Facebook
TwitterDistributed data mining from privacy-sensitive multi-party data is likely to play an important role in the next generation of integrated vehicle health monitoring systems. For example, consider an airline manufacturer [tex]$\mathcal{C}$[/tex] manufacturing an aircraft model [tex]$A$[/tex] and selling it to five different airline operating companies [tex]$\mathcal{V}_1 \dots \mathcal{V}_5$[/tex]. These aircrafts, during their operation, generate huge amount of data. Mining this data can reveal useful information regarding the health and operability of the aircraft which can be useful for disaster management and prediction of efficient operating regimes. Now if the manufacturer [tex]$\mathcal{C}$[/tex] wants to analyze the performance data collected from different aircrafts of model-type [tex]$A$[/tex] belonging to different airlines then central collection of data for subsequent analysis may not be an option. It should be noted that the result of this analysis may be statistically more significant if the data for aircraft model [tex]$A$[/tex] across all companies were available to [tex]$\mathcal{C}$[/tex]. The potential problems arising out of such a data mining scenario are:
Facebook
TwitterDistributed data mining from privacy-sensitive multi-party data is likely to play an important role in the next generation of integrated vehicle health monitoring systems. For example, consider an airline manufacturer [tex]$\mathcal{C}$[/tex] manufacturing an aircraft model [tex]$A$[/tex] and selling it to five different airline operating companies [tex]$\mathcal{V}_1 \dots \mathcal{V}_5$[/tex]. These aircrafts, during their operation, generate huge amount of data. Mining this data can reveal useful information regarding the health and operability of the aircraft which can be useful for disaster management and prediction of efficient operating regimes. Now if the manufacturer [tex]$\mathcal{C}$[/tex] wants to analyze the performance data collected from different aircrafts of model-type [tex]$A$[/tex] belonging to different airlines then central collection of data for subsequent analysis may not be an option. It should be noted that the result of this analysis may be statistically more significant if the data for aircraft model [tex]$A$[/tex] across all companies were available to [tex]$\mathcal{C}$[/tex]. The potential problems arising out of such a data mining scenario are:
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Biological data analysis is the key to new discoveries in disease biology and drug discovery. The rapid proliferation of high-throughput ‘omics’ data has necessitated a need for tools and platforms that allow the researchers to combine and analyse different types of biological data and obtain biologically relevant knowledge. We had previously developed TargetMine, an integrative data analysis platform for target prioritisation and broad-based biological knowledge discovery. Here, we describe the newly modelled biological data types and the enhanced visual and analytical features of TargetMine. These enhancements have included: an enhanced coverage of gene–gene relations, small molecule metabolite to pathway mappings, an improved literature survey feature, and in silico prediction of gene functional associations such as protein–protein interactions and global gene co-expression. We have also described two usage examples on trans-omics data analysis and extraction of gene-disease associations using MeSH term descriptors. These examples have demonstrated how the newer enhancements in TargetMine have contributed to a more expansive coverage of the biological data space and can help interpret genotype–phenotype relations. TargetMine with its auxiliary toolkit is available at https://targetmine.mizuguchilab.org. The TargetMine source code is available at https://github.com/chenyian-nibio/targetmine-gradle.
Facebook
Twitterhttps://bisresearch.com/privacy-policy-cookie-restriction-modehttps://bisresearch.com/privacy-policy-cookie-restriction-mode
The Data Mining Tools Market is expected to be valued at $1.24 billion in 2024, with an anticipated expansion at a CAGR of 11.63% to reach $3.73 billion by 2034.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data Analysis is the process that supports decision-making and informs arguments in empirical studies. Descriptive statistics, Exploratory Data Analysis (EDA), and Confirmatory Data Analysis (CDA) are the approaches that compose Data Analysis (Xia & Gong; 2014). An Exploratory Data Analysis (EDA) comprises a set of statistical and data mining procedures to describe data. We ran EDA to provide statistical facts and inform conclusions. The mined facts allow attaining arguments that would influence the Systematic Literature Review of DL4SE.
The Systematic Literature Review of DL4SE requires formal statistical modeling to refine the answers for the proposed research questions and formulate new hypotheses to be addressed in the future. Hence, we introduce DL4SE-DA, a set of statistical processes and data mining pipelines that uncover hidden relationships among Deep Learning reported literature in Software Engineering. Such hidden relationships are collected and analyzed to illustrate the state-of-the-art of DL techniques employed in the software engineering context.
Our DL4SE-DA is a simplified version of the classical Knowledge Discovery in Databases, or KDD (Fayyad, et al; 1996). The KDD process extracts knowledge from a DL4SE structured database. This structured database was the product of multiple iterations of data gathering and collection from the inspected literature. The KDD involves five stages:
Selection. This stage was led by the taxonomy process explained in section xx of the paper. After collecting all the papers and creating the taxonomies, we organize the data into 35 features or attributes that you find in the repository. In fact, we manually engineered features from the DL4SE papers. Some of the features are venue, year published, type of paper, metrics, data-scale, type of tuning, learning algorithm, SE data, and so on.
