Classification of Mars Terrain Using Multiple Data Sources Alan Kraut1, David Wettergreen1 ABSTRACT. Images of Mars are being collected faster than they can be analyzed by planetary scientists. Automatic analysis of images would enable more rapid and more consistent image interpretation and could draft geologic maps where none yet exist. In this work we develop a method for incorporating images from multiple instruments to classify Martian terrain into multiple types. Each image is segmented into contiguous groups of similar pixels, called superpixels, with an associated vector of discriminative features. We have developed and tested several classification algorithms to associate a best class to each superpixel. These classifiers are trained using three different manual classifications with between 2 and 6 classes. Automatic classification accuracies of 50 to 80% are achieved in leave-one-out cross-validation across 20 scenes using a multi-class boosting classifier.
This dataset contains auxiliary, preliminary, and other datasets that are in preparation to be included in a future ICOADS release. Data are provided either in IMMA1 or native (non-IMMA1) ... format. It also contains datasets in IMMA1 and non-IMMA1 formats that have transitioned into ICOADS. This dataset was created in 2018 in conjunction with the completion of Release 3.0 and efforts going forward - it is not a complete collection of inputs for ICOADS beginning with Release 1. The purpose of this dataset is to provide a common archive point for data exchange with ICOADS researchers and track the provenance as input data sources are added to official releases. These sources are not recommended for general public use. If source data are archived in a different independent RDA dataset, those data are not duplicated in this dataset, but will be referenced with a "Related RDA Dataset" link, e.g. DS285.0 is the World Ocean Database in a non-IMMA1 format provided by NCEI.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains the raw collected data reported on in the manuscript titled "Open access books through open data sources: Assessing prevalence, providers, and preservation" which is available here: https://doi.org/10.5281/zenodo.7305490
One file contains the results of the digital object identifier queries, and the other data on which publication records were found to be included in which of the studied bibliometric data sources, and preservation services.
The author is grateful to Alicia Wise and Ronald Snijder for assisting in the identification of available datasets and valuable feedback throughout the study.
This research was commissioned by CLOCKSS, DOAB, and OAPEN.
Data from the State of California. From website:
Access raw State data files, databases, geographic data, and other data sources. Raw State data files can be reused by citizens and organizations for their own web applications and mashups.
Open. Effectively in the public domain. Terms of use page says:
In general, information presented on this web site, unless otherwise indicated, is considered in the public domain. It may be distributed or copied as permitted by law. However, the State does make use of copyrighted data (e.g., photographs) which may require additional permissions prior to your use. In order to use any information on this web site not owned or created by the State, you must seek permission directly from the owning (or holding) sources. The State shall have the unlimited right to use for any purpose, free of any charge, all information submitted via this site except those submissions made under separate legal contract. The State shall be free to use, for any purpose, any ideas, concepts, or techniques contained in information provided through this site.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We introduce a large-scale dataset of the complete texts of free/open source software (FOSS) license variants. To assemble it we have collected from the Software Heritage archive—the largest publicly available archive of FOSS source code with accompanying development history—all versions of files whose names are commonly used to convey licensing terms to software users and developers. The dataset consists of 6.5 million unique license files that can be used to conduct empirical studies on open source licensing, training of automated license classifiers, natural language processing (NLP) analyses of legal texts, as well as historical and phylogenetic studies on FOSS licensing. Additional metadata about shipped license files are also provided, making the dataset ready to use in various contexts; they include: file length measures, detected MIME type, detected SPDX license (using ScanCode), example origin (e.g., GitHub repository), oldest public commit in which the license appeared. The dataset is released as open data as an archive file containing all deduplicated license blobs, plus several portable CSV files for metadata, referencing blobs via cryptographic checksums.
For more details see the included README file and companion paper:
Stefano Zacchiroli. A Large-scale Dataset of (Open Source) License Text Variants. In proceedings of the 2022 Mining Software Repositories Conference (MSR 2022). 23-24 May 2022 Pittsburgh, Pennsylvania, United States. ACM 2022.
