isopach-datasets-u-s-geolog
    Explore at:
    Dataset updated
    Nov 27, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    Under the direction and funding of the National Cooperative Mapping Program with guidance and encouragement from the United States Geological Survey (USGS), a digital database of three-dimensional (3D) vector data, displayed as two-dimensional (2D) data-extent bounding polygons. This geodatabase is to act as a virtual and digital inventory of 3D structure contour and isopach vector data for the USGS National Geologic Synthesis (NGS) team. This data will be available visually through a USGS web application and can be queried using complimentary nonspatial tables associated with each data harboring polygon. This initial publication contains 60 datasets collected directly from USGS specific publications and federal repositories. Further publications of dataset collections in versioned releases will be annotated in additional appendices, respectfully. These datasets can be identified from their specific version through their nonspatial tables. This digital dataset contains spatial extents of the 2D geologic vector data as polygon features that are attributed with unique identifiers that link the spatial data to nonspatial tables that define the data sources used and describe various aspects of each published model. The nonspatial DataSources table includes full citation and URL address for both published model reports, any digital model data released as a separate publication, and input type of vector data, using several classification schemes. A tabular glossary defines terms used in the dataset. A tabular data dictionary describes the entity and attribute information for all attributes of the geospatial data and the accompanying nonspatial tables.

  13. Geographic Information System Analytics Market Analysis, Size, and Forecast...

    • technavio.com
    pdf
    Updated Jul 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2024). Geographic Information System Analytics Market Analysis, Size, and Forecast 2024-2028: North America (US and Canada), Europe (France, Germany, UK), APAC (China, India, South Korea), Middle East and Africa , and South America [Dataset]. https://www.technavio.com/report/geographic-information-system-analytics-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jul 22, 2024
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2024 - 2028
    Area covered
    Canada, United States
    Description

    Snapshot img

    Geographic Information System Analytics Market Size 2024-2028

    The geographic information system analytics market size is forecast to increase by USD 12 billion at a CAGR of 12.41% between 2023 and 2028.

    The GIS Analytics Market analysis is experiencing significant growth, driven by the increasing need for efficient land management and emerging methods in data collection and generation. The defense industry's reliance on geospatial technology for situational awareness and real-time location monitoring is a major factor fueling market expansion. Additionally, the oil and gas industry's adoption of GIS for resource exploration and management is a key trend. Building Information Modeling (BIM) and smart city initiatives are also contributing to market growth, as they require multiple layered maps for effective planning and implementation. The Internet of Things (IoT) and Software as a Service (SaaS) are transforming GIS analytics by enabling real-time data processing and analysis.
    Augmented reality is another emerging trend, as it enhances the user experience and provides valuable insights through visual overlays. Overall, heavy investments are required for setting up GIS stations and accessing data sources, making this a promising market for technology innovators and investors alike.
    

    What will be the Size of the GIS Analytics Market during the forecast period?

    Request Free Sample

    The geographic information system analytics market encompasses various industries, including government sectors, agriculture, and infrastructure development. Smart city projects, building information modeling, and infrastructure development are key areas driving market growth. Spatial data plays a crucial role in sectors such as transportation, mining, and oil and gas. Cloud technology is transforming GIS analytics by enabling real-time data access and analysis. Startups are disrupting traditional GIS markets with innovative location-based services and smart city planning solutions. Infrastructure development in sectors like construction and green buildings relies on modern GIS solutions for efficient planning and management. Smart utilities and telematics navigation are also leveraging GIS analytics for improved operational efficiency.
    GIS technology is essential for zoning and land use management, enabling data-driven decision-making. Smart public works and urban planning projects utilize mapping and geospatial technology for effective implementation. Surveying is another sector that benefits from advanced GIS solutions. Overall, the GIS analytics market is evolving, with a focus on providing actionable insights to businesses and organizations.
    

    How is this Geographic Information System Analytics Industry segmented?

    The geographic information system analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2024-2028, as well as historical data from 2018-2022 for the following segments.