Preprocessing. The preprocessing applied was transforming the features into the correct type (nominal), removing outliers (papers that do not belong to the DL4SE), and re-inspecting the papers to extract missing information produced by the normalization process. For instance, we normalize the feature “metrics” into “MRR”, “ROC or AUC”, “BLEU Score”, “Accuracy”, “Precision”, “Recall”, “F1 Measure”, and “Other Metrics”. “Other Metrics” refers to unconventional metrics found during the extraction. Similarly, the same normalization was applied to other features like “SE Data” and “Reproducibility Types”. This separation into more detailed classes contributes to a better understanding and classification of the paper by the data mining tasks or methods.
Transformation. In this stage, we omitted to use any data transformation method except for the clustering analysis. We performed a Principal Component Analysis to reduce 35 features into 2 components for visualization purposes. Furthermore, PCA also allowed us to identify the number of clusters that exhibit the maximum reduction in variance. In other words, it helped us to identify the number of clusters to be used when tuning the explainable models.
Data Mining. In this stage, we used three distinct data mining tasks: Correlation Analysis, Association Rule Learning, and Clustering. We decided that the goal of the KDD process should be oriented to uncover hidden relationships on the extracted features (Correlations and Association Rules) and to categorize the DL4SE papers for a better segmentation of the state-of-the-art (Clustering). A clear explanation is provided in the subsection “Data Mining Tasks for the SLR od DL4SE”. 5.Interpretation/Evaluation. We used the Knowledge Discover to automatically find patterns in our papers that resemble “actionable knowledge”. This actionable knowledge was generated by conducting a reasoning process on the data mining outcomes. This reasoning process produces an argument support analysis (see this link).
We used RapidMiner as our software tool to conduct the data analysis. The procedures and pipelines were published in our repository.
Overview of the most meaningful Association Rules. Rectangles are both Premises and Conclusions. An arrow connecting a Premise with a Conclusion implies that given some premise, the conclusion is associated. E.g., Given that an author used Supervised Learning, we can conclude that their approach is irreproducible with a certain Support and Confidence.
Support = Number of occurrences this statement is true divided by the amount of statements Confidence = The support of the statement divided by the number of occurrences of the premise
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The purpose of data mining analysis is always to find patterns of the data using certain kind of techiques such as classification or regression. It is not always feasible to apply classification algorithms directly to dataset. Before doing any work on the data, the data has to be pre-processed and this process normally involves feature selection and dimensionality reduction. We tried to use clustering as a way to reduce the dimension of the data and create new features. Based on our project, after using clustering prior to classification, the performance has not improved much. The reason why it has not improved could be the features we selected to perform clustering are not well suited for it. Because of the nature of the data, classification tasks are going to provide more information to work with in terms of improving knowledge and overall performance metrics. From the dimensionality reduction perspective: It is different from Principle Component Analysis which guarantees finding the best linear transformation that reduces the number of dimensions with a minimum loss of information. Using clusters as a technique of reducing the data dimension will lose a lot of information since clustering techniques are based a metric of 'distance'. At high dimensions euclidean distance loses pretty much all meaning. Therefore using clustering as a "Reducing" dimensionality by mapping data points to cluster numbers is not always good since you may lose almost all the information. From the creating new features perspective: Clustering analysis creates labels based on the patterns of the data, it brings uncertainties into the data. By using clustering prior to classification, the decision on the number of clusters will highly affect the performance of the clustering, then affect the performance of classification. If the part of features we use clustering techniques on is very suited for it, it might increase the overall performance on classification. For example, if the features we use k-means on are numerical and the dimension is small, the overall classification performance may be better. We did not lock in the clustering outputs using a random_state in the effort to see if they were stable. Our assumption was that if the results vary highly from run to run which they definitely did, maybe the data just does not cluster well with the methods selected at all. Basically, the ramification we saw was that our results are not much better than random when applying clustering to the data preprocessing. Finally, it is important to ensure a feedback loop is in place to continuously collect the same data in the same format from which the models were created. This feedback loop can be used to measure the model real world effectiveness and also to continue to revise the models from time to time as things change.