Facebook
TwitterQuantitative data from community observations are stored and managed using SPSS social survey software. The sampling unit used is a harvest event, typically a hunting or fishing event in a particular season. As of 5 September, 2008 we have received and encoded data for 56 harvest events as follows: Harvest type: Mammal (10), Fish (45), Shellfish (1) Community: Gambell (10), Kanchalan (22), Nikolskoye (6), Sandpoint (18) Preliminary SPSS Data structure: Name, Label, Type, Width ID Respondent s Identification Number String 10 INTERNO Interview Number String 2 DATE Date On Which the Interview Took Place Date 8 SEX Gender Numeric 1 YEARBO Year of Birth Numeric 11 VILLAGE Village Where Respndent Resides String 6 LOCATI Respondent Resides in Russia or Alaska Numeric 8 LIVED How Long Respondent Lived in the Area String 100 LANGUAG Language in Which Interiew Conducted Numeric 7 HARVEST Level of Harvester Numeric 4 YEARHU How Many Years Respondent Has Hunted/Fished in the Area Numeric 8 EMPLOY Is the Respondent Employed in a Non-Harvesting Field Numeric 3 TIMEWOR Time Per Week/Month Is Spent in Non-Harvest Work Numeric 8 YEARWOR How Many Years Spent in Non-Harvest Work CATEGORIES Numeric 8 Q1FISHM Is Respondent Hunting Fish or Mammals On Next Trip Numeric 4 SPECIES Species of Fish/Mammal Being Hunted/Fished Numeric 8 Q2RECA Does Respondent Recall When Last Hunt/Fish Trip Occurre Numeric 3 Q2WHEN Date of Last Hunt/Fish Trip String 50 Q2AAGO How Long Ago Was Last Hunt/Fish Trip Numeric 16 Q3FAR How Far Respondent Travelled On Last Hunt/Fish Trip Numeric Q4OFTEN How Often Respondent Hunted/Fished in the Location of Last Trip Numeric 6 Q5AGE Age When Respondent First Went to Location of Last Trip Numeric 18 Q6PROX Prefers Loc. of Last Trip Due to Proximity to Village Numeric 11 Q6ACCES Prefers Location of Last Trip Due to Ease of Access Numeric 11 Q6CATCH Prefers Location of Last Trip Due to Ease of Catching Numeric 11 Q6OTHER Prefers Location of Last Trip Due to Some Other Reason Numeric 11 Q6SPECI Other Reason Prefers Locatin of Last Trip String 200 Q6DONT Respondent Does Not Like Location of Last Trip Numeric 11 Q7RELY Is Location of Last Trip Reliable for Fishing/Hunting Numeric 3 Q8NOTIC In Previous 5-10 Years Has Respondent Noticed Changes at Last Hunt/Fish Location Numeric 3 Q9OTHER Do Others From the Village Also Hunt/Fish at Location of Last Trip Numeric 3 Q10GETA On Last Trip, Was it Easier or More Difficult to Get to Location Numeric 3 Q10GETR On Last Trip Did Respondent Encounter Difficulties Getting to Hunt/Fish Location Numeric 8 Q10ATRA More Difficult to Get to Location of Last Trip Due to Lack of Transportation Numeric 11 Q10AROA More Difficult to Get to Location of Last Trip Due to Poor Road Conditions Numeric 11 Q10AENV More Difficult to Get to Location of Last Trip Due to Poor Environ Conditions Numeric 11 Q10AECO More Diff. to Get to Location of Last Trip Due to Economics Numeric 11 Q10AHEA More Difficult to Get to Location of Last Trip Due to Personal Health Condition Numeric 11 Q10AOTHE More Difficult to Get to Location of Last Trip Due to Other Reasons Numeric 23 Q11TRAD Last Harvest Used for Traditional/Personal Use Numeric 11 Q11CASH Last Harvest Used for Generating Cash or Bartering Numeric 11 Q11REC Last Harvest Used for Recreational Hunting/Fishing Numeric 11 Q11COM Last Harvest Used for Commercial or Business Activity Numeric 11 Q11DOG Last Harvest Used for Feeding Dogs Numeric 11 Q11SHAR Last Harvest Used for Sharing with Friends/Family Numeric 11 Q11OTHE Last Harvest Used for Something Else Numeric 20 Q12QUAN Quantity of XXX Caught on Last Hunt/Fish Trip Numeric 21
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The survey dataset for identifying Shiraz old silo’s new use which includes four components: 1. The survey instrument used to collect the data “SurveyInstrument_table.pdf”. The survey instrument contains 18 main closed-ended questions in a table format. Two of these, concern information on Silo’s decision-makers and proposed new use followed up after a short introduction of the questionnaire, and others 16 (each can identify 3 variables) are related to the level of appropriate opinions for ideal intervention in Façade, Openings, Materials and Floor heights of the building in four values: Feasibility, Reversibility, Compatibility and Social Benefits. 2. The raw survey data “SurveyData.rar”. This file contains an Excel.xlsx and a SPSS.sav file. The survey data file contains 50 variables (12 for each of the four values separated by colour) and data from each of the 632 respondents. Answering each question in the survey was mandatory, therefor there are no blanks or non-responses in the dataset. In the .sav file, all variables were assigned with numeric type and nominal measurement level. More details about each variable can be found in the Variable View tab of this file. Additional variables were created by grouping or consolidating categories within each survey question for simpler analysis. These variables are listed in the last columns of the .xlsx file. 3. The analysed survey data “AnalysedData.rar”. This file contains 6 “SPSS Statistics Output Documents” which demonstrate statistical tests and analysis such as mean, correlation, automatic linear regression, reliability, frequencies, and descriptives. 4. The codebook “Codebook.rar”. The detailed SPSS “Codebook.pdf” alongside the simplified codebook as “VariableInformation_table.pdf” provides a comprehensive guide to all 50 variables in the survey data, including numerical codes for survey questions and response options. They serve as valuable resources for understanding the dataset, presenting dictionary information, and providing descriptive statistics, such as counts and percentages for categorical variables.
Facebook
TwitterBackgroundObesity causes a serious diet-related chronic disease, including type-2 diabetes, cardiovascular disease, hypertension, osteoarthritis, and certain forms of cancer. In Sub- Saharan Africa including Ethiopia, most nutritional interventions mainly focused on a child undernutrition and ignored the impacts of obesity among children. In Ethiopia, the magnitude and associated factors of obesity among school-age children were not clearly described. Therefore this study assesses the predictors of obesity among school- age children in Debre Berhan City, Ethiopia, 2022.MethodsA cross-sectional study design was conducted from June to July, 2022. Participants were selected by using multistage sampling method. Data were collected using pre-tested and structured questions. Data were coded and entered in Epi-data version 4.6 and exported and analyzed using SPSS version 25.ResultA total of 600 children were participating in the study. The prevalence of obesity was 10.7% (95% CI: 8.3, 13.2). In this study, attending at private school (AOR = 4.24, 95% CI: 1.58, 11.32), children aged between 10-12years (AOR = 2.67, 95% CI: 1.30, 5.48), soft drink available in home (AOR = 2.27, 95% CI: 1.25,18.13), Loneliness (AOR = 1.67 95% CI: 1.12, 3.15) and mothers with occupational status of daily labour (AOR = 8.54 95% CI: 1.12, 65.39) were significantly associated with childhood obesity.ConclusionIn this study, the overall magnitude of childhood obesity was (10.7%) which means one in eleven children and relatively high as compare to the EDHS survey. Therefore, more attention should be given to strengthening physical activities, providing nutritional education, and creating community awareness about healthy diets as well as other preventive measures.
Facebook
TwitterThe harmonized data set on health, created and published by the ERF, is a subset of Iraq Household Socio Economic Survey (IHSES) 2012. It was derived from the household, individual and health modules, collected in the context of the above mentioned survey. The sample was then used to create a harmonized health survey, comparable with the Iraq Household Socio Economic Survey (IHSES) 2007 micro data set.
----> Overview of the Iraq Household Socio Economic Survey (IHSES) 2012:
Iraq is considered a leader in household expenditure and income surveys where the first was conducted in 1946 followed by surveys in 1954 and 1961. After the establishment of Central Statistical Organization, household expenditure and income surveys were carried out every 3-5 years in (1971/ 1972, 1976, 1979, 1984/ 1985, 1988, 1993, 2002 / 2007). Implementing the cooperation between CSO and WB, Central Statistical Organization (CSO) and Kurdistan Region Statistics Office (KRSO) launched fieldwork on IHSES on 1/1/2012. The survey was carried out over a full year covering all governorates including those in Kurdistan Region.
The survey has six main objectives. These objectives are:
The raw survey data provided by the Statistical Office were then harmonized by the Economic Research Forum, to create a comparable version with the 2006/2007 Household Socio Economic Survey in Iraq. Harmonization at this stage only included unifying variables' names, labels and some definitions. See: Iraq 2007 & 2012- Variables Mapping & Availability Matrix.pdf provided in the external resources for further information on the mapping of the original variables on the harmonized ones, in addition to more indications on the variables' availability in both survey years and relevant comments.
National coverage: Covering a sample of urban, rural and metropolitan areas in all the governorates including those in Kurdistan Region.
1- Household/family. 2- Individual/person.
The survey was carried out over a full year covering all governorates including those in Kurdistan Region.