    End-user
    
      Retail and Real Estate
      Government
      Utilities
      Telecom
      Manufacturing and Automotive
      Agriculture
      Construction
      Mining
      Transportation
      Healthcare
      Defense and Intelligence
      Energy
      Education and Research
      BFSI
    
    
    Components
    
      Software
      Services
    
    
    Deployment Modes
    
      On-Premises
      Cloud-Based
    
    
    Applications
    
      Urban and Regional Planning
      Disaster Management
      Environmental Monitoring Asset Management
      Surveying and Mapping
      Location-Based Services
      Geospatial Business Intelligence
      Natural Resource Management
    
    
    Geography
    
      North America
    
        US
        Canada
    
    
      Europe
    
        France
        Germany
        UK
    
    
      APAC
    
        China
        India
        South Korea
    
    
      Middle East and Africa
    
        UAE
    
    
      South America
    
        Brazil
    
    
      Rest of World
    

    By End-user Insights

    The retail and real estate segment is estimated to witness significant growth during the forecast period.

    The GIS analytics market analysis is witnessing significant growth due to the increasing demand for advanced technologies in various industries. In the retail sector, for instance, retailers are utilizing GIS analytics to gain a competitive edge by analyzing customer demographics and buying patterns through real-time location monitoring and multiple layered maps. The retail industry's success relies heavily on these insights for effective marketing strategies. Moreover, the defense industries are integrating GIS analytics into their operations for infrastructure development, permitting, and public safety. Building Information Modeling (BIM) and 4D GIS software are increasingly being adopted for construction project workflows, while urban planning and designing require geospatial data for smart city planning and site selection.

    The oil and gas industry is leveraging satellite imaging and IoT devices for land acquisition and mining operations. In the public sector, gover

  14. u

    Data from: Not just crop or forest: building an integrated land cover map...

    • agdatacommons.nal.usda.gov
    • datasetcatalog.nlm.nih.gov
    • +2more
    bin
    Updated Nov 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Melanie Kammerer; Aaron L. Iverson; Kevin Li; Sarah C. Goslee (2025). Data from: Not just crop or forest: building an integrated land cover map for agricultural and natural areas (spatial files) [Dataset]. http://doi.org/10.15482/USDA.ADC/1527978
    Explore at:
    binAvailable download formats
    Dataset updated
    Nov 22, 2025
    Dataset provided by
    Ag Data Commons
    Authors
    Melanie Kammerer; Aaron L. Iverson; Kevin Li; Sarah C. Goslee
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    Introduction and Rationale:Due to our increasing understanding of the role the surrounding landscape plays in ecological processes, a detailed characterization of land cover, including both agricultural and natural habitats, is ever more important for both researchers and conservation practitioners. Unfortunately, in the United States, different types of land cover data are split across thematic datasets that emphasize agricultural or natural vegetation, but not both. To address this data gap and reduce duplicative efforts in geospatial processing, we merged two major datasets, the LANDFIRE National Vegetation Classification (NVC) and USDA-NASS Cropland Data Layer (CDL), to produce integrated ‘Spatial Products for Agriculture and Nature’ (SPAN). Our workflow leveraged strengths of the NVC and the CDL to produce detailed rasters comprising both agricultural and natural land-cover classes. We generated SPAN for each year from 2012-2021 for the conterminous United States, quantified agreement between input layers and accuracy of our merged product, and published the complete workflow necessary to update SPAN. In our validation analyses, we found that approximately 5.5% of NVC agricultural pixels conflicted with the CDL, but we resolved a majority of these conflicts based on surrounding agricultural land, leaving only 0.6% of agricultural pixels unresolved in the final version of SPAN.Contents:Spatial dataNational rasters of land cover in the conterminous United States: 2012-2021Rasters of pixels mismatched between CDL and NVC: 2012-2021Resources in this dataset:Resource Title: SPAN land cover in the conterminous United States: 2012-2021 - SCINet File Name: KammererNationalRasters.zip Resource Description: GeoTIFF rasters showing location of pixels that are mismatched between 2016 NVC and specific year of CDL (2012-2021). Spatial Products for Agriculture and Nature ('SPAN') land cover in the conterminous United States from 2012-2021. This raster dataset is available in GeoTIFF format and was created by joining agricultural classes from the USDA-NASS Cropland Data Layer (CDL) to national vegetation from the LANDFIRE National Vegetation Classification v2.0 ('Remap'). Pixels of national vegetation are the same in all rasters provided here and represent land cover in 2016. Agricultural pixels were taken from the CDL in the specified year, so depict agricultural land from 2012-2021. Resource Title: Rasters of pixels mismatched between CDL and NVC: 2012-2021 - SCINet File Name: MismatchedNational.zip Resource Description: GeoTIFF rasters showing location of pixels that are mismatched between 2016 NVC and specific year of CDL (2012-2021). This dataset includes pixels that were classified as agriculture in the NVC but, in the CDL, were not agriculture (or were a conflicting agricultural class). For more details, we refer users to the linked publication describing our geospatial processing and validation workflow.SCINet users: The files can be accessed/retrieved with valid SCINet account at this location: /LTS/ADCdatastorage/NAL/published/node455886/ See the SCINet File Transfer guide for more information on moving large files: https://scinet.usda.gov/guides/data/datatransferGlobus users: The files can also be accessed through Globus by following this data link. The user will need to log in to Globus in order to retrieve this data. User accounts are free of charge with several options for signing on. Instructions for creating an account are on the login page.