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The LSC (Leicester Scientific Corpus)August 2019 by Neslihan Suzen, PhD student at the University of Leicester (ns433@leicester.ac.uk) Supervised by Prof Alexander Gorban and Dr Evgeny MirkesThe data is extracted from the Web of Science® [1] You may not copy or distribute this data in whole or in part without the written consent of Clarivate Analytics.Getting StartedThis text provides background information on the LSC (Leicester Scientific Corpus) and pre-processing steps on abstracts, and describes the structure of files to organise the corpus. This corpus is created to be used in future work on the quantification of the sense of research texts. One of the goal of publishing the data is to make it available for further analysis and use in Natural Language Processing projects.LSC is a collection of abstracts of articles and proceeding papers published in 2014, and indexed by the Web of Science (WoS) database [1]. Each document contains title, list of authors, list of categories, list of research areas, and times cited. The corpus contains only documents in English.The corpus was collected in July 2018 online and contains the number of citations from publication date to July 2018.Each document in the corpus contains the following parts:1. Authors: The list of authors of the paper2. Title: The title of the paper3. Abstract: The abstract of the paper4. Categories: One or more category from the list of categories [2]. Full list of categories is presented in file ‘List_of _Categories.txt’.5. Research Areas: One or more research area from the list of research areas [3]. Full list of research areas is presented in file ‘List_of_Research_Areas.txt’.6. Total Times cited: The number of times the paper was cited by other items from all databases within Web of Science platform [4]7. Times cited in Core Collection: The total number of times the paper was cited by other papers within the WoS Core Collection [4]We describe a document as the collection of information (about a paper) listed above. The total number of documents in LSC is 1,673,824.All documents in LSC have nonempty abstract, title, categories, research areas and times cited in WoS databases. There are 119 documents with empty authors list, we did not exclude these documents.Data ProcessingThis section describes all steps in order for the LSC to be collected, clean and available to researchers. Processing the data consists of six main steps:Step 1: Downloading of the Data OnlineThis is the step of collecting the dataset online. This is done manually by exporting documents as Tab-delimitated files. All downloaded documents are available online.Step 2: Importing the Dataset to RThis is the process of converting the collection to RData format for processing the data. The LSC was collected as TXT files. All documents are extracted to R.Step 3: Cleaning the Data from Documents with Empty Abstract or without CategoryNot all papers have abstract and categories in the collection. As our research is based on the analysis of abstracts and categories, preliminary detecting and removing inaccurate documents were performed. All documents with empty abstracts and documents without categories are removed.Step 4: Identification and Correction of Concatenate Words in AbstractsTraditionally, abstracts are written in a format of executive summary with one paragraph of continuous writing, which is known as ‘unstructured abstract’. However, especially medicine-related publications use ‘structured abstracts’. Such type of abstracts are divided into sections with distinct headings such as introduction, aim, objective, method, result, conclusion etc.Used tool for extracting abstracts leads concatenate words of section headings with the first word of the section. As a result, some of structured abstracts in the LSC require additional process of correction to split such concatenate words. For instance, we observe words such as ConclusionHigher and ConclusionsRT etc. in the corpus. The detection and identification of concatenate words cannot be totally automated. Human intervention is needed in the identification of possible headings of sections. We note that we only consider concatenate words in headings of sections as it is not possible to detect all concatenate words without deep knowledge of research areas. Identification of such words is done by sampling of medicine-related publications. The section headings in such abstracts are listed in the List 1.List 1 Headings of sections identified in structured abstractsBackground Method(s) DesignTheoretical Measurement(s) LocationAim(s) Methodology ProcessAbstract Population ApproachObjective(s) Purpose(s) Subject(s)Introduction Implication(s) Patient(s)Procedure(s) Hypothesis Measure(s)Setting(s) Limitation(s) DiscussionConclusion(s) Result(s) Finding(s)Material (s) Rationale(s)Implications for health and nursing policyAll words including headings in the List 1 are detected in entire corpus, and then words are split into two words. For instance, the word ‘ConclusionHigher’ is split into ‘Conclusion’ and ‘Higher’.Step 5: Extracting (Sub-setting) the Data Based on Lengths of AbstractsAfter correction of concatenate words is completed, the lengths of abstracts are calculated. ‘Length’ indicates the totalnumber of words in the text, calculated by the same rule as for Microsoft Word ‘word count’ [5].According to APA style manual [6], an abstract should contain between 150 to 250 words. However, word limits