If you use this dataset for research purposes, please acknowledge its use by citing the above paper.
By City of Austin [source]
This dataset provides invaluable insight into the prevalence of cardiovascular disease in Travis County, Texas between 2014 and 2018. By utilizing data from the Behavioral Risk Factor Surveillance System (BRFSS), this dataset offers a comprehensive look at the health of the adult population in Travis County. Are your heart health concerns growing or declining? This dataset has the answer. Through its detailed analysis, you can quickly identify any changes in cardiovascular disease over time as well as understand how disability and other factors such as age may be connected to heart-related diagnosis rates. Investigate how diabetes, lifestyle habits and other factors are affecting residents of Travis County with this insightful strategic measure!
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset provides valuable insight into the prevalence of cardiovascular disease among adults in Travis County from 2014 to 2018. The data includes a Date_Time variable, which is the date and time of the survey, as well as a Year variable and Percent variable detailing prevalence within that year. This data can be used for further research into cardiovascular health outcomes in Travis County over time.
The first step in using this dataset is understanding its contents. This data contains information on each year’s percent of residents with cardiovascular disease and was collected during annual surveys by Behavioral Risk Factor Surveillance System (BRFSS). With this information, users can compare yearly changes in cardiovascular health across different cohorts. They can also use it to identify particular areas with higher or lower prevalence of cardiovascular disease throughout Travis County.
Now that you understand what’s included and what it describes, you can start exploring deeper insights within your analysis. Try examining demographic factors such as age group or sex to uncover potential trends underlying the increase or decrease in overall percentage over time . Additionally, look for other data sources relevant to your research topic and explore how prevalence differs across different factors within Travis County like specific counties or cities within it or types of geographies like rural versus urban settings . By overlaying additional datasets such as these , you will learn more about any correlations between them and this BRFSS-surveyed measure overtime .
Finally remember that any findings related to this dataset should always be interpreted carefully given their scale relative to our broader population . Yet by digging deep into the changes taking place , we are able to answer important questions about howCV risk factors might vary from county-to-county across Texas while also providing insight on where public health funding should be directed towards next !
- Evaluating the correlation between cardiovascular disease prevalence and socio-economic factors such as income, education, and occupation in Travis County over time.
- Building an interactive data visualization tool to help healthcare practitioners easily understand the current trends in cardiovascular disease prevalence for adults in Travis County.
- Developing a predictive model to forecast the future prevalence of cardiovascular disease for adults in Travis County over time given relevant socio-economic factors
If you use this dataset in your research, please credit the original authors. Data Source
See the dataset description for more information.
File: strategic-measure-percentage-of-residents-with-cardiovascular-disease-1.csv | Column name | Description | |:--------------|:---------------------------------------------------------------------------| | Date_Time | Date and time of the survey. (DateTime) | | Year | Year of the survey. (Integer) | | Percent | Percentage of adults in Travis County with cardiovascular disease. (Float) |
If you use this dataset in your research, please credit the original authors. If you use this dataset in your research, please credit City of Austin.