  15. Lagos Georeferenced Dataset

    • kaggle.com
    zip
    Updated Apr 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ifeanyichukwu Nwobodo (2023). Lagos Georeferenced Dataset [Dataset]. https://www.kaggle.com/datasets/ifeanyichukwunwobodo/lagos-georeferenced-dataset/versions/1
    Explore at:
    zip(5670807 bytes)Available download formats
    Dataset updated
    Apr 15, 2023
    Authors
    Ifeanyichukwu Nwobodo
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Area covered
    Lagos
    Description

    The Geo-Referenced Infrastructure and Demographic Data for Development (GRID3) programme is part of a bigger global initiative which aims to improve access to data for decision making in all participating countries.

    The GRID3 Nigeria project works across all states in Nigeria to collect accurate, complete, and geospatially referenced data relevant to a variety of sectors.

    This datasets contains both spatial and non-spatial data on various important locations in the city of Lagos.

  16. D

    Geospatial ETL Platform Market Research Report 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Oct 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Geospatial ETL Platform Market Research Report 2033 [Dataset]. https://dataintelo.com/report/geospatial-etl-platform-market
    Explore at:
    pdf, pptx, csvAvailable download formats
    Dataset updated
    Oct 1, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Geospatial ETL Platform Market Outlook



    According to our latest research, the global Geospatial ETL Platform market size reached USD 1.68 billion in 2024, demonstrating robust momentum driven by the increasing demand for spatial data integration and advanced analytics across industries. The market is set to expand at a CAGR of 13.7% from 2025 to 2033, with the forecasted market size projected to reach USD 5.23 billion by 2033. This growth trajectory is primarily attributed to the proliferation of location-based services, advancements in geospatial data infrastructure, and the rising importance of real-time decision-making in sectors such as government, utilities, and transportation.




    One of the most significant growth factors fueling the Geospatial ETL Platform market is the exponential rise in the volume and variety of geospatial data generated from multiple sources, including satellites, IoT devices, drones, and mobile applications. Organizations are increasingly seeking sophisticated tools to extract, transform, and load (ETL) this data efficiently to derive actionable insights. The need for seamless integration of spatial and non-spatial data has become critical for enterprises aiming to enhance operational efficiency, optimize resource allocation, and improve situational awareness. As businesses realize the value of spatial analytics, investments in geospatial ETL solutions are accelerating, especially for applications such as urban planning, disaster management, and infrastructure monitoring.




    Another key driver is the rapid adoption of cloud-based geospatial ETL platforms, which offer scalability, flexibility, and cost-effectiveness compared to traditional on-premises solutions. Cloud deployment enables organizations to process large datasets in real time, collaborate across geographies, and leverage advanced analytics powered by artificial intelligence and machine learning. This shift to the cloud not only reduces infrastructure costs but also empowers organizations to respond quickly to changing business needs. Furthermore, the integration of geospatial ETL platforms with emerging technologies such as 5G, edge computing, and real-time data streaming is unlocking new opportunities for innovation in sectors like smart cities, autonomous vehicles, and precision agriculture.




    The increasing focus on regulatory compliance and data governance is also propelling the adoption of geospatial ETL platforms. Governments and regulatory bodies are mandating stringent data management practices, especially for critical infrastructure and public safety applications. Geospatial ETL solutions play a pivotal role in ensuring data quality, lineage, and security, thereby supporting organizations in meeting compliance requirements. Additionally, the growing awareness of the strategic value of location intelligence is encouraging enterprises to invest in advanced ETL solutions that can handle complex spatial data transformations and deliver high-quality, actionable insights for decision-making.