Sample survey data [ssd]
----> Design:
Sample size was (25488) household for the whole Iraq, 216 households for each district of 118 districts, 2832 clusters each of which includes 9 households distributed on districts and governorates for rural and urban.
----> Sample frame:
Listing and numbering results of 2009-2010 Population and Housing Survey were adopted in all the governorates including Kurdistan Region as a frame to select households, the sample was selected in two stages: Stage 1: Primary sampling unit (blocks) within each stratum (district) for urban and rural were systematically selected with probability proportional to size to reach 2832 units (cluster). Stage two: 9 households from each primary sampling unit were selected to create a cluster, thus the sample size of total survey clusters was 25488 households distributed on the governorates, 216 households in each district.
----> Sampling Stages:
In each district, the sample was selected in two stages: Stage 1: based on 2010 listing and numbering frame 24 sample points were selected within each stratum through systematic sampling with probability proportional to size, in addition to the implicit breakdown urban and rural and geographic breakdown (sub-district, quarter, street, county, village and block). Stage 2: Using households as secondary sampling units, 9 households were selected from each sample point using systematic equal probability sampling. Sampling frames of each stages can be developed based on 2010 building listing and numbering without updating household lists. In some small districts, random selection processes of primary sampling may lead to select less than 24 units therefore a sampling unit is selected more than once , the selection may reach two cluster or more from the same enumeration unit when it is necessary.
Face-to-face [f2f]
----> Preparation:
The questionnaire of 2006 survey was adopted in designing the questionnaire of 2012 survey on which many revisions were made. Two rounds of pre-test were carried out. Revision were made based on the feedback of field work team, World Bank consultants and others, other revisions were made before final version was implemented in a pilot survey in September 2011. After the pilot survey implemented, other revisions were made in based on the challenges and feedbacks emerged during the implementation to implement the final version in the actual survey.
----> Questionnaire Parts:
The questionnaire consists of four parts each with several sections: Part 1: Socio – Economic Data: - Section 1: Household Roster - Section 2: Emigration - Section 3: Food Rations - Section 4: housing - Section 5: education - Section 6: health - Section 7: Physical measurements - Section 8: job seeking and previous job
Part 2: Monthly, Quarterly and Annual Expenditures: - Section 9: Expenditures on Non – Food Commodities and Services (past 30 days). - Section 10 : Expenditures on Non – Food Commodities and Services (past 90 days). - Section 11: Expenditures on Non – Food Commodities and Services (past 12 months). - Section 12: Expenditures on Non-food Frequent Food Stuff and Commodities (7 days). - Section 12, Table 1: Meals Had Within the Residential Unit. - Section 12, table 2: Number of Persons Participate in the Meals within Household Expenditure Other Than its Members.
Part 3: Income and Other Data: - Section 13: Job - Section 14: paid jobs - Section 15: Agriculture, forestry and fishing - Section 16: Household non – agricultural projects - Section 17: Income from ownership and transfers - Section 18: Durable goods - Section 19: Loans, advances and subsidies - Section 20: Shocks and strategy of dealing in the households - Section 21: Time use - Section 22: Justice - Section 23: Satisfaction in life - Section 24: Food consumption during past 7 days
Part 4: Diary of Daily Expenditures: Diary of expenditure is an essential component of this survey. It is left at the household to record all the daily purchases such as expenditures on food and frequent non-food items such as gasoline, newspapers…etc. during 7 days. Two pages were allocated for recording the expenditures of each day, thus the roster will be consists of 14 pages.
----> Raw Data:
Data Editing and Processing: To ensure accuracy and consistency, the data were edited at the following stages: 1. Interviewer: Checks all answers on the household questionnaire, confirming that they are clear and correct. 2. Local Supervisor: Checks to make sure that questions has been correctly completed. 3. Statistical analysis: After exporting data files from excel to SPSS, the Statistical Analysis Unit uses program commands to identify irregular or non-logical values in addition to auditing some variables. 4. World Bank consultants in coordination with the CSO data management team: the World Bank technical consultants use additional programs in SPSS and STAT to examine and correct remaining inconsistencies within the data files. The software detects errors by analyzing questionnaire items according to the expected parameter for each variable.
----> Harmonized Data:
Iraq Household Socio Economic Survey (IHSES) reached a total of 25488 households. Number of households refused to response was 305, response rate was 98.6%. The highest interview rates were in Ninevah and Muthanna (100%) while the lowest rates were in Sulaimaniya (92%).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Table illustrating the five different categories the application distinguishes and their calculated statistics and charts.
Facebook
TwitterThe main objective of the HEIS survey is to obtain detailed data on household expenditure and income, linked to various demographic and socio-economic variables, to enable computation of poverty indices and determine the characteristics of the poor and prepare poverty maps. Therefore, to achieve these goals, the sample had to be representative on the sub-district level. The raw survey data provided by the Statistical Office was cleaned and harmonized by the Economic Research Forum, in the context of a major research project to develop and expand knowledge on equity and inequality in the Arab region. The main focus of the project is to measure the magnitude and direction of change in inequality and to understand the complex contributing social, political and economic forces influencing its levels. However, the measurement and analysis of the magnitude and direction of change in this inequality cannot be consistently carried out without harmonized and comparable micro-level data on income and expenditures. Therefore, one important component of this research project is securing and harmonizing household surveys from as many countries in the region as possible, adhering to international statistics on household living standards distribution. Once the dataset has been compiled, the Economic Research Forum makes it available, subject to confidentiality agreements, to all researchers and institutions concerned with data collection and issues of inequality.
Data collected through the survey helped in achieving the following objectives: 1. Provide data weights that reflect the relative importance of consumer expenditure items used in the preparation of the consumer price index 2. Study the consumer expenditure pattern prevailing in the society and the impact of demograohic and socio-economic variables on those patterns 3. Calculate the average annual income of the household and the individual, and assess the relationship between income and different economic and social factors, such as profession and educational level of the head of the household and other indicators 4. Study the distribution of individuals and households by income and expenditure categories and analyze the factors associated with it 5. Provide the necessary data for the national accounts related to overall consumption and income of the household sector 6. Provide the necessary income data to serve in calculating poverty indices and identifying the poor chracteristics as well as drawing poverty maps 7. Provide the data necessary for the formulation, follow-up and evaluation of economic and social development programs, including those addressed to eradicate poverty
National
The survey covered a national sample of households and all individuals permanently residing in surveyed households.
Sample survey data [ssd]
The 2008 Household Expenditure and Income Survey sample was designed using two-stage cluster stratified sampling method. In the first stage, the primary sampling units (PSUs), the blocks, were drawn using probability proportionate to the size, through considering the number of households in each block to be the block size. The second stage included drawing the household sample (8 households from each PSU) using the systematic sampling method. Fourth substitute households from each PSU were drawn, using the systematic sampling method, to be used on the first visit to the block in case that any of the main sample households was not visited for any reason.
To estimate the sample size, the coefficient of variation and design effect in each subdistrict were calculated for the expenditure variable from data of the 2006 Household Expenditure and Income Survey. This results was used to estimate the sample size at sub-district level, provided that the coefficient of variation of the expenditure variable at the sub-district level did not exceed 10%, with a minimum number of clusters that should not be less than 6 at the district level, that is to ensure good clusters representation in the administrative areas to enable drawing poverty pockets.
It is worth mentioning that the expected non-response in addition to areas where poor families are concentrated in the major cities were taken into consideration in designing the sample. Therefore, a larger sample size was taken from these areas compared to other ones, in order to help in reaching the poverty pockets and covering them.