This dataset is a compilation of address point data for the City of Tempe. The dataset contains a point location, the official address (as defined by The Building Safety Division of Community Development) for all occupiable units and any other official addresses in the City. There are several additional attributes that may be populated for an address, but they may not be populated for every address. Contact: Lynn Flaaen-Hanna, Development Services Specialist Contact E-mail Link: Map that Lets You Explore and Export Address Data Data Source: The initial dataset was created by combining several datasets and then reviewing the information to remove duplicates and identify errors. This published dataset is the system of record for Tempe addresses going forward, with the address information being created and maintained by The Building Safety Division of Community Development. Data Source Type: ESRI ArcGIS Enterprise Geodatabase Preparation Method: N/A Publish Frequency: Weekly Publish Method: Automatic Data Dictionary
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
An updated and improved version of a global, vertically resolved, monthly mean zonal mean ozone database has been calculated – hereafter referred to as the BSVertOzone database, the BSVertOzone database. Like its predecessor, it combines measurements from several satellite-based instruments and ozone profile measurements from the global ozonesonde network. Monthly mean zonal mean ozone concentrations in mixing ratio and number density are provided in 5 latitude zones, spanning 70 altitude levels (1 to 70km), or 70 pressure 5 levels that are approximately 1km apart (878.4hPa to 0.046hPa). Different data sets or "Tiers" are provided: "Tier 0" is based only on the available measurements and therefore does not completely cover the whole globe or the full vertical range uniformly; the "Tier 0.5" monthly mean zonal means are calculated from a filled version of the Tier 0 database where missing monthly mean zonal mean values are estimated from correlations at level 20 against a total column ozone database and then at levels above and below on correlations with lower and upper levels respectively. The Tier 10 0.5 database includes the full range of measurement variability and is created as an intermediate step for the calculation of the "Tier 1" data where a least squares regression model is used to attribute variability to various known forcing factors for ozone. Regression model fit coefficients are expanded in Fourier series and Legendre polynomials (to account for seasonality and latitudinal structure, respectively). Four different combinations of contributions from selected regression model basis functions result in four different "Tier 1" data set that can be used for comparisons with chemistry-climate model simulations that do not 15 exhibit the same unforced variability as reality (unless they are nudged towards reanalyses). Compared to previous versions of the database, this update includes additional satellite data sources and ozonesonde measurements to extend the database period to 2016. Additional improvements over the previous version of the database include: (i) Adjustments of measurements to account for biases and drifts between different data sources (using a chemistry-transport model simulation as a transfer standard), (ii) a more objective way to determine the optimum number of Fourier and Legendre expansions for the basis 20 function fit coefficients, and (iii) the derivation of methodological and measurement uncertainties on each database value are traced through all data modification steps. Comparisons with the ozone database from SWOOSH (Stratospheric Water and OzOne Satellite Homogenized data set) show excellent agreements in many regions of the globe, and minor differences caused by different bias adjustment procedures for the two databases. However, compared to SWOOSH, BSVertOzone additionally covers the troposphere.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The peer-reviewed publication for this dataset has been presented in the 2022 Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL), and can be accessed here: https://arxiv.org/abs/2205.02596. Please cite this when using the dataset.
This dataset contains a heterogeneous set of True and False COVID claims and online sources of information for each claim.
The claims have been obtained from online fact-checking sources, existing datasets and research challenges. It combines different data sources with different foci, thus enabling a comprehensive approach that combines different media (Twitter, Facebook, general websites, academia), information domains (health, scholar, media), information types (news, claims) and applications (information retrieval, veracity evaluation).
The processing of the claims included an extensive de-duplication process eliminating repeated or very similar claims. The dataset is presented in a LARGE and a SMALL version, accounting for different degrees of similarity between the remaining claims (excluding respectively claims with a 90% and 99% probability of being similar, as obtained through the MonoT5 model). The similarity of claims was analysed using BM25 (Robertson et al., 1995; Crestani et al., 1998; Robertson and Zaragoza, 2009) with MonoT5 re-ranking (Nogueira et al., 2020), and BERTScore (Zhang et al., 2019).
The processing of the content also involved removing claims making only a direct reference to existing content in other media (audio, video, photos); automatically obtained content not representing claims; and entries with claims or fact-checking sources in languages other than English.
The claims were analysed to identify types of claims that may be of particular interest, either for inclusion or exclusion depending on the type of analysis. The following types were identified: (1) Multimodal; (2) Social media references; (3) Claims including questions; (4) Claims including numerical content; (5) Named entities, including: PERSON − People, including fictional; ORGANIZATION − Companies, agencies, institutions, etc.; GPE − Countries, cities, states; FACILITY − Buildings, highways, etc. These entities have been detected using a RoBERTa base English model (Liu et al., 2019) trained on the OntoNotes Release 5.0 dataset (Weischedel et al., 2013) using Spacy.
The original labels for the claims have been reviewed and homogenised from the different criteria used by each original fact-checker into the final True and False labels.