    From a regional perspective, North America continues to dominate the Geospatial ETL Platform market, accounting for the largest revenue share in 2024, followed closely by Europe and the Asia Pacific. The presence of leading technology providers, strong government initiatives for smart infrastructure, and the high adoption rate of digital transformation strategies are contributing to the region's leadership. Asia Pacific, on the other hand, is witnessing the fastest growth, driven by rapid urbanization, expanding digital infrastructure, and increasing investments in geospatial technologies by governments and private enterprises. Latin America and the Middle East & Africa are also emerging as promising markets, supported by initiatives to modernize infrastructure and enhance public services through spatial data integration.



    Component Analysis



    The Geospatial ETL Platform market by component is segmented into software and services, each playing a distinct yet complementary role in enabling organizations to harness the power of spatial data. The software segment encompasses a wide array of ETL solutions designed to automate the extraction, transformation, and loading of geospatial data from diverse sources into target systems. These solutions are equipped with advanced features such as data cleansing, schema mapping, spatial data enrichment, and workflow automation, making them indispensable for enterprises seeking to streamline data integration pro

  17. D

    GIS Data Management Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). GIS Data Management Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-gis-data-management-market
    Explore at:
    pptx, pdf, csvAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    GIS Data Management Market Outlook



    The global GIS Data Management market size is projected to grow from USD 12.5 billion in 2023 to USD 25.6 billion by 2032, exhibiting a CAGR of 8.4% during the forecast period. This impressive growth is driven by the increasing adoption of geographic information systems (GIS) across various sectors such as urban planning, disaster management, and agriculture. The rising need for effective data management systems to handle the vast amounts of spatial data generated daily also significantly contributes to the market's expansion.



    One of the primary growth factors for the GIS Data Management market is the burgeoning demand for spatial data analytics. Businesses and governments are increasingly leveraging GIS data to make informed decisions and strategize operational efficiencies. With the rapid urbanization and industrialization worldwide, there's an unprecedented need to manage and analyze geographic data to plan infrastructure, monitor environmental changes, and optimize resource allocation. Consequently, the integration of GIS with advanced technologies like artificial intelligence and machine learning is becoming more prominent, further fueling market growth.



    Another significant factor propelling the market is the advancement in GIS technology itself. The development of sophisticated software and hardware solutions for GIS data management is making it easier for organizations to capture, store, analyze, and visualize geographic data. Innovations such as 3D GIS, real-time data processing, and cloud-based GIS solutions are transforming the landscape of geographic data management. These advancements are not only enhancing the capabilities of GIS systems but also making them more accessible to a broader range of users, from small enterprises to large governmental agencies.



    The growing implementation of GIS in disaster management and emergency response activities is also a critical factor driving market growth. GIS systems play a crucial role in disaster preparedness, response, and recovery by providing accurate and timely geographic data. This data helps in assessing risks, coordinating response activities, and planning resource deployment. With the increasing frequency and intensity of natural disasters, the reliance on GIS data management systems is expected to grow, resulting in higher demand for GIS solutions across the globe.



    Geospatial Solutions are becoming increasingly integral to the GIS Data Management landscape, offering enhanced capabilities for spatial data analysis and visualization. These solutions provide a comprehensive framework for integrating various data sources, enabling users to gain deeper insights into geographic patterns and trends. As organizations strive to optimize their operations and decision-making processes, the demand for robust geospatial solutions is on the rise. These solutions not only facilitate the efficient management of spatial data but also support advanced analytics and real-time data processing. By leveraging geospatial solutions, businesses and governments can improve their strategic planning, resource allocation, and environmental monitoring efforts, thereby driving the overall growth of the GIS Data Management market.



    Regionally, North America holds a significant share of the GIS Data Management market, driven by high technology adoption rates and substantial investments in GIS technologies by government and private sectors. However, Asia Pacific is anticipated to witness the highest growth rate during the forecast period. The rapid urbanization, economic development, and increasing adoption of advanced technologies in countries like China and India are major contributors to this growth. Governments in this region are also focusing on smart city projects and infrastructure development, which further boosts the demand for GIS data management solutions.