Face-to-face [f2f]
List of survey questionnaires: (1) General Form (2) Expenditure on food commodities Form (3) Expenditure on non-food commodities Form
Raw Data The design and implementation of this survey procedures were: 1. Sample design and selection 2. Design of forms/questionnaires, guidelines to assist in filling out the questionnaires, and preparing instruction manuals 3. Design the tables template to be used for the dissemination of the survey results 4. Preparation of the fieldwork phase including printing forms/questionnaires, instruction manuals, data collection instructions, data checking instructions and codebooks 5. Selection and training of survey staff to collect data and run required data checkings 6. Preparation and implementation of the pretest phase for the survey designed to test and develop forms/questionnaires, instructions and software programs required for data processing and production of survey results 7. Data collection 8. Data checking and coding 9. Data entry 10. Data cleaning using data validation programs 11. Data accuracy and consistency checks 12. Data tabulation and preliminary results 13. Preparation of the final report and dissemination of final results
Harmonized Data - The Statistical Package for Social Science (SPSS) was used to clean and harmonize the datasets - The harmonization process started with cleaning all raw data files received from the Statistical Office - Cleaned data files were then all merged to produce one data file on the individual level containing all variables subject to harmonization - A country-specific program was generated for each dataset to generate/compute/recode/rename/format/label harmonized variables - A post-harmonization cleaning process was run on the data - Harmonized data was saved on the household as well as the individual level, in SPSS and converted to STATA format
Facebook
TwitterThis dataset originates from a series of experimental studies titled “Tough on People, Tolerant to AI? Differential Effects of Human vs. AI Unfairness on Trust” The project investigates how individuals respond to unfair behavior (distributive, procedural, and interactional unfairness) enacted by artificial intelligence versus human agents, and how such behavior affects cognitive and affective trust.1 Experiment 1a: The Impact of AI vs. Human Distributive Unfairness on TrustOverview: This dataset comes from an experimental study aimed at examining how individuals respond in terms of cognitive and affective trust when distributive unfairness is enacted by either an artificial intelligence (AI) agent or a human decision-maker. Experiment 1a specifically focuses on the main effect of the “type of decision-maker” on trust.Data Generation and Processing: The data were collected through Credamo, an online survey platform. Initially, 98 responses were gathered from students at a university in China. Additional student participants were recruited via Credamo to supplement the sample. Attention check items were embedded in the questionnaire, and participants who failed were automatically excluded in real-time. Data collection continued until 202 valid responses were obtained. SPSS software was used for data cleaning and analysis.Data Structure and Format: The data file is named “Experiment1a.sav” and is in SPSS format. It contains 28 columns and 202 rows, where each row corresponds to one participant. Columns represent measured variables, including: grouping and randomization variables, one manipulation check item, four items measuring distributive fairness perception, six items on cognitive trust, five items on affective trust, three items for honesty checks, and four demographic variables (gender, age, education, and grade level). The final three columns contain computed means for distributive fairness, cognitive trust, and affective trust.Additional Information: No missing data are present. All variable names are labeled in English abbreviations to facilitate further analysis. The dataset can be directly opened in SPSS or exported to other formats.2 Experiment 1b: The Mediating Role of Perceived Ability and Benevolence (Distributive Unfairness)Overview: This dataset originates from an experimental study designed to replicate the findings of Experiment 1a and further examine the potential mediating role of perceived ability and perceived benevolence.Data Generation and Processing: Participants were recruited via the Credamo online platform. Attention check items were embedded in the survey to ensure data quality. Data were collected using a rolling recruitment method, with invalid responses removed in real time. A total of 228 valid responses were obtained.Data Structure and Format: The dataset is stored in a file named Experiment1b.sav in SPSS format and can be directly opened in SPSS software. It consists of 228 rows and 40 columns. Each row represents one participant’s data record, and each column corresponds to a different measured variable. Specifically, the dataset includes: random assignment and grouping variables; one manipulation check item; four items measuring perceived distributive fairness; six items on perceived ability; five items on perceived benevolence; six items on cognitive trust; five items on affective trust; three items for attention check; and three demographic variables (gender, age, and education). The last five columns contain the computed mean scores for perceived distributive fairness, ability, benevolence, cognitive trust, and affective trust.Additional Notes: There are no missing values in the dataset. All variables are labeled using standardized English abbreviations to facilitate reuse and secondary analysis. The file can be analyzed directly in SPSS or exported to other formats as needed.3 Experiment 2a: Differential Effects of AI vs. Human Procedural Unfairness on TrustOverview: This dataset originates from an experimental study aimed at examining whether individuals respond differently in terms of cognitive and affective trust when procedural unfairness is enacted by artificial intelligence versus human decision-makers. Experiment 2a focuses on the main effect of the decision agent on trust outcomes.Data Generation and Processing: Participants were recruited via the Credamo online survey platform from two universities located in different regions of China. A total of 227 responses were collected. After excluding those who failed the attention check items, 204 valid responses were retained for analysis. Data were processed and analyzed using SPSS software.Data Structure and Format: The dataset is stored in a file named Experiment2a.sav in SPSS format and can be directly opened in SPSS software. It contains 204 rows and 30 columns. Each row represents one participant’s response record, while each column corresponds to a specific variable. Variables include: random assignment and grouping; one manipulation check item; seven items measuring perceived procedural fairness; six items on cognitive trust; five items on affective trust; three attention check items; and three demographic variables (gender, age, and education). The final three columns contain computed average scores for procedural fairness, cognitive trust, and affective trust.Additional Notes: The dataset contains no missing values. All variables are labeled using standardized English abbreviations to facilitate reuse and secondary analysis. The file can be directly analyzed in SPSS or exported to other formats as needed.4 Experiment 2b: Mediating Role of Perceived Ability and Benevolence (Procedural Unfairness)Overview: This dataset comes from an experimental study designed to replicate the findings of Experiment 2a and to further examine the potential mediating roles of perceived ability and perceived benevolence in shaping trust responses under procedural unfairness.Data Generation and Processing: Participants were working adults recruited through the Credamo online platform. A rolling data collection strategy was used, where responses failing attention checks were excluded in real time. The final dataset includes 235 valid responses. All data were processed and analyzed using SPSS software.Data Structure and Format: The dataset is stored in a file named Experiment2b.sav, which is in SPSS format and can be directly opened using SPSS software. It contains 235 rows and 43 columns. Each row corresponds to a single participant, and each column represents a specific measured variable. These include: random assignment and group labels; one manipulation check item; seven items measuring procedural fairness; six items for perceived ability; five items for perceived benevolence; six items for cognitive trust; five items for affective trust; three attention check items; and three demographic variables (gender, age, education). The final five columns contain the computed average scores for procedural fairness, perceived ability, perceived benevolence, cognitive trust, and affective trust.Additional Notes: There are no missing values in the dataset. All variables are labeled using standardized English abbreviations to support future reuse and secondary analysis. The dataset can be directly analyzed in SPSS and easily converted into other formats if needed.5 Experiment 3a: Effects of AI vs. Human Interactional Unfairness on TrustOverview: This dataset comes from an experimental study that investigates how interactional unfairness, when enacted by either artificial intelligence or human decision-makers, influences individuals’ cognitive and affective trust. Experiment 3a focuses on the main effect of the “decision-maker type” under interactional unfairness conditions.Data Generation and Processing: Participants were college students recruited from two universities in different regions of China through the Credamo survey platform. After excluding responses that failed attention checks, a total of 203 valid cases were retained from an initial pool of 223 responses. All data were processed and analyzed using SPSS software.Data Structure and Format: The dataset is stored in the file named Experiment3a.sav, in SPSS format and compatible with SPSS software. It contains 203 rows and 27 columns. Each row represents a single participant, while each column corresponds to a specific measured variable. These include: random assignment and condition labels; one manipulation check item; four items measuring interactional fairness perception; six items for cognitive trust; five items for affective trust; three attention check items; and three demographic variables (gender, age, education). The final three columns contain computed average scores for interactional fairness, cognitive trust, and affective trust.Additional Notes: There are no missing values in the dataset. All variable names are provided using standardized English abbreviations to facilitate secondary analysis. The data can be directly analyzed using SPSS and exported to other formats as needed.6 Experiment 3b: The Mediating Role of Perceived Ability and Benevolence (Interactional Unfairness)Overview: This dataset comes from an experimental study designed to replicate the findings of Experiment 3a and further examine the potential mediating roles of perceived ability and perceived benevolence under conditions of interactional unfairness.Data Generation and Processing: Participants were working adults recruited via the Credamo platform. Attention check questions were embedded in the survey, and responses that failed these checks were excluded in real time. Data collection proceeded in a rolling manner until a total of 227 valid responses were obtained. All data were processed and analyzed using SPSS software.Data Structure and Format: The dataset is stored in the file named Experiment3b.sav, in SPSS format and compatible with SPSS software. It includes 227 rows and
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IntroductionA required step for presenting results of clinical studies is the declaration of participants demographic and baseline characteristics as claimed by the FDAAA 801. The common workflow to accomplish this task is to export the clinical data from the used electronic data capture system and import it into statistical software like SAS software or IBM SPSS. This software requires trained users, who have to implement the analysis individually for each item. These expenditures may become an obstacle for small studies. Objective of this work is to design, implement and evaluate an open source application, called ODM Data Analysis, for the semi-automatic analysis of clinical study data.MethodsThe system requires clinical data in the CDISC Operational Data Model format. After uploading the file, its syntax and data type conformity of the collected data is validated. The completeness of the study data is determined and basic statistics, including illustrative charts for each item, are generated. Datasets from four clinical studies have been used to evaluate the application’s performance and functionality.ResultsThe system is implemented as an open source web application (available at https://odmanalysis.uni-muenster.de) and also provided as Docker image which enables an easy distribution and installation on local systems. Study data is only stored in the application as long as the calculations are performed which is compliant with data protection endeavors. Analysis times are below half an hour, even for larger studies with over 6000 subjects.DiscussionMedical experts have ensured the usefulness of this application to grant an overview of their collected study data for monitoring purposes and to generate descriptive statistics without further user interaction. The semi-automatic analysis has its limitations and cannot replace the complex analysis of statisticians, but it can be used as a starting point for their examination and reporting.
Facebook
TwitterSome surveys contain multiple units of observation, while others come in many parts. This workshop will give participants hands-on experience using both types of files. The General Social Survey, Cycle 8 and the Canadian Travel Surveys will be used as examples. (Note: Data associated with this presentation is available on the DLI FTP site under folder 1873-216.)
Facebook
TwitterThe basic goal of this survey is to provide the necessary database for formulating national policies at various levels. It represents the contribution of the household sector to the Gross National Product (GNP). Household Surveys help as well in determining the incidence of poverty, and providing weighted data which reflects the relative importance of the consumption items to be employed in determining the benchmark for rates and prices of items and services. Generally, the Household Expenditure and Consumption Survey is a fundamental cornerstone in the process of studying the nutritional status in the Palestinian territory.