The data sources used are:
The CoronaVirusFacts/DatosCoronaVirus Alliance Database. https://www.poynter.org/ifcn-covid-19-misinformation/
CoAID dataset (Cui and Lee, 2020) https://github.com/cuilimeng/CoAID
MM-COVID (Li et al., 2020) https://github.com/bigheiniu/MM-COVID
CovidLies (Hossain et al., 2020) https://github.com/ucinlp/covid19-data
TREC Health Misinformation track https://trec-health-misinfo.github.io/
TREC COVID challenge (Voorhees et al., 2021; Roberts et al., 2020) https://ir.nist.gov/covidSubmit/data.html
The LARGE dataset contains 5,143 claims (1,810 False and 3,333 True), and the SMALL version 1,709 claims (477 False and 1,232 True).
The entries in the dataset contain the following information:
Claim. Text of the claim.
Claim label. The labels are: False, and True.
Claim source. The sources include mostly fact-checking websites, health information websites, health clinics, public institutions sites, and peer-reviewed scientific journals.
Original information source. Information about which general information source was used to obtain the claim.
Claim type. The different types, previously explained, are: Multimodal, Social Media, Questions, Numerical, and Named Entities.
Funding. This work was supported by the UK Engineering and Physical Sciences Research Council (grant no. EP/V048597/1, EP/T017112/1). ML and YH are supported by Turing AI Fellowships funded by the UK Research and Innovation (grant no. EP/V030302/1, EP/V020579/1).
References
Arana-Catania M., Kochkina E., Zubiaga A., Liakata M., Procter R., He Y.. Natural Language Inference with Self-Attention for Veracity Assessment of Pandemic Claims. NAACL 2022 https://arxiv.org/abs/2205.02596
Stephen E Robertson, Steve Walker, Susan Jones, Micheline M Hancock-Beaulieu, Mike Gatford, et al. 1995. Okapi at trec-3. Nist Special Publication Sp,109:109.
Fabio Crestani, Mounia Lalmas, Cornelis J Van Rijsbergen, and Iain Campbell. 1998. “is this document relevant?. . . probably” a survey of probabilistic models in information retrieval. ACM Computing Surveys (CSUR), 30(4):528–552.
Stephen Robertson and Hugo Zaragoza. 2009. The probabilistic relevance framework: BM25 and beyond. Now Publishers Inc.
Rodrigo Nogueira, Zhiying Jiang, Ronak Pradeep, and Jimmy Lin. 2020. Document ranking with a pre-trained sequence-to-sequence model. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings, pages 708–718.
Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. 2019. Bertscore: Evaluating text generation with bert. In International Conference on Learning Representations.
Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.
Ralph Weischedel, Martha Palmer, Mitchell Marcus, Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle Franchini, et al. 2013. Ontonotes release 5.0 ldc2013t19. Linguistic Data Consortium, Philadelphia, PA, 23.
Limeng Cui and Dongwon Lee. 2020. Coaid: Covid-19 healthcare misinformation dataset. arXiv preprint arXiv:2006.00885.
Yichuan Li, Bohan Jiang, Kai Shu, and Huan Liu. 2020. Mm-covid: A multilingual and multimodal data repository for combating covid-19 disinformation.
Tamanna Hossain, Robert L. Logan IV, Arjuna Ugarte, Yoshitomo Matsubara, Sean Young, and Sameer Singh. 2020. COVIDLies: Detecting COVID-19 misinformation on social media. In Proceedings of the 1st Workshop on NLP for COVID-19 (Part 2) at EMNLP 2020, Online. Association for Computational Linguistics.
Ellen Voorhees, Tasmeer Alam, Steven Bedrick, Dina Demner-Fushman, William R Hersh, Kyle Lo, Kirk Roberts, Ian Soboroff, and Lucy Lu Wang. 2021. Trec-covid: constructing a pandemic information retrieval test collection. In ACM SIGIR Forum, volume 54, pages 1–12. ACM New York, NY, USA.