    Component Analysis



    The GIS Data Management market is segmented by component into software, hardware, and services. The software segment is the largest and fastest-growing segment, driven by the continuous advancements in GIS software capabilities. GIS software applications enable users to analyze spatial data, create maps, and manage geographic information efficiently. The integration of GIS software with other enterprise systems and the development of user-friendly interfaces are key factors propelling the growth of this segment. Furthermore, the rise of mobile GIS applications, which allow field data collectio

  18. G

    Retail Geospatial Analytics Platform Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Sep 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Retail Geospatial Analytics Platform Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/retail-geospatial-analytics-platform-market
    Explore at:
    pptx, csv, pdfAvailable download formats
    Dataset updated
    Sep 1, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Retail Geospatial Analytics Platform Market Outlook



    According to our latest research, the global market size for the Retail Geospatial Analytics Platform Market reached USD 6.2 billion in 2024. Driven by the increasing adoption of location-based intelligence and advanced spatial data analytics in retail, the market is expected to grow at a robust CAGR of 14.2% from 2025 to 2033. By 2033, the market is forecasted to reach USD 18.5 billion. This growth is primarily fueled by the rising demand for real-time insights, the proliferation of IoT and smart devices, and the need for retailers to optimize operations and enhance customer experiences through actionable geospatial data.




    The growth of the Retail Geospatial Analytics Platform Market is underpinned by the increasing emphasis on data-driven decision-making across the retail sector. Retailers are leveraging geospatial analytics to gain deeper insights into customer behavior, identify optimal store locations, and streamline supply chain operations. The integration of artificial intelligence and machine learning with geospatial analytics platforms enables more accurate predictions and personalized marketing strategies. As a result, businesses are able to enhance operational efficiency, reduce costs, and improve customer engagement, contributing significantly to the expansion of the market.




    Another critical growth factor is the rapid digital transformation occurring within the retail industry. The shift towards omnichannel retailing, combined with the surge in e-commerce activities, necessitates advanced analytics platforms capable of handling vast amounts of spatial and non-spatial data. Retailers are increasingly investing in geospatial analytics to monitor foot traffic, analyze market trends, and assess competitive landscapes. The ability to visualize and interpret complex geographic data in real-time is empowering retailers to make informed, location-specific decisions, thereby driving the adoption of retail geospatial analytics platforms globally.




    Furthermore, the proliferation of connected devices and the advent of smart cities are creating new opportunities for the Retail Geospatial Analytics Platform Market. The integration of geospatial data with IoT sensors, mobile applications, and cloud-based services allows retailers to capture granular insights into consumer movements and preferences. This, in turn, facilitates targeted marketing campaigns, efficient inventory management, and optimized supply chain networks. As urbanization accelerates and consumer expectations evolve, the role of geospatial analytics in shaping the future of retail is becoming increasingly prominent, ensuring sustained market growth over the forecast period.



    The Geospatial Data Catalog Platform plays a crucial role in the retail sector by providing a centralized repository for managing and accessing diverse geospatial datasets. This platform enables retailers to efficiently organize and retrieve spatial data, facilitating enhanced decision-making processes. By leveraging a geospatial data catalog, businesses can streamline data integration from various sources, ensuring that the most accurate and up-to-date information is available for analysis. This capability is particularly valuable in the context of retail geospatial analytics, where timely insights can drive competitive advantage. As retailers continue to adopt advanced analytics solutions, the importance of a robust geospatial data catalog platform becomes increasingly evident, supporting the seamless integration of spatial data into business operations.




    From a regional perspective, North America continues to dominate the Retail Geospatial Analytics Platform Market due to the presence of major technology providers, high adoption rates of advanced analytics, and a mature retail ecosystem. However, Asia Pacific is emerging as the fastest-growing market, driven by rapid urbanization, expanding retail infrastructure, and increasing investments in digital technologies. Europe also holds a significant share, supported by stringent regulations around data privacy and growing awareness of the benefits of geospatial analytics. Latin America and the Middle East & Africa are witnessing gradual adoption, fueled by digital transformation initiatives and the expansion of organized retail.