The raw survey data provided by the Statistical Office was cleaned and harmonized by the Economic Research Forum, in the context of a major research project to develop and expand knowledge on equity and inequality in the Arab region. The main focus of the project is to measure the magnitude and direction of change in inequality and to understand the complex contributing social, political and economic forces influencing its levels. However, the measurement and analysis of the magnitude and direction of change in this inequality cannot be consistently carried out without harmonized and comparable micro-level data on income and expenditures. Therefore, one important component of this research project is securing and harmonizing household surveys from as many countries in the region as possible, adhering to international statistics on household living standards distribution. Once the dataset has been compiled, the Economic Research Forum makes it available, subject to confidentiality agreements, to all researchers and institutions concerned with data collection and issues of inequality. Data is a public good, in the interest of the region, and it is consistent with the Economic Research Forum's mandate to make micro data available, aiding regional research on this important topic.
The survey data covers urban, rural and camp areas in West Bank and Gaza Strip.
1- Household/families. 2- Individuals.
The survey covered all the Palestinian households who are a usual residence in the Palestinian Territory.
Sample survey data [ssd]
The sampling frame consists of all enumeration areas which were enumerated in 1997; the enumeration area consists of buildings and housing units and is composed of an average of 120 households. The enumeration areas were used as Primary Sampling Units (PSUs) in the first stage of the sampling selection. The enumeration areas of the master sample were updated in 2003.
The sample is a stratified cluster systematic random sample with two stages: First stage: selection of a systematic random sample of 299 enumeration areas. Second stage: selection of a systematic random sample of 12-18 households from each enumeration area selected in the first stage. A person (18 years and more) was selected from each household in the second stage.
The population was divided by: 1- Governorate 2- Type of Locality (urban, rural, refugee camps)
The calculated sample size is 3,781 households.
The target cluster size or "sample-take" is the average number of households to be selected per PSU. In this survey, the sample take is around 12 households.
Detailed information/formulas on the sampling design are available in the user manual.
Face-to-face [f2f]
The PECS questionnaire consists of two main sections:
First section: Certain articles / provisions of the form filled at the beginning of the month,and the remainder filled out at the end of the month. The questionnaire includes the following provisions:
Cover sheet: It contains detailed and particulars of the family, date of visit, particular of the field/office work team, number/sex of the family members.
Statement of the family members: Contains social, economic and demographic particulars of the selected family.
Statement of the long-lasting commodities and income generation activities: Includes a number of basic and indispensable items (i.e, Livestock, or agricultural lands).
Housing Characteristics: Includes information and data pertaining to the housing conditions, including type of shelter, number of rooms, ownership, rent, water, electricity supply, connection to the sewer system, source of cooking and heating fuel, and remoteness/proximity of the house to education and health facilities.
Monthly and Annual Income: Data pertaining to the income of the family is collected from different sources at the end of the registration / recording period.
Second section: The second section of the questionnaire includes a list of 54 consumption and expenditure groups itemized and serially numbered according to its importance to the family. Each of these groups contains important commodities. The number of commodities items in each for all groups stood at 667 commodities and services items. Groups 1-21 include food, drink, and cigarettes. Group 22 includes homemade commodities. Groups 23-45 include all items except for food, drink and cigarettes. Groups 50-54 include all of the long-lasting commodities. Data on each of these groups was collected over different intervals of time so as to reflect expenditure over a period of one full year.
Both data entry and tabulation were performed using the ACCESS and SPSS software programs. The data entry process was organized in 6 files, corresponding to the main parts of the questionnaire. A data entry template was designed to reflect an exact image of the questionnaire, and included various electronic checks: logical check, range checks, consistency checks and cross-validation. Complete manual inspection was made of results after data entry was performed, and questionnaires containing field-related errors were sent back to the field for corrections.
The survey sample consists of about 3,781 households interviewed over a twelve-month period between January 2004 and January 2005. There were 3,098 households that completed the interview, of which 2,060 were in the West Bank and 1,038 households were in GazaStrip. The response rate was 82% in the Palestinian Territory.
The calculations of standard errors for the main survey estimations enable the user to identify the accuracy of estimations and the survey reliability. Total errors of the survey can be divided into two kinds: statistical errors, and non-statistical errors. Non-statistical errors are related to the procedures of statistical work at different stages, such as the failure to explain questions in the questionnaire, unwillingness or inability to provide correct responses, bad statistical coverage, etc. These errors depend on the nature of the work, training, supervision, and conducting all various related activities. The work team spared no effort at different stages to minimize non-statistical errors; however, it is difficult to estimate numerically such errors due to absence of technical computation methods based on theoretical principles to tackle them. On the other hand, statistical errors can be measured. Frequently they are measured by the standard error, which is the positive square root of the variance. The variance of this survey has been computed by using the “programming package” CENVAR.
Facebook
TwitterThe General Household Survey (GHS) is a continuous national survey of people living in private households conducted on an annual basis, by the Social Survey Division of the Office for National Statistics (ONS). The main aim of the survey is to collect data on a range of core topics, covering household, family and individual information. This information is used by government departments and other organisations for planning, policy and monitoring purposes, and to present a picture of house holds, family and people in Great Britain. From 2008, the General Household Survey became a module of the Integrated Household Survey (IHS). In recognition, the survey was renamed the General Lifestyle Survey (GLF/GLS). The GHS started in 1971 and has been carried out continuously since then, except for breaks in 1997-1998 when the survey was reviewed, and 1999-2000 when the survey was redeveloped. Following the 1997 review, the survey was relaunched from April 2000 with a different design. The relevant development work and the changes made are fully described in the Living in Britain report for the 2000-2001 survey. Following its review, the GHS was changed to comprise two elements: the continuous survey and extra modules, or 'trailers'. The continuous survey remained unchanged from 2000 to 2004, apart from essential adjustments to take account of, for example, changes in benefits and pensions. The GHS retained its modular structure and this allowed a number of different trailers to be included for each of those years, to a plan agreed by sponsoring government departments. Further changes to the GHS methodology from 2005: From April 1994 to 2005, the GHS was conducted on a financial year basis, with fieldwork spread evenly from April of one year to March the following year. However, in 2005 the survey period reverted to a calendar year and the whole of the annual sample was surveyed in the nine months from April to December 2005. Future surveys will run from January to December each year, hence the title date change to single year from 2005 onwards. Since the 2005 GHS (held under SN 5640) does not cover the January-March quarter, this affects annual estimates for topics which are subject to seasonal variation. To rectify this, where the questions were the same in 2005 as in 2004-2005, the final quarter of the latter survey was added (weighted in the correct proportion) to the nine months of the 2005 survey. Furthermore, in 2005, the European Union (EU) made a legal obligation (EU-SILC) for member states to collect additional statistics on income and living conditions. In addition to this the EU-SILC data cover poverty and social exclusion. These statistics are used to help plan and monitor European social policy by comparing poverty indicators and changes over time across the EU. The EU-SILC requirement has been integrated into the GHS, leading to large-scale changes in the 2005 survey questionnaire. The trailers on 'Views of your Local Area' and 'Dental Health' have been removed. Other changes have been made to many of the standard questionnaire sections, details of which may be found in the GHS 2005 documentation. Further changes to the GLF/GHS methodology from 2008 As noted above, the General Household Survey (GHS) was renamed the General Lifestyle Survey (GLF/GLS) in 2008. The sample design of the GLF/GLS is the same as the GHS before, and the questionnaire remains largely the same. The main change is that the GLF now includes the IHS core questions, which are common to all of the separate modules that together comprise the IHS. Some of these core questions are simpl y questions that were previously asked in the same or a similar format on all of the IHS component surveys (including the GLF/GLS). The core questions cover employment, smoking prevalence, general health, ethnicity, citizenship and national identity. These questions are asked by proxy if an interview is not possible with the selected respondent (that is a member of the household can answer on behalf of other respondents in the household). This is a departure from the GHS which did not ask smoking prevalence and general health questions by proxy, whereas the GLF/GLS does from 2008. For details on other changes to the GLF/GLS questionnaire, please see the GLF/GLS 2008: Special Licence Access documentation held with SN 6414. Currently, the UK Data Archive holds only the SL (and not the EUL) version of the GLF/GLS for 2008. Changes to the drinking section There have been a number of revisions to the methodology that is used to produce the alcohol consumption estimates. In 2006, the average number of units assigned to the different drink types and the assumption around the average size of a wine glass was updated, resulting in significantly increased consumption estimates. In addition to the revised method, a new question about wine glass size was included in the survey in 2008. Respondents were asked whether they have consumed small (125 ml), standard (175 ml) or large (250 ml) glasses of wine. The data from this question are used when calculating the number of units of alcohol consumed by the respondent. It is assumed that a small glass contains 1.5 units, a standard glass contains 2 units and a large glass contains 3 units. (In 2006 and 2007 it was assumed that all respondents drank from a standard 175 ml glass containing 2 units.) The datasets contain the original set of variables based on the original methodology, as well as those based on the revised and (for 2008 onwards) updated methodologies. Further details on these changes are provided in the Guidelines documents held in SN 5804 - GHS 2006; and SN 6414 - GLF/GLS 2008: Special Licence Access. Special Licence GHS/GLF/GLS Special Licence (SL) versions of the GHS/GLF/GLS are available from 1998-1999 onwards. The SL versions include all variables held in the standard 'End User Licence' (EUL) version, plus extra variables covering cigarette codes and descriptions, and some birthdate information for respondents and household members. Prospective SL users will need to complete an extra application form and demonstrate to the data owners exactly why they need access to t he extra variables, in order to get permission to use the SL version. Therefore, most users should order the EUL version of the data. In order to help users choose the correct dataset, 'Special Licence Access' has been added to the dataset titles for the SL versions of the data. A list of all GHS/GLF/GLS studies available from the UK Data Archive may be found on the GHS/GLF/GLS major studies web page. See below for details of SL datasets for the corresponding GHS/GLF/GLS year (1998-1999 onwards only). UK Data Archive data holdings and formats The UK Data Archive GHS/GLF/GLS holdings begin with the 1971 study for EUL data, and from 1998-1999 for SL versions (see above). Users should note that data for the 1971 study are currently only available as ASCII files without accompanying SPSS set-up files. SPSS files for the 1972 study were created by John Simister, and redeposited at the Archive in 2000. Currently, the UK Data Archive holds only the SL versions of the GHS/GLF/GLS for 2007 and 2008. Reformatted Data 1973 to 1982 - Surrey SPSS Files SPSS files have been created by the University of Surrey for all study years from 1973 to 1982 inclusive. These early files were restructured and the case changed from the household to the individual with all of the household information duplicated for each individual. The Surrey SPSS files contain all the original variabl es as well as some extra derived variables (a few variables were omitted from the data files for 1973-76). In 1973 only, the section on leisure was not included in the Surrey SPSS files. This has subsequently been made available, however, and is now held in a separate study, General Household Survey, 1973: Leisure Questions (held under SN 3982). Records for the original GHS 1973-1982 ASCII files have been removed from the UK Data Archive catalogue, but the data are still preserved and available upon request. Users should note that GHS/GLF/GLS data are also available in formats other than SPSS.