The text file "Solar radiation.txt" contains hourly data and associated data-source flag from January 1, 1948, to September 30, 2015. The primary source of the data is the Argonne National Laboratory, Illinois. The first four columns give year, month, day and hour of the observation. Column 5 is the data in Langleys. Column 6 is the three-digit data-source flag to identify the solar radiation data processing and they indicate if the data are original or missing, the method that was used to fill the missing periods, and any other transformations of the data. Bera (2014) describes in detail an addition of a new flag based on the regression analysis of the backup data series at St. Charles (STC) for water years (WY) 2008–10. The user of the data should consult Over and others (2010) and Bera (2014) for the detailed documentation of this hourly data-source flag series. Reference Cited: Over, T.M., Price, T.H., and Ishii, A.L., 2010, Development and analysis of a meteorological database, Argonne National Laboratory, Illinois: U.S. Geological Survey Open File Report 2010-1220, 67 p., http://pubs.usgs.gov/of/2010/1220/. Bera, M., 2014, Watershed Data Management (WDM) database for Salt Creek streamflow simulation, DuPage County, Illinois, water years 2005-11: U.S. Geological Survey Data Series 870, 18 p., http://dx.doi.org/10.3133/ds870.
This data set contains DOT construction project information. The data is refreshed nightly from multiple data sources, therefore the data becomes stale rather quickly.
We create a synthetic administrative dataset to be used in the development of the R package for calculating quality indicators for administrative data (see: https://github.com/sook-tusk/qualadmin) that mimic the properties of a real administrative dataset according to specifications by the ONS. Taking over 1 million records from a synthetic 1991 UK census dataset, we deleted records, moved records to a different geography and duplicated records to a different geography according to pre-specified proportions for each broad ethnic group (White, Non-white) and gender (males, females). The final size of the synthetic administrative data was 1033664 individuals.
National Statistical Institutes (NSIs) are directing resources into advancing the use of administrative data in official statistics systems. This is a top priority for the UK Office for National Statistics (ONS) as they are undergoing transformations in their statistical systems to make more use of administrative data for future censuses and population statistics. Administrative data are defined as secondary data sources since they are produced by other agencies as a result of an event or a transaction relating to administrative procedures of organisations, public administrations and government agencies. Nevertheless, they have the potential to become important data sources for the production of official statistics by significantly reducing the cost and burden of response and improving the efficiency of such systems. Embedding administrative data in statistical systems is not without costs and it is vital to understand where potential errors may arise. The Total Administrative Data Error Framework sets out all possible sources of error when using administrative data as statistical data, depending on whether it is a single data source or integrated with other data sources such as survey data. For a single administrative data, one of the main sources of error is coverage and representation to the target population of interest. This is particularly relevant when administrative data is delivered over time, such as tax data for maintaining the Business Register. For sub-project 1 of this research project, we develop quality indicators that allow the statistical agency to assess if the administrative data is representative to the target population and which sub-groups may be missing or over-covered. This is essential for producing unbiased estimates from administrative data. Another priority at statistical agencies is to produce a statistical register for population characteristic estimates, such as employment statistics, from multiple sources of administrative and survey data. Using administrative data to build a spine, survey data can be integrated using record linkage and statistical matching approaches on a set of common matching variables. This will be the topic for sub-project 2, which will be split into several topics of research. The first topic is whether adding statistical predictions and correlation structures improves the linkage and data integration. The second topic is to research a mass imputation framework for imputing missing target variables in the statistical register where the missing data may be due to multiple underlying mechanisms. Therefore, the third topic will aim to improve the mass imputation framework to mitigate against possible measurement errors, for example by adding benchmarks and other constraints into the approaches. On completion of a statistical register, estimates for key target variables at local areas can easily be aggregated. However, it is essential to also measure the precision of these estimates through mean square errors and this will be the fourth topic of the sub-project. Finally, this new way of producing official statistics is compared to the more common method of incorporating administrative data through survey weights and model-based estimation approaches. In other words, we evaluate whether it is better 'to weight' or 'to impute' for population characteristic estimates - a key question under investigation by survey statisticians in the last decade.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global data preparation tools and software market size was valued at USD 3.5 billion in 2023 and is projected to reach USD 11.2 billion by 2032, growing at a compound annual growth rate (CAGR) of 13.6% during the forecast period. This impressive growth can be attributed to the increasing need for data-driven decision-making, the rising adoption of big data analytics, and the growing importance of business intelligence across various industries.