vary from journal to journal. For instance, Journal of Vascular Surgery recommends that ‘Clinical and basic research studies must include a structured abstract of 400 words or less’[7].In LSC, the length of abstracts varies from 1 to 3805. We decided to limit length of abstracts from 30 to 500 words in order to study documents with abstracts of typical length ranges and to avoid the effect of the length to the analysis. Documents containing less than 30 and more than 500 words in abstracts are removed.Step 6: Saving the Dataset into CSV FormatCorrected and extracted documents are saved into 36 CSV files. The structure of files are described in the following section.The Structure of Fields in CSV FilesIn CSV files, the information is organised with one record on each line and parts of abstract, title, list of authors, list of categories, list of research areas, and times cited is recorded in separated fields.To access the LSC for research purposes, please email to ns433@le.ac.uk.References[1]Web of Science. (15 July). Available: https://apps.webofknowledge.com/[2]WoS Subject Categories. Available: https://images.webofknowledge.com/WOKRS56B5/help/WOS/hp_subject_category_terms_tasca.html[3]Research Areas in WoS. Available: https://images.webofknowledge.com/images/help/WOS/hp_research_areas_easca.html[4]Times Cited in WoS Core Collection. (15 July). Available: https://support.clarivate.com/ScientificandAcademicResearch/s/article/Web-of-Science-Times-Cited-accessibility-and-variation?language=en_US[5]Word Count. Available: https://support.office.com/en-us/article/show-word-count-3c9e6a11-a04d-43b4-977c-563a0e0d5da3[6]A. P. Association, Publication manual. American Psychological Association Washington, DC, 1983.[7]P. Gloviczki and P. F. Lawrence, "Information for authors," Journal of Vascular Surgery, vol. 65, no. 1, pp. A16-A22, 2017.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
LScDC Word-Category RIG MatrixApril 2020 by Neslihan Suzen, PhD student at the University of Leicester (ns433@leicester.ac.uk / suzenneslihan@hotmail.com)Supervised by Prof Alexander Gorban and Dr Evgeny MirkesGetting StartedThis file describes the Word-Category RIG Matrix for theLeicester Scientific Corpus (LSC) [1], the procedure to build the matrix and introduces the Leicester Scientific Thesaurus (LScT) with the construction process. The Word-Category RIG Matrix is a 103,998 by 252 matrix, where rows correspond to words of Leicester Scientific Dictionary-Core (LScDC) [2] and columns correspond to 252 Web of Science (WoS) categories [3, 4, 5]. Each entry in the matrix corresponds to a pair (category,word). Its value for the pair shows the Relative Information Gain (RIG) on the belonging of a text from the LSC to the category from observing the word in this text. The CSV file of Word-Category RIG Matrix in the published archive is presented with two additional columns of the sum of RIGs in categories and the maximum of RIGs over categories (last two columns of the matrix). So, the file ‘Word-Category RIG Matrix.csv’ contains a total of 254 columns.This matrix is created to be used in future research on quantifying of meaning in scientific texts under the assumption that words have scientifically specific meanings in subject categories and the meaning can be estimated by information gains from word to categories. LScT (Leicester Scientific Thesaurus) is a scientific thesaurus of English. The thesaurus includes a list of 5,000 words from the LScDC. We consider ordering the words of LScDC by the sum of their RIGs in categories. That is, words are arranged in their informativeness in the scientific corpus LSC. Therefore, meaningfulness of words evaluated by words’ average informativeness in the categories. We have decided to include the most informative 5,000 words in the scientific thesaurus. Words as a Vector of Frequencies in WoS CategoriesEach word of the LScDC is represented as a vector of frequencies in WoS categories. Given the collection of the LSC texts, each entry of the vector consists of the number of texts containing the word in the corresponding category.It is noteworthy that texts in a corpus do not necessarily belong to a single category, as they are likely to correspond to multidisciplinary studies, specifically in a corpus of scientific texts. In other words, categories may not be exclusive. There are 252 WoS categories and a text can be assigned to at least 1 and at most 6 categories in the LSC. Using the binary calculation of frequencies, we introduce the presence of a word in a category. We create a vector of frequencies for each word, where dimensions are categories in the corpus.The collection of vectors, with all words and categories in the entire corpus, can be shown in a table, where each entry corresponds to a pair (word,category). This table is build for the LScDC with 252 WoS categories and presented in published archive with this file. The value of each entry in the table shows how many times a word of LScDC appears in a WoS category. The occurrence of a word in a category is determined by counting the number of the LSC texts containing the word in a category. Words as a Vector of Relative Information Gains Extracted for CategoriesIn this section, we introduce our approach to representation of a word as a vector of relative information gains for categories under the assumption that meaning of a word can be quantified by their information gained for categories.For each category, a function is defined on texts that takes the value 1, if the text