Facebook
TwitterThese data are part of NACJD's Fast Track Release and are distributed as they were received from the data depositor. The files have been zipped by NACJD for release, but not checked or processed except for the removal of direct identifiers. Users should refer to the accompanying readme file for a brief description of the files available with this collection and consult the investigator(s) if further information is needed. This study used secondary analysis of data from several different sources to examine the impact of increased oil development on domestic violence, dating violence, sexual assault, and stalking (DVDVSAS) in the Bakken region of Montana and North Dakota. Distributed here are the code used for the secondary analysis data; the data are not available through other public means. Please refer to the User Guide distributed with this study for a list of instructions on how to obtain all other data used in this study. This collection contains a secondary analysis of the Uniform Crime Reports (UCR). UCR data serve as periodic nationwide assessments of reported crimes not available elsewhere in the criminal justice system. Each year, participating law enforcement agencies contribute reports to the FBI either directly or through their state reporting programs. Distributed here are the codes used to create the datasets and preform the secondary analysis. Please refer to the User Guide, distributed with this study, for more information. This collection contains a secondary analysis of the National Incident Based Reporting System (NIBRS), a component part of the Uniform Crime Reporting Program (UCR) and an incident-based reporting system for crimes known to the police. For each crime incident coming to the attention of law enforcement, a variety of data were collected about the incident. These data included the nature and types of specific offenses in the incident, characteristics of the victim(s) and offender(s), types and value of property stolen and recovered, and characteristics of persons arrested in connection with a crime incident. NIBRS collects data on each single incident and arrest within 22 offense categories, made up of 46 specific crimes called Group A offenses. In addition, there are 11 Group B offense categories for which only arrest data were reported. NIBRS data on different aspects of crime incidents such as offenses, victims, offenders, arrestees, etc., can be examined as different units of analysis. Distributed here are the codes used to create the datasets and preform the secondary analysis. Please refer to the User Guide, distributed with this study, for more information. The collection includes 17 SPSS syntax files. Qualitative data collected for this study are not available as part of the data collection at this time.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
DesignA cross-sectional, web-based survey design was employed, consisting of validated self-report measures designed to capture demographic information, insulin use, diabetes-related distress, disordered eating, and body shape perception.Inclusion/Exclusion criteria. Participants were eligible to participate if they self-described as being aged 18 or over, with a diagnosis of Type 1 diabetes and on a prescribed insulin regimen. They were required to be at least one-year post-diagnosis, as people who have been prescribed insulin for less than one year may not have settled into a routine with insulin management and may mismanage their insulin unintentionally. Additionally, participants were required to reside within the UK, as this removed a potential confound of cost or resources as a barrier to accessing insulin. People with a diagnosis of type 2 diabetes were excluded from the study, as the pathophysiology and treatment of the two illnesses are quite different. For example, as those with type 2 diabetes still produce some degree of insulin naturally, non-adherence to an insulin regimen is likely to have less of an immediate impact than for those with type 1 diabetes, who produce no insulin naturally (Peyrot et al., 2010). Potential participants were provided with a link to the study which provided detailed information about the study, details of informed consent and their right to withdraw. When the survey was completed, or participants chose to exit, a debrief page was presented with signposts towards various supports and resources. Participants were offered the opportunity to receive a brief summary of findings from the study and given the chance to win a £25 Amazon gift voucher, both of which required an email address to be supplied through separate surveys, so as to protect the confidentiality of responses. Ethical approval for this study was granted by the chair of the relevant Ethics Committee.Statistical AnalysisPrior to beginning the study, an estimate of the minimum number of participants required was calculated using statistical power tables (Clark-Carter, 2010) and G*Power version 3.1. Based on previous research (Ames, 2017), a medium effect size (.5) was used to calculate sample sizes with a power of .8 (Clark-Carter, 2010), which generated a necessary sample size of 208. All analyses were adequately powered.Data were analysed using IBM SPSS Statistics for Mac version 25. MeasuresDemographic Information. This section collected basic demographic information, including age; gender; country of residence; and current or historical diagnosis of an eating disorder. The data were screened to ensure participants met the inclusion criteria.Insulin Measure. A 16-item questionnaire has been designed to assess rates and reasons for insulin non-adherence (Ames, 2017). Eating Disorder Psychopathology. The Eating Disorder Examination-Questionnaire (EDE-Q) assesses eating disorder psychopathology, and data from this measure was key to informing the primary research questions. It was designed as a self-report version of the interview-based Eating Disorders Examination (EDE; 32), which is considered to be the gold standard measure (Fairburn, Wilson, & Schleimer, 1993). The EDE-Q assesses four subscales: Restraint, Eating Concern, Shape Concern, and Weight Concern. It was found to be an adequate alternative to the EDE (Fairburn & Beglin, 1994). Body Shape Questionnaire (BSQ). The Body Shape Questionnaire is a 34-item self-report measure, designed to assess concerns regarding body shape and the phenomenological experience of “feeling fat” (Cooper, Taylor, Cooper, & Fairbum, 1987). The BSQ targets body image as a central feature of both AN and BN and thus is a useful supplementary measure of eating disorder psychopathology. Diabetes Distress. The Diabetes Distress Scale (Polonsky et al., 2005) is a 17-item scale designed to measure diabetes-related emotional distress via four domains: emotional burden, physician distress, interpersonal distress and regimenn distress. This measure was included on the basis of results from Ames (Ames, 2017), which identified diabetes-related emotional distress as a key reason for insulin non-adherence in type 1 diabetes. Inclusion in this study allowed for further investigation of its role.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A SPSS file with data used in the statistical analysis. Covariates were excluded in the file due to restrictions of the ethical permission. However a complete file is provided for researchers after request at publication@ventorp.com. (SAV)
Facebook
TwitterTHE CLEANED AND HARMONIZED VERSION OF THE SURVEY DATA PRODUCED AND PUBLISHED BY THE ECONOMIC RESEARCH FORUM REPRESENTS 100% OF THE ORIGINAL SURVEY DATA COLLECTED BY THE PALESTINIAN CENTRAL BUREAU OF STATISTICS
The Palestinian Central Bureau of Statistics (PCBS) carried out four rounds of the Labor Force Survey 2017 (LFS). The survey rounds covered a total sample of about 23,120 households (5,780 households per quarter).
The main objective of collecting data on the labour force and its components, including employment, unemployment and underemployment, is to provide basic information on the size and structure of the Palestinian labour force. Data collected at different points in time provide a basis for monitoring current trends and changes in the labour market and in the employment situation. These data, supported with information on other aspects of the economy, provide a basis for the evaluation and analysis of macro-economic policies.
The raw survey data provided by the Statistical Agency were cleaned and harmonized by the Economic Research Forum, in the context of a major project that started in 2009. During which extensive efforts have been exerted to acquire, clean, harmonize, preserve and disseminate micro data of existing labor force surveys in several Arab countries.
Covering a representative sample on the region level (West Bank, Gaza Strip), the locality type (urban, rural, camp) and the governorates.
1- Household/family. 2- Individual/person.
The survey covered all Palestinian households who are a usual residence of the Palestinian Territory.
Sample survey data [ssd]
THE CLEANED AND HARMONIZED VERSION OF THE SURVEY DATA PRODUCED AND PUBLISHED BY THE ECONOMIC RESEARCH FORUM REPRESENTS 100% OF THE ORIGINAL SURVEY DATA COLLECTED BY THE PALESTINIAN CENTRAL BUREAU OF STATISTICS
The methodology was designed according to the context of the survey, international standards, data processing requirements and comparability of outputs with other related surveys.
---> Target Population: It consists of all individuals aged 10 years and Above and there are staying normally with their households in the state of Palestine during 2017.