One of the key growth factors driving the data preparation tools and software market is the exponential increase in data volume generated by both enterprises and consumers. With the proliferation of IoT devices, social media, and digital transactions, organizations are inundated with vast amounts of data that need to be processed and analyzed efficiently. Data preparation tools help in cleaning, transforming, and structuring this raw data, making it usable for analytics and business intelligence, thereby enabling companies to derive actionable insights and maintain a competitive edge.
Another significant driver for the market is the rising complexity of data sources and types. Organizations today deal with diverse datasets coming from various sources such as relational databases, cloud storage, APIs, and even machine-generated data. Data preparation tools and software provide automated and scalable solutions to handle these complex datasets, ensuring data consistency and accuracy. The tools also facilitate seamless integration with various data sources, enabling organizations to create a unified view of their data landscape, which is crucial for effective decision-making.
The growing adoption of advanced technologies such as AI and machine learning is also boosting the demand for data preparation tools and software. These technologies require high-quality, well-prepared data to function efficiently and generate reliable outcomes. Data preparation tools that incorporate AI capabilities can automate many of the repetitive and time-consuming tasks involved in data cleaning and transformation, thereby improving productivity and reducing human error. This, in turn, accelerates the implementation of AI-driven solutions across different sectors, further propelling market growth.
Regionally, North America currently holds the largest share of the data preparation tools and software market, driven by the presence of leading technology companies and a robust infrastructure for data analytics and business intelligence. However, the Asia Pacific region is expected to witness the highest growth rate during the forecast period, fueled by rapid digitization, increasing adoption of cloud-based solutions, and significant investments in big data and AI technologies. Europe is also a key market, with growing awareness about data governance and privacy regulations driving the adoption of data preparation tools.
When analyzing the data preparation tools and software market by component, it is broadly categorized into software and services. The software segment is further divided into standalone data preparation tools and integrated solutions that come as part of larger analytics or business intelligence platforms. Standalone data preparation tools offer specialized functionalities such as data cleaning, transformation, and enrichment, catering to specific data preparation needs. These tools are particularly popular among organizations that require high levels of customization and flexibility in their data preparation processes.
On the other hand, integrated solutions are gaining traction due to their ability to provide end-to-end capabilities, from data preparation to visualization and analytics, all within a single platform. These solutions typically offer seamless integration with other business intelligence tools, enabling users to move from data preparation to analysis without switching between different software. This integrated approach is particularly beneficial for enterprises looking to streamline their data workflows and improve operational efficiency.
The services segment includes professional services such as consulting, implementation, and training, as well as managed services. Professional services are crucial for organizations that lack in-house expertise in data preparation and need external assistance to set up and optimize their data preparation processes. These services help organizations effectively leverage data preparation tools, ensuring that they achieve maximum ROI. Managed services, on the other hand, are
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
During the COVID-19 pandemic, many public schools across the United States shifted from fully in-person learning to alternative learning modalities such as hybrid and fully remote learning. In this study, data from 14,688 unique school districts from August 2020 to June 2021 were collected to track changes in the proportion of schools offering fully in-person, hybrid and fully remote learning over time. These data were provided by Burbio, MCH Strategic Data, the American Enterprise Institute’s Return to Learn Tracker and individual state dashboards. Because the modalities reported by these sources were incomplete and occasionally misaligned, a model was needed to combine and deconflict these data to provide a more comprehensive description of modalities nationwide. A hidden Markov model (HMM) was used to infer the most likely learning modality for each district on a weekly basis. This method yielded higher spatiotemporal coverage than any individual data source and higher agreement with three of the four data sources than any other single source. The model output revealed that the percentage of districts offering fully in-person learning rose from 40.3% in September 2020 to 54.7% in June of 2021 with increases across 45 states and in both urban and rural districts. This type of probabilistic model can serve as a tool for fusion of incomplete and contradictory data sources in order to obtain more reliable data in support of public health surveillance and research efforts.