belongs to the category, and 0 otherwise. For each word, a function is defined on texts that takes the value 1 if the word belongs to the text, and 0 otherwise. Consider LSC as a probabilistic sample space (the space of equally probable elementary outcomes). For the Boolean random variables, the joint probability distribution, the entropy and information gains are defined.The information gain about the category from the word is the amount of information on the belonging of a text from the LSC to the category from observing the word in the text [6]. We used the Relative Information Gain (RIG) providing a normalised measure of the Information Gain. This provides the ability of comparing information gains for different categories. The calculations of entropy, Information Gains and Relative Information Gains can be found in the README file in the archive published. Given a word, we created a vector where each component of the vector corresponds to a category. Therefore, each word is represented as a vector of relative information gains. It is obvious that the dimension of vector for each word is the number of categories. The set of vectors is used to form the Word-Category RIG Matrix, in which each column corresponds to a category, each row corresponds to a word and each component is the relative information gain from the word to the category. In Word-Category RIG Matrix, a row vector represents the corresponding word as a vector of RIGs in categories. We note that in the matrix, a column vector represents RIGs of all words in an individual category. If we choose an arbitrary category, words can be ordered by their RIGs from the most informative to the least informative for the category. As well as ordering words in each category, words can be ordered by two criteria: sum and maximum of RIGs in categories. The top n words in this list can be considered as the most informative words in the scientific texts. For a given word, the sum and maximum of RIGs are calculated from the Word-Category RIG Matrix.RIGs for each word of LScDC in 252 categories are calculated and vectors of words are formed. We then form the Word-Category RIG Matrix for the LSC. For each word, the sum (S) and maximum (M) of RIGs in categories are calculated and added at the end of the matrix (last two columns of the matrix). The Word-Category RIG Matrix for the LScDC with 252 categories, the sum of RIGs in categories and the maximum of RIGs over categories can be found in the database.Leicester Scientific Thesaurus (LScT)Leicester Scientific Thesaurus (LScT) is a list of 5,000 words form the LScDC [2]. Words of LScDC are sorted in descending order by the sum (S) of RIGs in categories and the top 5,000 words are selected to be included in the LScT. We consider these 5,000 words as the most meaningful words in the scientific corpus. In other words, meaningfulness of words evaluated by words’ average informativeness in the categories and the list of these words are considered as a ‘thesaurus’ for science. The LScT with value of sum can be found as CSV file with the published archive. Published archive contains following files:1) Word_Category_RIG_Matrix.csv: A 103,998 by 254 matrix where columns are 252 WoS categories, the sum (S) and the maximum (M) of RIGs in categories (last two columns of the matrix), and rows are words of LScDC. Each entry in the first 252 columns is RIG from the word to the category. Words are ordered as in the LScDC.2) Word_Category_Frequency_Matrix.csv: A 103,998 by 252 matrix where columns are 252 WoS categories and rows are words of LScDC. Each entry of the matrix is the number of texts containing the word in the corresponding category. Words are ordered as in the LScDC.3) LScT.csv: List of words of LScT with sum (S) values. 4) Text_No_in_Cat.csv: The number of texts in categories. 5) Categories_in_Documents.csv: List of WoS categories for each document of the LSC.6) README.txt: Description of Word-Category RIG Matrix, Word-Category Frequency Matrix and LScT and forming procedures.7) README.pdf (same as 6 in PDF format)References[1] Suzen, Neslihan (2019): LSC (Leicester Scientific Corpus). figshare. Dataset. https://doi.org/10.25392/leicester.data.9449639.v2[2] Suzen, Neslihan (2019): LScDC (Leicester Scientific Dictionary-Core). figshare. Dataset. https://doi.org/10.25392/leicester.data.9896579.v3[3] Web of Science. (15 July). Available: https://apps.webofknowledge.com/[4] WoS Subject Categories. Available: https://images.webofknowledge.com/WOKRS56B5/help/WOS/hp_subject_category_terms_tasca.html [5] Suzen, N., Mirkes, E. M., & Gorban, A. N. (2019). LScDC-new large scientific dictionary. arXiv preprint arXiv:1912.06858. [6] Shannon, C. E. (1948). A mathematical theory of communication. Bell system technical journal, 27(3), 379-423.
Facebook
TwitterTo make this a seamless process, I cleaned the data and delete many variables that I thought were not important to our dataset. I then uploaded all of those files to Kaggle for each of you to download. The rideshare_data has both lyft and uber but it is still a cleaned version from the dataset we downloaded from Kaggle.
You can easily subset the data into the car types that you will be modeling by first loading the csv into R, here is the code for how you do this:
df<-read.csv('uber.csv')
df_black<-subset(uber_df, uber_df$name == 'Black')
write.csv(df_black, "nameofthefileyouwanttosaveas.csv")
getwd()
Your data will be in front of the world's largest data science community. What questions do you want to see answered?