---> Sampling Frame: The sampling frame consists of the master sample, which was updated in 2011: each enumeration area consists of buildings and housing units with an average of about 124 households. The master sample consists of 596 enumeration areas; we used 494 enumeration areas as a framework for the labor force survey sample in 2017 and these units were used as primary sampling units (PSUs).
---> Sampling Size: The estimated sample size is 5,780 households in each quarter of 2017.
---> Sample Design The sample is two stage stratified cluster sample with two stages : First stage: we select a systematic random sample of 494 enumeration areas for the whole round ,and we excluded the enumeration areas which its sizes less than 40 households. Second stage: we select a systematic random sample of 16 households from each enumeration area selected in the first stage, se we select a systematic random of 16 households of the enumeration areas which its size is 80 household and over and the enumeration areas which its size is less than 80 households we select systematic random of 8 households.
---> Sample strata: The population was divided by: 1- Governorate (16 governorate) 2- Type of Locality (urban, rural, refugee camps).
---> Sample Rotation: Each round of the Labor Force Survey covers all of the 494 master sample enumeration areas. Basically, the areas remain fixed over time, but households in 50% of the EAs were replaced in each round. The same households remain in the sample for two consecutive rounds, left for the next two rounds, then selected for the sample for another two consecutive rounds before being dropped from the sample. An overlap of 50% is then achieved between both consecutive rounds and between consecutive years (making the sample efficient for monitoring purposes).
Face-to-face [f2f]
The survey questionnaire was designed according to the International Labour Organization (ILO) recommendations. The questionnaire includes four main parts:
---> 1. Identification Data: The main objective for this part is to record the necessary information to identify the household, such as, cluster code, sector, type of locality, cell, housing number and the cell code.
---> 2. Quality Control: This part involves groups of controlling standards to monitor the field and office operation, to keep in order the sequence of questionnaire stages (data collection, field and office coding, data entry, editing after entry and store the data.
---> 3. Household Roster: This part involves demographic characteristics about the household, like number of persons in the household, date of birth, sex, educational level…etc.
---> 4. Employment Part: This part involves the major research indicators, where one questionnaire had been answered by every 15 years and over household member, to be able to explore their labour force status and recognize their major characteristics toward employment status, economic activity, occupation, place of work, and other employment indicators.
---> Raw Data PCBS started collecting data since 1st quarter 2017 using the hand held devices in Palestine excluding Jerusalem in side boarders (J1) and Gaza Strip, the program used in HHD called Sql Server and Microsoft. Net which was developed by General Directorate of Information Systems. Using HHD reduced the data processing stages, the fieldworkers collect data and sending data directly to server then the project manager can withdrawal the data at any time he needs. In order to work in parallel with Gaza Strip and Jerusalem in side boarders (J1), an office program was developed using the same techniques by using the same database for the HHD.
---> Harmonized Data - The SPSS package is used to clean and harmonize the datasets. - The harmonization process starts with a cleaning process for all raw data files received from the Statistical Agency. - All cleaned data files are then merged to produce one data file on the individual level containing all variables subject to harmonization. - A country-specific program is generated for each dataset to generate/ compute/ recode/ rename/ format/ label harmonized variables. - A post-harmonization cleaning process is then conducted on the data. - Harmonized data is saved on the household as well as the individual level, in SPSS and then converted to STATA, to be disseminated.
The survey sample consists of about 30,230 households of which 23,120 households completed the interview; whereas 14,682 households from the West Bank and 8,438 households in Gaza Strip. Weights were modified to account for non-response rate. The response rate in the West Bank reached 82.4% while in the Gaza Strip it reached 92.7%.
---> Sampling Errors Data of this survey may be affected by sampling errors due to use of a sample and not a complete enumeration. Therefore, certain differences can be expected in comparison with the real values obtained through censuses. Variances were calculated for the most important indicators: the variance table is attached with the final report. There is no problem in disseminating results at national or governorate level for the West Bank and Gaza Strip.
---> Non-Sampling Errors Non-statistical errors are probable in all stages of the project, during data collection or processing. This is referred to as non-response errors, response errors, interviewing errors, and data entry errors. To avoid errors and reduce their effects, great efforts were made to train the fieldworkers intensively. They were trained on how to carry out the interview, what to discuss and what to avoid, carrying out a pilot survey, as well as practical and theoretical training during the training course. Also data entry staff were trained on the data entry program that was examined before starting the data entry process. To stay in contact with progress of fieldwork activities and to limit obstacles, there was continuous contact with the fieldwork team through regular visits to the field and regular meetings with them during the different field visits. Problems faced by fieldworkers were discussed to clarify any issues. Non-sampling errors can occur at the various stages of survey implementation whether in data collection or in data processing. They are generally difficult to be evaluated statistically.
They cover a wide range of errors, including errors resulting from non-response, sampling frame coverage, coding and classification, data processing, and survey response (both respondent and interviewer-related). The use of effective training and supervision and the careful design of questions have direct bearing on limiting the magnitude of non-sampling errors, and hence enhancing the quality of the resulting data. The implementation of the survey encountered non-response where the case ( household was not present at home ) during the fieldwork visit and the case ( housing unit is vacant) become the high percentage of the non response cases. The total non-response rate reached14.2% which is very low once compared to the household surveys conducted by PCBS , The refusal rate reached 3.0% which is very low percentage compared to the
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Facebook
Twitterhttps://qdr.syr.edu/policies/qdr-standard-access-conditionshttps://qdr.syr.edu/policies/qdr-standard-access-conditions
This is an Annotation for Transparent Inquiry (ATI) data project. The annotated article can be viewed on the Publisher's Website. Data Generation The research project engages a story about perceptions of fairness in criminal justice decisions. The specific focus involves a debate between ProPublica, a news organization, and Northpointe, the owner of a popular risk tool called COMPAS. ProPublica wrote that COMPAS was racist against blacks, while Northpointe posted online a reply rejecting such a finding. These two documents were the obvious foci of the qualitative analysis because of the further media attention they attracted, the confusion their competing conclusions caused readers, and the power both companies wield in public circles. There were no barriers to retrieval as both documents have been publicly available on their corporate websites. This public access was one of the motivators for choosing them as it meant that they were also easily attainable by the general public, thus extending the documents’ reach and impact. Additional materials from ProPublica relating to the main debate were also freely downloadable from its website and a third party, open source platform. Access to secondary source materials comprising additional writings from Northpointe representatives that could assist in understanding Northpointe’s main document, though, was more limited. Because of a claim of trade secrets on its tool and the underlying algorithm, it was more difficult to reach Northpointe’s other reports. Nonetheless, largely because its clients are governmental bodies with transparency and accountability obligations, some of Northpointe-associated reports were retrievable from third parties who had obtained them, largely through Freedom of Information Act queries. Together, the primary and (retrievable) secondary sources allowed for a triangulation of themes, arguments, and conclusions. The quantitative component uses a dataset of over 7,000 individuals with information that was collected and compiled by ProPublica and made available to the public on github. ProPublica’s gathering the data directly from criminal justice officials via Freedom of Information Act requests rendered the dataset in the public domain, and thus no confidentiality issues are present. The dataset was loaded into SPSS v. 25 for data analysis. Data Analysis The qualitative enquiry used critical discourse analysis, which investigates ways in which parties in their communications attempt to create, legitimate, rationalize, and control mutual understandings of important issues. Each of the two main discourse documents was parsed on its own merit. Yet the project was also intertextual in studying how the discourses correspond with each other and to other relevant writings by the same authors. Several more specific types of discursive strategies were of interest in attracting further critical examination: Testing claims and rationalizations that appear to serve the speaker’s self-interest Examining conclusions and determining whether sufficient evidence supported them Revealing contradictions and/or inconsistencies within the same text and intertextually Assessing strategies underlying justifications and rationalizations used to promote a party’s assertions and arguments Noticing strategic deployment of lexical phrasings, syntax, and rhetoric Judging sincerity of voice and the objective consideration of alternative perspectives Of equal importance in a critical discourse analysis is consideration of what is not addressed, that is to uncover facts and/or topics missing from the communication. For this project, this included parsing issues that were either briefly mentioned and then neglected, asserted yet the significance left unstated, or not suggested at all. This task required understanding common practices in the algorithmic data science literature. The paper could have been completed with just the critical discourse analysis. However, because one of the salient findings from it highlighted that the discourses overlooked numerous definitions of algorithmic fairness, the call to fill this gap seemed obvious. Then, the availability of the same dataset used by the parties in conflict, made this opportunity more appealing. Calculating additional algorithmic equity equations would not thereby be troubled by irregularities because of diverse sample sets. New variables were created as relevant to calculate algorithmic fairness equations. In addition to using various SPSS Analyze functions (e.g., regression, crosstabs, means), online statistical calculators were useful to compute z-test comparisons of proportions and t-test comparisons of means. Logic of Annotation Annotations were employed to fulfil a variety of functions, including supplementing the main text with context, observations, counter-points, analysis, and source attributions. These fall under a few categories. Space considerations. Critical discourse analysis offers a rich method...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In this dataset we present core data of an integrative evaluation framework for assessing the environmental, social, and economic sustainability of urban agriculture. The multi-criteria analysis is conducted by an Analytic Hierarchy Process and a participatory approach. The data integrate the selection and weighting of sub-criteria based on two online surveys:
1) Survey 1: The selection of suitable sub-criteria for assessing the sustainability of urban agriculture was done by European scientific experts.