    <div class="free_sample_div text-cent

  19. a

    NWSS Invasives

    • open-data-scottishforestry.hub.arcgis.com
    • dtechtive.com
    • +1more
    Updated Nov 18, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Scottish.Forestry (2019). NWSS Invasives [Dataset]. https://open-data-scottishforestry.hub.arcgis.com/datasets/0c91cd538d3947bdbacf76dd3563fd85
    Explore at:
    Dataset updated
    Nov 18, 2019
    Dataset authored and provided by
    Scottish.Forestry
    Description

    This dataset is a non-spatial table that identifies the Invasive Species of NWSS.The aim of the Native Woodland Survey of Scotland (NWSS) was to undertake a baseline survey of all native woodlands, nearly native woodlands and PAWS sites in Scotland in order to create a woodland map linked to a dataset showing type, extent and condition of those woods. The objectives were to:Identify the location, type, extent and condition of all native and nearly native woodlands and Plantations on Ancient Woodland Sites (PAWS - as identified from the Ancient Woodland Inventory) in Scotland.Produce a baseline survey map of all native woodland, nearly native woodland and PAWS in Scotland.Collect baseline information to enable future monitoring of the extent and condition of the total Scottish native woodland resource.Provide information to support policy development and the delivery of social, environmental and development forestry.The following NWSS datasets are available from Scottish Forestry.Native Woodland Survey of Scotland (base map and polygon level attributes)NWSS Canopy StructureNWSS Habitat ComponentsNWSS Herbivore ImpactNWSS InvasivesNWSS Other TraitsNWSS Species StructuresThe following describes the layers available from Scottish Forestry and also gives an indication of the nature of the spatial data and the related component non-spatial data. (N.B. Every table contains a SCPTDATA_I field. This is a unique field which is used to link all other component tables). If you wish to carry out complex analysis, particularly involving elements of the components tables, e.g. species selection, you should do so using GIS software.NWSS Map:This is a straightforward view of the data which describes the type of NWSS polygon based on the following categories:Native woodland: >50% native species in the canopyNearly-native woodland: >=40% and <=50% native species in the canopyOpen land habitat: <20% canopy cover, usually 100% surrounded by woodland and adjoining a native woodlandPAWS: A woodland area wholly or partially identified in the Ancient Semi-natural Woodland Inventory as ancient semi-natural but currently not semi-natural.NWSS Nativeness:Displays the percentage share of native species in the total canopy. This ranges from 0% to 100% in 5% classes.NWSS Habitat:This view of the data shows the priority woodland type and National Vegetation Classification (NVC) woodland community. Open land habitat is defined by UK Biodiversity Action Plan (BAP) type.A dominant habitat is recorded for each polygon, however some polygons have habitats of equal dominance. In this case only one of the habitats is recorded in the top level spatial data. To identify all of the habitats in a particular polygon please refer to the NWSS Habitat Components table.Plantations on Ancient Woodland Sites (PAWS) may not display in the Habitat layer if a surveyor has not recorded a native priority habitat type for the site. This will happen when a site is non-native.NWSS Canopy Cover:Displays as a percentage, an assessment of the area covered by trees/shrubs. Values range from 0% to 100% in 10% classes. A minimum of 20% canopy cover is required to define woodland, so the 10% and 20% bands are skewed to allow for this.NWSS Canopy Structures:This displays the number of different structures recorded in a polygon (ranging from 0 to 6). The types of recorded structures are veteran, mature, pole immature, shrub, established regeneration or visible regeneration.A dominant structure is recorded for each polygon, however some polygons have structures of equal dominance. In this case only one of the structures is recorded in the top level spatial data. To identify all of the structures in a particular polygon please refer to the NWSS Canopy Structures.Information on the species identified in each polygon is also in the NWSS Canopy Structures layer and table.* indicates a species which is classed as native for the purpose of the survey.+ indicates a species is a shrub not a tree.NWSS Semi-naturalness:This view of the data shows the percentage of the polygon that is semi-natural. Values range from 0% to 100% in 10% bands.NWSS Maturity:This indicates the approximate stage of woodland development as either: mature, young, regenerating, mixed or shrub. The value is based on the dominance of the structures recorded; a mixed maturity means that none of the others values are dominant.NWSS Other Traits:This layer records whether or not there are any other attributes which have been recorded in the polygon. The details of any other traits that have been found can be accessed by viewing the related information attached to a polygon.NWSS Herbivore Impact:This view of the data shows the overall impact that herbivores have had on a polygon.Summary of AttributesSCPTDATA_I Polygon ID (Unique identifier)PAWS_SURVY Surveyed as PAWSTYPE TypeCANOPY_PCT Canopy cover percentageNATIVE_PCT Native species percentageDOM_HABITA Dominant habitat typeDOM_HB_PCT Dominant habitat type percentageSEMINT_PCT Semi-natural percentageSTRUCT_NUM Number of structuresMATURITY MaturityDOM_STRUCT Dominant structureHERBIVORE Herbivore impactER_NAT_PCT Percentage of establish regeneration of native speciesINVASV_PCT Invasive species percentageINVASV_NUM Number of invasive speciesOTHR_TRAIT Other traits recordedHECTARES Area in hectaresFor more detailed information please see the metadata record on Scotland"s SpatialData.gov.scot Metadata Portal