Facebook
Twitterhttps://exactitudeconsultancy.com/privacy-policyhttps://exactitudeconsultancy.com/privacy-policy
The U.S. Data Analysis Storage Management market is projected to be valued at $10 billion in 2024, driven by factors such as increasing consumer awareness and the rising prevalence of industry-specific trends. The market is expected to grow at a CAGR of 12%, reaching approximately $31 billion by 2034.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ABSTRACT The hatchery is one of the most important segments of the poultry chain, and generates an abundance of data, which, when analyzed, allow for identifying critical points of the process . The aim of this study was to evaluate the applicability of the data mining technique to databases of egg incubation of broiler breeders and laying hen breeders. The study uses a database recording egg incubation from broiler breeders housed in pens with shavings used for litters in natural mating, as well as laying hen breeders housed in cages using an artificial insemination mating system. The data mining technique (DM) was applied to analyses in a classification task, using the type of breeder and house system for delineating classes. The database was analyzed in three different ways: original database, attribute selection, and expert analysis. Models were selected on the basis of model precision and class accuracy. The data mining technique allowed for the classification of hatchery fertile eggs from different genetic groups, as well as hatching rates and the percentage of fertile eggs (the attributes with the greatest classification power). Broiler breeders showed higher fertility (> 95 %), but higher embryonic mortality between the third and seventh day post-hatching (> 0.5 %) when compared to laying hen breeders’ eggs. In conclusion, applying data mining to the hatchery process, selection of attributes and strategies based on the experience of experts can improve model performance.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ABSTRACT The present study aimed at comparing predictive performance of some data mining algorithms (CART, CHAID, Exhaustive CHAID, MARS, MLP, and RBF) in biometrical data of Mengali rams. To compare the predictive capability of the algorithms, the biometrical data regarding body (body length, withers height, and heart girth) and testicular (testicular length, scrotal length, and scrotal circumference) measurements of Mengali rams in predicting live body weight were evaluated by most goodness of fit criteria. In addition, age was considered as a continuous independent variable. In this context, MARS data mining algorithm was used for the first time to predict body weight in two forms, without (MARS_1) and with interaction (MARS_2) terms. The superiority order in the predictive accuracy of the algorithms was found as CART > CHAID ≈ Exhaustive CHAID > MARS_2 > MARS_1 > RBF > MLP. Moreover, all tested algorithms provided a strong predictive accuracy for estimating body weight. However, MARS is the only algorithm that generated a prediction equation for body weight. Therefore, it is hoped that the available results might present a valuable contribution in terms of predicting body weight and describing the relationship between the body weight and body and testicular measurements in revealing breed standards and the conservation of indigenous gene sources for Mengali sheep breeding. Therefore, it will be possible to perform more profitable and productive sheep production. Use of data mining algorithms is useful for revealing the relationship between body weight and testicular traits in describing breed standards of Mengali sheep.
Facebook
Twitterhttps://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy
| BASE YEAR | 2024 |
| HISTORICAL DATA | 2019 - 2023 |
| REGIONS COVERED | North America, Europe, APAC, South America, MEA |
| REPORT COVERAGE | Revenue Forecast, Competitive Landscape, Growth Factors, and Trends |
| MARKET SIZE 2024 | 7.87(USD Billion) |
| MARKET SIZE 2025 | 8.37(USD Billion) |
| MARKET SIZE 2035 | 15.4(USD Billion) |
| SEGMENTS COVERED | Application, Deployment Model, Technique, End Use, Regional |
| COUNTRIES COVERED | US, Canada, Germany, UK, France, Russia, Italy, Spain, Rest of Europe, China, India, Japan, South Korea, Malaysia, Thailand, Indonesia, Rest of APAC, Brazil, Mexico, Argentina, Rest of South America, GCC, South Africa, Rest of MEA |
| KEY MARKET DYNAMICS | Growing demand for actionable insights, Increasing adoption of AI technologies, Rising need for predictive analytics, Expanding data sources and volume, Regulatory compliance and data privacy concerns |
| MARKET FORECAST UNITS | USD Billion |
| KEY COMPANIES PROFILED | Informatica, Tableau, Cloudera, Microsoft, Google, Alteryx, Oracle, SAP, SAS, DataRobot, Dell Technologies, Qlik, Teradata, TIBCO Software, Snowflake, IBM |
| MARKET FORECAST PERIOD | 2025 - 2035 |
| KEY MARKET OPPORTUNITIES | Increased demand for predictive analytics, Growth in big data technologies, Rising need for data-driven decision-making, Adoption of AI and machine learning, Expansion in healthcare data analysis |
| COMPOUND ANNUAL GROWTH RATE (CAGR) | 6.3% (2025 - 2035) |
Facebook
Twitterhttps://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy
| BASE YEAR | 2024 |
| HISTORICAL DATA | 2019 - 2023 |
| REGIONS COVERED | North America, Europe, APAC, South America, MEA |
| REPORT COVERAGE | Revenue Forecast, Competitive Landscape, Growth Factors, and Trends |
| MARKET SIZE 2024 | 153.8(USD Billion) |
| MARKET SIZE 2025 | 192.4(USD Billion) |
| MARKET SIZE 2035 | 1800.0(USD Billion) |
| SEGMENTS COVERED | Data Type, Deployment Model, Application, End Use Industry, Regional |
| COUNTRIES COVERED | US, Canada, Germany, UK, France, Russia, Italy, Spain, Rest of Europe, China, India, Japan, South Korea, Malaysia, Thailand, Indonesia, Rest of APAC, Brazil, Mexico, Argentina, Rest of South America, GCC, South Africa, Rest of MEA |
| KEY MARKET DYNAMICS | Data privacy regulations, Cloud computing adoption, Big data analytics growth, Artificial intelligence integration, Internet of Things expansion |
| MARKET FORECAST UNITS | USD Billion |
| KEY COMPANIES PROFILED | Accenture, IBM, Snowflake, Palantir Technologies, DataRobot, Oracle, Salesforce, Tencent, Alibaba, SAP, Microsoft, Intel, Cloudera, Amazon, Google, Cisco |
| MARKET FORECAST PERIOD | 2025 - 2035 |
| KEY MARKET OPPORTUNITIES | Data-driven decision making, Cloud data storage expansion, AI and machine learning integration, Data privacy solutions demand, Real-time analytics and insights |
| COMPOUND ANNUAL GROWTH RATE (CAGR) | 25.1% (2025 - 2035) |
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset is essentially the metadata from 164 datasets. Each of its lines concerns a dataset from which 22 features have been extracted, which are used to classify each dataset into one of the categories 0-Unmanaged, 2-INV, 3-SI, 4-NOA (DatasetType).