2) Survey 2: The weighting of the selected sub-criteria was done on the example of vertical farming and community supported agriculture. Therefore, we involved stakeholders representing key actors for the implementation of urban agriculture: city administrations and non-governmental organizations (NGOs) of ten German case study cities, practitioners and technical-scientific experts.
List of data and content
1) Survey_1 (*.zip):
Survey_1_Criteria_Selection_English: Online survey in English (*.pdf)
Survey_1_Information_Sub-criteria_English: Information about the sub-criteria provided in the survey (in English) (*.pdf)
Survey_1_Groups: Results of the statistical analyses (U-tests and Kruscal-Wallis) to detect group-specific differences (e.g. gender, different length or degree of experience with urban agriculture, scientific focus, target group, expertise); the tests were conducted with IBM SPSS Statistics 25 (*.xlsx)
2) Survey_2 (*.zip):
Survey_2_AHP_City_Administrations_German: Online survey for city administrations in German (*.pdf)
Survey_2_AHP_Practitioners_German: Online survey for practitioners and technical-scientific experts in German (*.pdf)
Survey_2_AHP_NGOs_German: Online survey for NGOs in German (*.pdf)
Survey_2_Information_Sub-Criteria_German: Information about the sub-criteria provided in the survey (in German) (*.pdf)
Survey_2_Groups: Results of the statistical analyses (U-tests and Kruscal-Wallis) to detect group-specific differences (e.g. gender, different length or degree of experience with urban agriculture, scientific focus, target group, expertise); the tests were conducted with IBM SPSS Statistics 25 (*.xlsx)
rdata_CA_AHP_edible_Cities_2022-03-18_10-28: Results of the survey for city administrations (*.csv)
rdata_NGO_AHP_edible_Cities_2022-03-18_10-40: Results of the survey for NGOs (*.csv)
rdata_PE_AHP_edible_Cities_2022-03-18_10-41: Results of the survey for practitioners and technical-scientific experts (*.csv)
rdata_all_AHP_edible_Cities_2022-03-18_09-53: Total results of the survey
Data acquisition and processing
The methods are described in this linked publication:
John, H., & Artmann, M. (2024). Introducing an integrative evaluation framework for assessing the sustainability of different types of urban agriculture. International Journal of Urban Sustainable Development, 16 (1), 35-52. doi: 10.1080/19463138.2024.2317795
The methodology of the performed analytic hierarchy process (AHP) is published in a separate repository on GitHub including a paper that systematically explains the AHP by means of code examples, starting with the raw data, through their adaptation to the software functions of the ahpsurvey R-package, and finally, execution of the AHP up to the visualization of the results.
Acknowledgments
The authors thank Mabel Killinger and Marie Herzig for their help in stakeholder identification as well as all experts and stakeholders for their participation in the two online surveys and their helpful comments. Data processing and analysis by means of an Analytic Hierarchy Process in R would not have been possible without the help of Björn Kasper.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The project aimed to understand whether young adults who take care of a loved-one (young adult caregivers; YACs) differ in their perceived life balance and psychosocial functioning as compared to young adults without care responsibilities (non-YACs). In addition, this project aimed to understand how YACs evaluated a tool to support informal careg
ivers. This tool (“Caregiver Balance”; https://balans.mantelzorg.nl) is specifically designed to support informal caregivers taking care of a loved-one in the palliative phase and could potentially be adapted to meet the needs of YACs.
In this project, we collected data of 74 YACs and 246 non-YACs. Both groups completed questionnaires, and the YACs engaged in a usability test. The questionnaire data was used to compare the perceived life balance and psychological functioning between YACs and non-YACs, aged 18-25 years, and studying in the Netherlands (study 1). Furthermore, we examined the relationship between positive aspects of caregiving and relational factors, in particular, relationship quality and collaborative coping among YACs (study 2). Finally, we conducted a usability study where we interviewed YACs to understand the needs and preferences towards a supportive web-based solution (study 3).
Table: Study details and associated files
Number
Study Name
Study Aim
Study Type
Type of data
Associated Files
1
Perceived life balance among young adult students: a comparison between caregivers and non-caregivers
Compare the perceived life balance and psychological functions among student young adult caregivers aged 18-25 years (YACs) with young adult without care responsibilities
Survey study
Quantitative
ENTWINE_YACs_nonYACsSurvey_RawData
ENTWINE_PerceivedLifeBalanceSurvey_YACs_nonYACs_CleanedData
ENTWINE_ PerceivedLifeBalanceSurvey _Syntax
ENTWINE_YACs_nonYACsSurvey_codebook
2
Examining the relationship of positive aspects of caregiving with relational factors among young adult caregivers
Examine the relationship of positive aspects of caregiving with relational factors, in particular, relationship quality and collaborative coping among a particular group of ICGs, young adult caregivers (YACs), aged 18-25 years.
Survey study
Quantitative
ENTWINE_YACs_nonYACsSurvey_RawData
ENTWINE_PositiveAspectsCaregiving_Survey_YACs_cleanedData
ENTWINE_PositiveAspectsCaregiving_Survey_Syntax
ENTWINE_YACs_nonYACsSurvey_codebook
3
Exploring the support needs of young adult caregivers, their issues, and preferences towards a web-based tool
Explore (i) challenges and support needs of YACs in caregiving, (ii) their needs towards the content of the ‘MantelzorgBalans’ tool, and (iii) issues they encountered in using the tool and their preferences for adaptation of the tool.
Usability study
Qualitative and Quantitative
ENTWINE_Needs_Web-basedTools_YACs_Interview_Usability_RawData [to be determined whether data can be shared]
ENTWINE_Needs_Web-basedTools_YACs_Questionnaires_RawData
Description of the files to be uploaded
Study 1: Perceived life balance among young adult students: a comparison between caregivers and non-caregivers
ENTWINE_YACs_nonYACsSurvey_RawData: SPSS file with the complete, raw, pseudonomyzed survey data. The following cleaned dataset ‘ENTWINE_PerceivedLifeBalanceSurvey_YACs_nonYACs_CleanedData’ was generated from this raw data.
ENTWINE_PerceivedLifeBalanceSurvey_YACs_nonYACs_CleanedData: SPSS file with the cleaned dataset having the following metadata -
Population: young adult caregivers and young adult non-caregivers aged 18-25 years studying in the Netherlands;
Number of participants: 320 participants in total (74 young adult caregivers and 246 young adult non-caregivers)
Time point of measurement: Data was collected from December 2020 till March 2022
Type of data: quantitative
Measurements included, topics covered: perceived life balance (based on the Occupational balance questionnaire [1]), burnout (Burnout Assessment Tool [2]), negative and positive affect (Positive and Negative Affect Schedule [3]), and life satisfaction (Satisfaction with Life Scale [4])
Short procedure conducted to receive data: online survey on Qualtrics platform
SPSS syntax file ‘ENTWINE_ PerceivedLifeBalanceSurvey _Syntax’ was used to clean and analyse ENTWINE_PerceivedLifeBalanceSurvey_YACs_nonYACs_CleanedData dataset
ENTWINE_YACs_nonYACsSurvey_codebook: Codebook having the variable names, variable labels, and the associated code values and code labels for ENTWINE_PerceivedLifeBalanceSurvey_YACs_nonYACs_CleanedData dataset
Study 2: Examining the relationship of positive aspects of caregiving with relational factors among young adult caregivers
ENTWINE_YACs_nonYACsSurvey_RawData: SPSS file with the complete, raw survey data. The following cleaned dataset ‘ENTWINE_PositiveAspectsCaregiving_Survey_YACs_cleanedData’ was generated from this raw data.
ENTWINE_PositiveAspectsCaregiving_Survey_YACs_cleanedData: SPSS file with the cleaned dataset having the following metadata -
Population: young adult caregivers aged 18-25 years studying in the Netherlands;
Number of participants: 74 young adult caregivers
Time point of measurement: Data was collected from December 2020 till March 2022
Type of data: quantitative
Measurements included, topics covered: positive aspects of caregiving (positive aspects of caregiving scale [5]), relationship quality (Relationship Assessment Scale [6]), collaborative coping (Perception of Collaboration Questionnaire [7] )
Short procedure conducted to receive data: online survey on Qualtrics platform.
SPSS syntax file ‘ENTWINE_PositiveAspectsCaregiving_Survey_Syntax’ was used to clean and analyse ‘ENTWINE_PositiveAspectsCaregiving_Survey_YACs_cleanedData’ dataset.
ENTWINE_YACs_nonYACsSurvey_codebook: Codebook having the variable names, variable labels, and the associated code values and code labels for ENTWINE_PositiveAspectsCaregiving_Survey_YACs_cleanedData dataset.