  20. Open-Source GIScience Online Course

    • ckan.americaview.org
    Updated Nov 2, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.americaview.org (2021). Open-Source GIScience Online Course [Dataset]. https://ckan.americaview.org/dataset/open-source-giscience-online-course
    Explore at:
    Dataset updated
    Nov 2, 2021
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In this course, you will explore a variety of open-source technologies for working with geosptial data, performing spatial analysis, and undertaking general data science. The first component of the class focuses on the use of QGIS and associated technologies (GDAL, PROJ, GRASS, SAGA, and Orfeo Toolbox). The second component of the class introduces Python and associated open-source libraries and modules (NumPy, Pandas, Matplotlib, Seaborn, GeoPandas, Rasterio, WhiteboxTools, and Scikit-Learn) used by geospatial scientists and data scientists. We also provide an introduction to Structured Query Language (SQL) for performing table and spatial queries. This course is designed for individuals that have a background in GIS, such as working in the ArcGIS environment, but no prior experience using open-source software and/or coding. You will be asked to work through a series of lecture modules and videos broken into several topic areas, as outlined below. Fourteen assignments and the required data have been provided as hands-on opportunites to work with data and the discussed technologies and methods. If you have any questions or suggestions, feel free to contact us. We hope to continue to update and improve this course. This course was produced by West Virginia View (http://www.wvview.org/) with support from AmericaView (https://americaview.org/). This material is based upon work supported by the U.S. Geological Survey under Grant/Cooperative Agreement No. G18AP00077. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Geological Survey. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Geological Survey. After completing this course you will be able to: apply QGIS to visualize, query, and analyze vector and raster spatial data. use available resources to further expand your knowledge of open-source technologies. describe and use a variety of open data formats. code in Python at an intermediate-level. read, summarize, visualize, and analyze data using open Python libraries. create spatial predictive models using Python and associated libraries. use SQL to perform table and spatial queries at an intermediate-level.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
ckan.americaview.org (2022). Open-Source Spatial Analytics (R) - Datasets - AmericaView - CKAN [Dataset]. https://ckan.americaview.org/dataset/open-source-spatial-analytics-r
Organization logo

Open-Source Spatial Analytics (R) - Datasets - AmericaView - CKAN

Explore at:
Dataset updated
Sep 10, 2022
Dataset provided by
CKANhttps://ckan.org/
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

In this course, you will learn to work within the free and open-source R environment with a specific focus on working with and analyzing geospatial data. We will cover a wide variety of data and spatial data analytics topics, and you will learn how to code in R along the way. The Introduction module provides more background info about the course and course set up. This course is designed for someone with some prior GIS knowledge. For example, you should know the basics of working with maps, map projections, and vector and raster data. You should be able to perform common spatial analysis tasks and make map layouts. If you do not have a GIS background, we would recommend checking out the West Virginia View GIScience class. We do not assume that you have any prior experience with R or with coding. So, don't worry if you haven't developed these skill sets yet. That is a major goal in this course. Background material will be provided using code examples, videos, and presentations. We have provided assignments to offer hands-on learning opportunities. Data links for the lecture modules are provided within each module while data for the assignments are linked to the assignment buttons below. Please see the sequencing document for our suggested order in which to work through the material. After completing this course you will be able to: prepare, manipulate, query, and generally work with data in R. perform data summarization, comparisons, and statistical tests. create quality graphs, map layouts, and interactive web maps to visualize data and findings. present your research, methods, results, and code as web pages to foster reproducible research. work with spatial data in R. analyze vector and raster geospatial data to answer a question with a spatial component. make spatial models and predictions using regression and machine learning. code in the R language at an intermediate level.

Search
Clear search
Close search
Google apps
Main menu