This Dataset consists of 164 Rows. Each row is the metadata of an other dataset. The target column is datasetType which has 4 values indicating the dataset type. These are:
2 - Invoice detail (INV): This dataset type is a special report (usually called Detailed Sales Statement) produced by a Company Accounting or an Enterprise Resource Planning software (ERP). Using a INV-type dataset directly for ARM is extremely convenient for users as it relieves them from the tedious work of transforming data into another more suitable form. INV-type data input typically includes a header but, only two of its attributes are essential for data mining. The first attribute serves as the grouping identifier creating a unique transaction (e.g., Invoice ID, Order Number), while the second attribute contains the items utilized for data mining (e.g., Product Code, Product Name, Product ID).
3 - Sparse Item (SI): This type is widespread in Association Rules Mining (ARM). It involves a header and a fixed number of columns. Each item corresponds to a column. Each row represents a transaction. The typical cell stores a value, usually one character in length, that depicts the presence or absence of the item in the corresponding transaction. The absence character must be identified or declared before the Association Rules Mining process takes place.
4 - Nominal Attributes (NOA): This type is commonly used in Machine Learning and Data Mining tasks. It involves a fixed number of columns. Each column registers nominal/categorical values. The presence of a header row is optional. However, in cases where no header is provided, there is a risk of extracting incorrect rules if similar values exist in different attributes of the dataset. The potential values for each attribute can vary.
0 - Unmanaged for ARM: On the other hand, not all datasets are suitable for extracting useful association rules or frequent item sets. For instance, datasets characterized predominantly by numerical features with arbitrary values, or datasets that involve fragmented or mixed types of data types. For such types of datasets, ARM processing becomes possible only by introducing a data discretization stage which in turn introduces information loss. Such types of datasets are not considered in the present treatise and they are termed (0) Unmanaged in the sequel.
The dataset type is crucial to determine for ARM, and the current dataset is used to classify the dataset's type using a Supervised Machine Learning Model.
There is and another dataset type named 1 - Market Basket List (MBL) where each dataset row is a transaction. A transaction involves a variable number of items. However, due to this characteristic, these datasets can be easily categorized using procedural programming and DoD does not include instances of them. For more details about Dataset Types please refer to article "WebApriori: a web application for association rules mining". https://link.springer.com/chapter/10.1007/978-3-030-49663-0_44
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Missing data is an inevitable aspect of every empirical research. Researchers developed several techniques to handle missing data to avoid information loss and biases. Over the past 50 years, these methods have become more and more efficient and also more complex. Building on previous review studies, this paper aims to analyze what kind of missing data handling methods are used among various scientific disciplines. For the analysis, we used nearly 50.000 scientific articles that were published between 1999 and 2016. JSTOR provided the data in text format. Furthermore, we utilized a text-mining approach to extract the necessary information from our corpus. Our results show that the usage of advanced missing data handling methods such as Multiple Imputation or Full Information Maximum Likelihood estimation is steadily growing in the examination period. Additionally, simpler methods, like listwise and pairwise deletion, are still in widespread use.
Facebook
TwitterOntoDM-core defines the most essential data mining entities in a three-layered ontological structure comprising of a specification, an implementation and an application layer. It provides a representational framework for the description of mining structured data, and in addition provides taxonomies of datasets, data mining tasks, generalizations, data mining algorithms and constraints, based on the type of data. OntoDM-core is designed to support a wide range of applications/use cases, such as semantic annotation of data mining algorithms, datasets and results; annotation of QSAR studies in the context of drug discovery investigations; and disambiguation of terms in text mining. (from abstract)
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Software systems are composed of one or more software architectural styles. These styles define the usage patterns of a programmer in order to develop a complex project. These architectural styles are required to analyze for pattern similarity in the structure of multiple groups of projects. The researcher can apply different types of data mining algorithms to analyze the software projects through architectural styles used. The dataset is obtained from an online questionnaire delivered to the world 's best academic and software industry.