Study 3: Exploring the support needs of young adult caregivers, their issues, and preferences towards a web-based tool
ENTWINE_Needs_Web-basedTools_YACs_Interview_Usability_RawData: Pseudonymized word file including 13 transcripts having the qualitative data from interview and usability testing with the following metadata –
Population: young adult caregivers aged 18-25 years studying in the Netherlands; 13 participants in total
Time point of measurement: data was collected from October 2021 till February 2022
Type of data: qualitative and quantitative
Measurements included, topics covered: Caregiving challenges, support needs and barriers, usability needs, preferences and issues towards eHealth tool
Short procedure conducted to receive data: Online interviews
ENTWINE_Needs_Web-basedTools_YACs_Questionnaires_RawData: Excel sheet having the quantitative questionnaire raw data with the following metadata
Population: young adult caregivers aged 18-25 years studying in the Netherlands; 13 participants in total
Time point of measurement: data was collected from October 2021 till February 2022
Type of data: qualitative and quantitative
Measurements included, topics covered: User experience (user experience questionnaire [8]), satisfaction of using the web-based tool (After scenario questionnaire [9]), Intention of use and persuasive potential of the eHealth tool (persuasive potential questionnaire [10])
Short procedure conducted to receive data: Online questionnaire
Data collection details
All data was collected, processed, and archived in accordance with the General Data Protection Regulation (GDPR) and the FAIR (Findable, Accessible, Interoperable, Reusable) principles under the supervision of the Principal Investigator.
The principal researcher and a team of experts (supervisors) in the field of health psychology and eHealth (University of Twente, The Netherlands) reviewed the scientific quality of the research. The studies were piloted and tested before starting the collection of the data. For the survey study, the researchers monitored the data collection weekly to ensure it was running smoothly.
The ethical review board, Centrale Ethische Toetsingscommissie of the University Medical Center Groningen, The Netherlands (CTc), granted approval for this research (Registration number: 202000623).
Participants digitally signed informed consent for participating in the study.
Terms of use
Interested persons can send a data request by contacting the principal investigator (Prof. dr. Mariët Hagedoorn, University Medical Center Groningen, the Netherlands mariet.hageboorn@umcg.nl).
Interested persons must provide the research plan (including the research question, methodology, and analysis plan) when requesting for the data.
The principal investigator reviews the research plan on its quality and fit with the data and informs the interested person(s).
(Pseudo)anonymous data of those participants who agreed on the reuse of their data is available on request for 15 years from the time of completion of the PhD project.
Data will be available in Excel or SPSS format alongside the variable codebook after the completion of this PhD project and publication of the study results.
References
Wagman P, Håkansson C. Introducing the Occupational Balance Questionnaire (OBQ). Scand J Occup Ther 2014;21(3):227–231. PMID:24649971
Schaufeli WB, Desart S, De Witte H. Burnout assessment tool (Bat)—development, validity, and reliability. Int J Environ Res Public Health 2020;17(24):1–21. PMID:33352940
Watson D, Clark LA, Tellegen A. Development and Validation of Brief Measures of Positive and Negative Affect: The
Facebook
TwitterAccording to the Food and Agricultural Organization (FAO) 123 million Chinese remained undernourished in 2003-2005. That represents 14% of the global total. UNICEF states that 7.2 million of the world's stunted children are located in China. In absolute terms, China continues to rank in the top countries carrying the global burden of under-nutrition. China must-and still can reduce under-nutrition, thus contributing even further to the global attainment of MDG1. In this context that the United Nations Joint Programme, in partnership with the Chinese government, has conducted this study. The key objective is to improve evidence of household food security through a baseline study in six pilot counties in rural China. The results will be used to guide policy and programmes aimed at reducing household food insecurity in the most vulnerable populations in China. The study is not meant to be an exhaustive analysis of the food security situation in the country, but to provide a demonstrative example of food assessment tools that may be replicated or scaled up to other places.
Six rural counties
The survey covered household heads and women between 15-49 years resident of that household. A household is defined as a group of people currently living and eating together "under the same roof" (or in same compound if the household has 2 structures).
Sample survey data [ssd]
The required sample size for the survey was calculated using standard sample size calculations with each county representing a stratum. After the sample size was calculated, a two-stage clustering approach was applied. The first stage is the selection of villages using the probability proportional to size (PPS) method to create a self-weighted sample in which larger population clusters (villages) have a greater chance of selection, proportional to their size. Following the selection of the villages, 12 households within the village were selected using simple random selection.
Floods and landslides prevented the team from visiting two of the selected villages, one in Wuding and one in Panxian, so they substituted them with replacement villages.
Face-to-face [f2f]
The household questionnaire was administered to all households in the survey and included modules on demography, education, migration and remittances, housing and facilities, household assets, agricultural, income activities, expenditure, food sources and consumption, shocks and coping strategies.
The objective of the village questionnaire was to gather contextual information on the six counties for descriptive purposes. In each village visited, a focus group discussion took place on topics including: population of the village, migrants, access to social services such as education and health, infrastructure, access to markets, difficulties facing the village, information on local agricultural practices.
The questionnaires were developed by WFP and Chinese Academy of Agricultural Sciences (CAAS) with inputs from partnering agencies. They were originally formulated in English and then translated into Mandarin. They were pilot tested in the field and corrected as needed. The final interviews were administered in Mandarin with translation provided in the local language when needed.
All questionnaires and modules are provided as external resources.
After data collection, data entry was carried out by CAAS staff in Beijing using EpiData software. The datasets were then exported into SPSS for analysis. Data cleaning was an iterative process throughout the data entry and analysis phases.
Descriptive analysis, correlation analysis, principle component analysis, cluster analysis and various other forms of analyses were conducted using SPSS.
Facebook
TwitterQuantitative data from community observations are stored and managed using SPSS social survey software. The sampling unit used is a harvest event, typically a hunting or fishing event in a particular season. As of 5 September, 2008 we have received and encoded data for 56 harvest events as follows: Harvest type: Mammal (10), Fish (45), Shellfish (1) Community: Gambell (10), Kanchalan (22), Nikolskoye (6), Sandpoint (18) Preliminary SPSS Data structure: Name, Label, Type, Width ID Respondent s Identification Number String 10 INTERNO Interview Number String 2 DATE Date On Which the Interview Took Place Date 8 SEX Gender Numeric 1 YEARBO Year of Birth Numeric 11 VILLAGE Village Where Respndent Resides String 6 LOCATI Respondent Resides in Russia or Alaska Numeric 8 LIVED How Long Respondent Lived in the Area String 100 LANGUAG Language in Which Interiew Conducted Numeric 7 HARVEST Level of Harvester Numeric 4 YEARHU How Many Years Respondent Has Hunted/Fished in the Area Numeric 8 EMPLOY Is the Respondent Employed in a Non-Harvesting Field Numeric 3 TIMEWOR Time Per Week/Month Is Spent in Non-Harvest Work Numeric 8 YEARWOR How Many Years Spent in Non-Harvest Work CATEGORIES Numeric 8 Q1FISHM Is Respondent Hunting Fish or Mammals On Next Trip Numeric 4 SPECIES Species of Fish/Mammal Being Hunted/Fished Numeric 8 Q2RECA Does Respondent Recall When Last Hunt/Fish Trip Occurre Numeric 3 Q2WHEN Date of Last Hunt/Fish Trip String 50 Q2AAGO How Long Ago Was Last Hunt/Fish Trip Numeric 16 Q3FAR How Far Respondent Travelled On Last Hunt/Fish Trip Numeric Q4OFTEN How Often Respondent Hunted/Fished in the Location of Last Trip Numeric 6 Q5AGE Age When Respondent First Went to Location of Last Trip Numeric 18 Q6PROX Prefers Loc. of Last Trip Due to Proximity to Village Numeric 11 Q6ACCES Prefers Location of Last Trip Due to Ease of Access Numeric 11 Q6CATCH Prefers Location of Last Trip Due to Ease of Catching Numeric 11 Q6OTHER Prefers Location of Last Trip Due to Some Other Reason Numeric 11 Q6SPECI Other Reason Prefers Locatin of Last Trip String 200 Q6DONT Respondent Does Not Like Location of Last Trip Numeric 11 Q7RELY Is Location of Last Trip Reliable for Fishing/Hunting Numeric 3 Q8NOTIC In Previous 5-10 Years Has Respondent Noticed Changes at Last Hunt/Fish Location Numeric 3 Q9OTHER Do Others From the Village Also Hunt/Fish at Location of Last Trip Numeric 3 Q10GETA On Last Trip, Was it Easier or More Difficult to Get to Location Numeric 3 Q10GETR On Last Trip Did Respondent Encounter Difficulties Getting to Hunt/Fish Location Numeric 8 Q10ATRA More Difficult to Get to Location of Last Trip Due to Lack of Transportation Numeric 11 Q10AROA More Difficult to Get to Location of Last Trip Due to Poor Road Conditions Numeric 11 Q10AENV More Difficult to Get to Location of Last Trip Due to Poor Environ Conditions Numeric 11 Q10AECO More Diff. to Get to Location of Last Trip Due to Economics Numeric 11 Q10AHEA More Difficult to Get to Location of Last Trip Due to Personal Health Condition Numeric 11 Q10AOTHE More Difficult to Get to Location of Last Trip Due to Other Reasons Numeric 23 Q11TRAD Last Harvest Used for Traditional/Personal Use Numeric 11 Q11CASH Last Harvest Used for Generating Cash or Bartering Numeric 11 Q11REC Last Harvest Used for Recreational Hunting/Fishing Numeric 11 Q11COM Last Harvest Used for Commercial or Business Activity Numeric 11 Q11DOG Last Harvest Used for Feeding Dogs Numeric 11 Q11SHAR Last Harvest Used for Sharing with Friends/Family Numeric 11 Q11OTHE Last Harvest Used for Something Else Numeric 20 Q12QUAN Quantity of XXX Caught on Last Hunt/Fish Trip Numeric 21