The International Comprehensive Ocean-Atmosphere Data Set (ICOADS) is the world's most extensive surface marine meteorological data collection. Building on national and international partnerships, ICOADS provides a variety of user communities with easy access to many different data sources in a consistent format. Data sources range from early historical ship observations to more modern, automated measurement systems including moored buoys and surface drifters. Past versions of the ICOADS dataset have been published as monthly files while holding a daily version of the product for internal use only. NCEI has since developed a reformatted daily product of the dataset that now aligns with the monthly, ready for public use. The objective of this initiative is to sustain the quality and usability of this high-profile ICOADS product for stakeholders that have requested the need for an expanded product. ICOADS R3.0.2 Daily is now developed and released.
This text file "Solar radiation.txt" contains hourly data in Langleys and associated data-source flag from January 1, 1948, to September 30, 2016. The primary source of the data is the Argonne National Laboratory, Illinois. The data-source flag consist of a three-digit sequence in the form "xyz" that describe the origin and transformations of the data values. They indicate if the data are original or missing, the method that was used to fill the missing periods, and any other transformations of the data. Bera (2014) describes in detail an addition of a new data-source flag based on the regression analysis of the backup data series at St. Charles (STC) for water years (WY) 2008-10. The user of the data should consult Over and others (2010) and Bera (2014) for the detailed documentation of the data-source flag. Reference Cited: Over, T.M., Price, T.H., and Ishii, A.L., 2010, Development and analysis of a meteorological database, Argonne National Laboratory, Illinois: U.S. Geological Survey Open File Report 2010-1220, 67 p., http://pubs.usgs.gov/of/2010/1220/. Bera, M., 2014, Watershed Data Management (WDM) database for Salt Creek streamflow simulation, DuPage County, Illinois, water years 2005-11: U.S. Geological Survey Data Series 870, 18 p., http://dx.doi.org/10.3133/ds870.
The World Religion Project (WRP) aims to provide detailed information about religious adherence worldwide since 1945. It contains data about the number of adherents by religion in each of the states in the international system. These numbers are given for every half-decade period (1945, 1950, etc., through 2010). Percentages of the states' populations that practice a given religion are also provided. (Note: These percentages are expressed as decimals, ranging from 0 to 1, where 0 indicates that 0 percent of the population practices a given religion and 1 indicates that 100 percent of the population practices that religion.) Some of the religions (as detailed below) are divided into religious families. To the extent data are available, the breakdown of adherents within a given religion into religious families is also provided.
The project was developed in three stages. The first stage consisted of the formation of a religion tree. A religion tree is a systematic classification of major religions and of religious families within those major religions. To develop the religion tree we prepared a comprehensive literature review, the aim of which was (i) to define a religion, (ii) to find tangible indicators of a given religion of religious families within a major religion, and (iii) to identify existing efforts at classifying world religions. (Please see the original survey instrument to view the structure of the religion tree.) The second stage consisted of the identification of major data sources of religious adherence and the collection of data from these sources according to the religion tree classification. This created a dataset that included multiple records for some states for a given point in time. It also contained multiple missing data for specific states, specific time periods and specific religions. The third stage consisted of cleaning the data, reconciling discrepancies of information from different sources and imputing data for the missing cases.
The Global Religion Dataset: This dataset uses a religion-by-five-year unit. It aggregates the number of adherents of a given religion and religious group globally by five-year periods.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
MicroRNAs (miRNAs) play an important role in the development and progression of human diseases. The identification of disease-associated miRNAs will be helpful for understanding the molecular mechanisms of diseases at the post-transcriptional level. Based on different types of genomic data sources, computational methods for miRNA-disease association prediction have been proposed. However, individual source of genomic data tends to be incomplete and noisy; therefore, the integration of various types of genomic data for inferring reliable miRNA-disease associations is urgently needed. In this study, we present a computational framework, CHNmiRD, for identifying miRNA-disease associations by integrating multiple genomic and phenotype data, including protein-protein interaction data, gene ontology data, experimentally verified miRNA-target relationships, disease phenotype information and known miRNA-disease connections. The performance of CHNmiRD was evaluated by experimentally verified miRNA-disease associations, which achieved an area under the ROC curve (AUC) of 0.834 for 5-fold cross-validation. In particular, CHNmiRD displayed excellent performance for diseases without any known related miRNAs. The results of case studies for three human diseases (glioblastoma, myocardial infarction and type 1 diabetes) showed that all of the top 10 ranked miRNAs having no known associations with these three diseases in existing miRNA-disease databases were directly or indirectly confirmed by our latest literature mining. All these results demonstrated the reliability and efficiency of CHNmiRD, and it is anticipated that CHNmiRD will serve as a powerful bioinformatics method for mining novel disease-related miRNAs and providing a new perspective into molecular mechanisms underlying human diseases at the post-transcriptional level. CHNmiRD is freely available at http://www.bio-bigdata.com/CHNmiRD.
The New York State Energy Research and Development Authority (NYSERDA) hosts a web-based Distributed Energy Resources (DER) integrated data system at https://der.nyserda.ny.gov/. This site provides information on DERs that are funded by and report performance data to NYSERDA. Information is incorporated on more diverse DER technology as it becomes available. Distributed energy resources (DER) are technologies that generate or manage the demand of electricity at different points of the grid, such as at homes and businesses, instead of exclusively at power plants, and includes Combined Heat and Power (CHP) Systems, Anaerobic Digester Gas (ADG)-to-Electricity Systems, Fuel Cell Systems, Energy Storage Systems, and Large Photovoltaic (PV) Solar Electric Systems (larger than 50 kW). Historical databases with hourly readings for each system are updated each night to include data from the previous day. The web interface allows users to view, plot, analyze, and download performance data from one or several different DER sites. Energy storage systems include all operational systems in New York including projects not funded by NYSERDA. Only NYSERDA-funded energy storage systems will have performance data available. The database is intended to provide detailed, accurate performance data that can be used by potential users, developers, and other stakeholders to understand the real-world performance of these technologies. For NYSERDA’s performance-based programs, these data provide the basis for incentive payments to these sites. How does your organization use this dataset? What other NYSERDA or energy-related datasets would you like to see on Open NY? Let us know by emailing OpenNY@nyserda.ny.gov. The New York State Energy Research and Development Authority (NYSERDA) offers objective information and analysis, innovative programs, technical expertise, and support to help New Yorkers increase energy efficiency, save money, use renewable energy, and reduce reliance on fossil fuels. To learn more about NYSERDA’s programs, visit https://nyserda.ny.gov or follow us on Twitter, Facebook, YouTube, or Instagram.
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
This is a working unpublished document based on the NZMS260 Map Series, and is a precursor to the publication of QMAP geological map 20 Murihiku. Map, pencil and ink on transparency, sparse in detail, good condition. - Observation measure: n/a. - Map size: 900 x 700 mm. Notes: Annotation in margin, no other paper attached. Keywords: MURIHIKU; GEOLOGIC MAPS; QMAP; OHAI; DATA; SOURCES
Classification of Mars Terrain Using Multiple Data Sources Alan Kraut1, David Wettergreen1 ABSTRACT. Images of Mars are being collected faster than they can be analyzed by planetary scientists. Automatic analysis of images would enable more rapid and more consistent image interpretation and could draft geologic maps where none yet exist. In this work we develop a method for incorporating images from multiple instruments to classify Martian terrain into multiple types. Each image is segmented into contiguous groups of similar pixels, called superpixels, with an associated vector of discriminative features. We have developed and tested several classification algorithms to associate a best class to each superpixel. These classifiers are trained using three different manual classifications with between 2 and 6 classes. Automatic classification accuracies of 50 to 80% are achieved in leave-one-out cross-validation across 20 scenes using a multi-class boosting classifier.