The content of this dataset are multiple architectural styles utilized by the system. He attributes are Repository, Client Server, Abstract Machine,Object Oriented,Function Oriented,Event Driven,Layered, Pipes & Filters, Data centeric, Blackboard, Rule Based, Publish Subscribe, Asynchronous Messaging, Plug-ins, Microkernel, Peer-to-Peer, Domain Driven, Shared Nothing.
Thanks to my honorable teacher Prof.Dr Usman Qamar for guiding me to accomplish this wonderful task.
The dataset is capable of updating and refinements.Any researcher ,who want to contribute ,plz feel free to ask.
Facebook
TwitterMarket basket analysis with Apriori algorithm
The retailer wants to target customers with suggestions on itemset that a customer is most likely to purchase .I was given dataset contains data of a retailer; the transaction data provides data around all the transactions that have happened over a period of time. Retailer will use result to grove in his industry and provide for customer suggestions on itemset, we be able increase customer engagement and improve customer experience and identify customer behavior. I will solve this problem with use Association Rules type of unsupervised learning technique that checks for the dependency of one data item on another data item.
Association Rule is most used when you are planning to build association in different objects in a set. It works when you are planning to find frequent patterns in a transaction database. It can tell you what items do customers frequently buy together and it allows retailer to identify relationships between the items.
Assume there are 100 customers, 10 of them bought Computer Mouth, 9 bought Mat for Mouse and 8 bought both of them. - bought Computer Mouth => bought Mat for Mouse - support = P(Mouth & Mat) = 8/100 = 0.08 - confidence = support/P(Mat for Mouse) = 0.08/0.09 = 0.89 - lift = confidence/P(Computer Mouth) = 0.89/0.10 = 8.9 This just simple example. In practice, a rule needs the support of several hundred transactions, before it can be considered statistically significant, and datasets often contain thousands or millions of transactions.
Number of Attributes: 7
https://user-images.githubusercontent.com/91852182/145270162-fc53e5a3-4ad1-4d06-b0e0-228aabcf6b70.png">
First, we need to load required libraries. Shortly I describe all libraries.
https://user-images.githubusercontent.com/91852182/145270210-49c8e1aa-9753-431b-a8d5-99601bc76cb5.png">
Next, we need to upload Assignment-1_Data. xlsx to R to read the dataset.Now we can see our data in R.
https://user-images.githubusercontent.com/91852182/145270229-514f0983-3bbb-4cd3-be64-980e92656a02.png">
https://user-images.githubusercontent.com/91852182/145270251-6f6f6472-8817-435c-a995-9bc4bfef10d1.png">
After we will clear our data frame, will remove missing values.
https://user-images.githubusercontent.com/91852182/145270286-05854e1a-2b6c-490e-ab30-9e99e731eacb.png">
To apply Association Rule mining, we need to convert dataframe into transaction data to make all items that are bought together in one invoice will be in ...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Technical notes and documentation on the common data model of the project CONCEPT-DM2.
This publication corresponds to the Common Data Model (CDM) specification of the CONCEPT-DM2 project for the implementation of a federated network analysis of the healthcare pathway of type 2 diabetes.
Aims of the CONCEPT-DM2 project:
General aim: To analyse chronic care effectiveness and efficiency of care pathways in diabetes, assuming the relevance of care pathways as independent factors of health outcomes using data from real life world (RWD) from five Spanish Regional Health Systems.
Main specific aims:
Study Design: It is a population-based retrospective observational study centered on all T2D patients diagnosed in five Regional Health Services within the Spanish National Health Service. We will include all the contacts of these patients with the health services using the electronic medical record systems including Primary Care data, Specialized Care data, Hospitalizations, Urgent Care data, Pharmacy Claims, and also other registers such as the mortality and the population register.
Cohort definition: All patients with code of Type 2 Diabetes in the clinical health records
Files included in this publication:
Facebook
TwitterDistributed data mining from privacy-sensitive multi-party data is likely to play an important role in the next generation of integrated vehicle health monitoring systems. For example, consider an airline manufacturer [tex]$\mathcal{C}$[/tex] manufacturing an aircraft model [tex]$A$[/tex] and selling it to five different airline operating companies [tex]$\mathcal{V}_1 \dots \mathcal{V}_5$[/tex]. These aircrafts, during their operation, generate huge amount of data. Mining this data can reveal useful information regarding the health and operability of the aircraft which can be useful for disaster management and prediction of efficient operating regimes. Now if the manufacturer [tex]$\mathcal{C}$[/tex] wants to analyze the performance data collected from different aircrafts of model-type [tex]$A$[/tex] belonging to different airlines then central collection of data for subsequent analysis may not be an option. It should be noted that the result of this analysis may be statistically more significant if the data for aircraft model [tex]$A$[/tex] across all companies were available to [tex]$\mathcal{C}$[/tex]. The potential problems arising out of such a data mining scenario are: