In 2023, detached houses were the most expensive type of dwelling in the United Kingdom at an average price of 496,000 British pounds. Flats or maisonettes in converted houses, on the other hand, cost on average 260,000 British pounds, making them 714,000 British pounds less expensive than detached houses or 151,000 British pounds less than the average for all dwelling types. Prices also varied for new and existing housing, with existing properties fetching higher prices, on average.
These statistics are no longer updated by DCLG.
The equivalents of tables 581 to 588 are now published by the Office for National Statistics in the http://www.ons.gov.uk/peoplepopulationandcommunity/housing/bulletins/housepricestatisticsforsmallareas/previousReleases" class="govuk-link">house price statistics for small areas series and tables 576 to 578 in the https://www.ons.gov.uk/peoplepopulationandcommunity/housing/bulletins/housingaffordabilityinenglandandwales/previousReleases" class="govuk-link">housing affordability series.
Tables 531, 542, 563, 575 and 580 have been discontinued and are no longer being updated.
<p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute">MS Excel Spreadsheet</span>, <span class="gem-c-attachment_attribute">91 KB</span></p>
<p class="gem-c-attachment_metadata">This file may not be suitable for users of assistive technology.</p>
<details data-module="ga4-event-tracker" data-ga4-event='{"event_name":"select_content","type":"detail","text":"Request an accessible format.","section":"Request an accessible format.","index_section":1}' class="gem-c-details govuk-details govuk-!-margin-bottom-0" title="Request an accessible format.">
Request an accessible format.
If you use assistive technology (such as a screen reader) and need a version of this document in a more accessible format, please email <a href="mailto:alternativeformats@communities.gov.uk" target="_blank" class="govuk-link">alternativeformats@communities.gov.uk</a>. Please tell us what format you need. It will help us if you say what assistive technology you use.
<p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute">MS Excel Spreadsheet</
The house prices of all house types in Norway increased steadily between 2009 and 2022, followed by a slight decline in 2023. Unlike houses, prices for multi-dwellings did not fall in 2023. Multi-dwelling were also the property type that experienced the strongest growth. At ***** index points, the index for multi-dwelling properties suggests an increase of ** percent since 2015 - the baseline year. How much did Norwegians pay for dwellings in 2021? Oslo appeared to be the most expensive city by dwelling prices that year, followed by Tromsø and Bergen. Number of residential buildings The number of residential buildings in Norway constantly increased during the past decade, peaking in 2023. There were nearly *** million residences in the country. That was an increase of over 100 thousand units, compared to 2010. More than half of Norwegians lived in detached houses The share of residents by housing type was distributed unevenly in Norway in 2023. Approximately ** percent of Norwegian citizens lived in detached houses, whereas ** percent lived in multi-dwelling buildings. The least common housing type was houses with two dwellings that year.
In 2022, house price growth in the UK slowed, after a period of decade-long increase. Nevertheless, in March 2025, prices reached a new peak, with the average home costing ******* British pounds. This figure refers to all property types, including detached, semi-detached, terraced houses, and flats and maisonettes. Compared to other European countries, the UK had some of the highest house prices. How have UK house prices increased over the last 10 years? Property prices have risen dramatically over the past decade. According to the UK house price index, the average house price has grown by over ** percent since 2015. This price development has led to the gap between the cost of buying and renting a property to close. In 2023, buying a three-bedroom house in the UK was no longer more affordable than renting one. Consequently, Brits have become more likely to rent longer and push off making a house purchase until they have saved up enough for a down payment and achieved the financial stability required to make the step. What caused the recent fluctuations in house prices? House prices are affected by multiple factors, such as mortgage rates, supply, and demand on the market. For nearly a decade, the UK experienced uninterrupted house price growth as a result of strong demand and a chronic undersupply. Homebuyers who purchased a property at the peak of the housing boom in July 2022 paid ** percent more compared to what they would have paid a year before. Additionally, 2022 saw the most dramatic increase in mortgage rates in recent history. Between December 2021 and December 2022, the **-year fixed mortgage rate doubled, adding further strain to prospective homebuyers. As a result, the market cooled, leading to a correction in pricing.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
House price prediction dataset
This dataset comprises housing data for various metropolitan cities of India. It includes: - Collection of prices of new and resale houses - The amenities provided for each house
This housing dataset is useful for a range of stakeholders, including real estate agents, property developers, buyers, renters, and researchers interested in analyzing housing markets and trends in metropolitan cities across India. It can be used for market analysis, price prediction, property recommendations, and various other real estate-related tasks.
Shape of dataset : (6207, 40)
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F11965067%2F75861c40e86a4d2d10c044be79542436%2FCapture.JPG?generation=1704918894425981&alt=media" alt="">
Github Link : https://github.com/TusharPaul01/House-Price-Prediction
For more such dataset & code check : https://www.kaggle.com/tusharpaul2001
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Median Sales Price of Houses Sold for the United States (MSPUS) from Q1 1963 to Q1 2025 about sales, median, housing, and USA.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Median price paid for residential property in England and Wales, for all property types by lower layer super output area. Annual data..
The UK House Price Index is a National Statistic.
Download the full UK House Price Index data below, or use our tool to https://landregistry.data.gov.uk/app/ukhpi?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=tool&utm_term=9.30_23_03_22" class="govuk-link">create your own bespoke reports.
Datasets are available as CSV files. Find out about republishing and making use of the data.
Google Chrome is blocking downloads of our UK HPI data files (Chrome 88 onwards). Please use another internet browser while we resolve this issue. We apologise for any inconvenience caused.
This file includes a derived back series for the new UK HPI. Under the UK HPI, data is available from 1995 for England and Wales, 2004 for Scotland and 2005 for Northern Ireland. A longer back series has been derived by using the historic path of the Office for National Statistics HPI to construct a series back to 1968.
Download the full UK HPI background file:
If you are interested in a specific attribute, we have separated them into these CSV files:
http://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Average-prices-2022-01.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=average_price&utm_term=9.30_23_03_22" class="govuk-link">Average price (CSV, 9.3MB)
http://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Average-prices-Property-Type-2022-01.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=average_price_property_price&utm_term=9.30_23_03_22" class="govuk-link">Average price by property type (CSV, 28.2MB)
http://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Sales-2022-01.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=sales&utm_term=9.30_23_03_22" class="govuk-link">Sales (CSV, 4.7MB)
http://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Cash-mortgage-sales-2022-01.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=cash_mortgage-sales&utm_term=9.30_23_03_22" class="govuk-link">Cash mortgage sales (CSV, 6.4MB)
http://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/First-Time-Buyer-Former-Owner-Occupied-2022-01.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=FTNFOO&utm_term=9.30_23_03_22" class="govuk-link">First time buyer and former owner occupier (CSV, 6.1MB)
http://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/New-and-Old-2022-01.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=new_build&utm_term=9.30_23_03_22" class="govuk-link">New build and existing resold property (CSV, 17.1MB)
http://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Indices-2022-01.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=index&utm_term=9.30_23_03_22" class="govuk-link">Index (CSV, 5.9MB)
http://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Indices-seasonally-adjusted-2022-01.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=index_season_adjusted&utm_term=9.30_23_03_22" class="govuk-link">Index seasonally adjusted (CSV, 196KB)
http://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Average-price-seasonally-adjusted-2022-01.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=average-price_season_adjusted&utm_term=9.30_23_03_22" class="govuk-link">Average price seasonally adjus
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This is the unadjusted median house priced for residential property sales (transactions) in the area for a 12 month period with April in the middle (year-ending September). These figures have been produced by the ONS (Office for National Statistics) using the Land Registry (LR) Price Paid data on residential dwelling transactions.
The LR Price Paid data are comprehensive in that they capture changes of ownership for individual residential properties which have sold for full market value and covers both cash sales and those involving a mortgage.
The median is the value determined by putting all the house sales for a given year, area and type in order of price and then selecting the price of the house sale which falls in the middle. The median is less susceptible to distortion by the presence of extreme values than is the mean. It is the most appropriate average to use because it best takes account of the skewed distribution of house prices.
Note that a transaction occurs when a change of freeholder or leaseholder takes place regardless of the amount of money involved and a property can transact more than once in the time period.
The LR records the actual price for which the property changed hands. This will usually be an accurate reflection of the market value for the individual property, but it is not always the case. In order to generate statistics that more accurately reflect market values, the LR has excluded records of houses that were not sold at market value from the dataset. The remaining data are considered a good reflection of market values at the time of the transaction. For full details of exclusions and more information on the methodology used to produce these statistics please see http://www.ons.gov.uk/peoplepopulationandcommunity/housing/qmis/housepricestatisticsforsmallareasqmi
The LR Price Paid data are not adjusted to reflect the mix of houses in a given area. Fluctuations in the types of house that are sold in that area can cause differences between the median transactional value of houses and the overall market value of houses. Therefore these statistics differ to the new UK House Price Index (HPI) which reports mix-adjusted average house prices and house price indices.
If, for a given year, for house type and area there were fewer than 5 sales records in the LR Price Paid data, the house price statistics are not reported. Data is Powered by LG Inform Plus and automatically checked for new data on the 3rd of each month.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This is the unadjusted lower quartile house priced for residential property sales (transactions) in the area for a 12 month period with April in the middle (year-ending September). These figures have been produced by the ONS (Office for National Statistics) using the Land Registry (LR) Price Paid data on residential dwelling transactions.
The LR Price Paid data are comprehensive in that they capture changes of ownership for individual residential properties which have sold for full market value and covers both cash sales and those involving a mortgage.
The lower quartile is the value determined by putting all the house sales for a given year, area and type in order of price and then selecting the price of the house sale which falls three quarters of the way down the list, such that 75Percentage of transactions lie above and 25Percentage lie below that value. These are particularly useful for assessing housing affordability when viewed alongside average and lower quartile income for given areas.
Note that a transaction occurs when a change of freeholder or leaseholder takes place regardless of the amount of money involved and a property can transact more than once in the time period.
The LR records the actual price for which the property changed hands. This will usually be an accurate reflection of the market value for the individual property, but it is not always the case. In order to generate statistics that more accurately reflect market values, the LR has excluded records of houses that were not sold at market value from the dataset. The remaining data are considered a good reflection of market values at the time of the transaction. For full details of exclusions and more information on the methodology used to produce these statistics please see http://www.ons.gov.uk/peoplepopulationandcommunity/housing/qmis/housepricestatisticsforsmallareasqmi
The LR Price Paid data are not adjusted to reflect the mix of houses in a given area. Fluctuations in the types of house that are sold in that area can cause differences between the lower quartile transactional value of houses and the overall market value of houses.
If, for a given year, for house type and area there were fewer than 5 sales records in the LR Price Paid data, the house price statistics are not reported." Data is Powered by LG Inform Plus and automatically checked for new data on the 3rd of each month.
The simple average house price in the UK was higher for existing dwellings than for newly built ones in 2023. In that year, the average price for new housing amounted to 326,000 British pounds, while for existing housing, the price was 331,000 British pounds. Prices also varied for different types of property, with flats or maisonettes in converted houses being the most affordable.
https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy
Explore the Redfin USA Properties Dataset, available in CSV format. This extensive dataset provides valuable insights into the U.S. real estate market, including detailed property listings, prices, property types, and more across various states and cities. Perfect for those looking to conduct in-depth market analysis, real estate investment research, or financial forecasting.
Key Features:
Who Can Benefit From This Dataset:
Download the Redfin USA Properties Dataset to access essential information on the U.S. housing market, ideal for professionals in real estate, finance, and data analytics. Unlock key insights to make informed decisions in a dynamic market environment.
Looking for deeper insights or a custom data pull from Redfin?
Send a request with just one click and explore detailed property listings, price trends, and housing data.
🔗 Request Redfin Real Estate Data
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Real estate price statistics are compiled on the basis of Statbel data. The indicators cover the number of transactions, the median price and the quartile prices of houses and apartments sold. Data by statistical sector available on Statbel under "\2"
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Median price paid for residential property in England and Wales, by property type and administrative geographies. Quarterly rolling annual data. Formerly HPSSA dataset 9
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for All-Transactions House Price Index for the United States (USSTHPI) from Q1 1975 to Q1 2025 about appraisers, HPI, housing, price index, indexes, price, and USA.
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The US residential real estate market, a cornerstone of the American economy, is projected to experience steady growth over the next decade. While the provided CAGR of 2.04% is a modest figure, it reflects a market maturing after a period of significant expansion. This sustained growth is driven by several key factors. Firstly, population growth and urbanization continue to fuel demand for housing, particularly in densely populated areas and emerging suburban markets. Secondly, low interest rates (historically, though this can fluctuate) have made mortgages more accessible, stimulating buyer activity. Thirdly, a robust construction sector, though facing challenges in material costs and labor shortages, is gradually increasing the housing supply, mitigating some of the upward pressure on prices. However, challenges remain. Rising inflation and potential interest rate hikes pose a risk to affordability, potentially dampening demand. Furthermore, the ongoing evolution of remote work is reshaping residential preferences, with a shift toward larger homes in suburban or exurban locations. This trend impacts the relative demand for various property types, potentially increasing the appeal of landed houses and villas compared to apartments and condominiums in certain regions. The segmentation of the market into apartments/condominiums and landed houses/villas provides crucial insights into consumer preferences and investment strategies. High-density urban areas will continue to see strong demand for apartments and condos, while suburban and rural areas are likely to experience a greater increase in landed property sales. Major players like Simon Property Group, Mill Creek Residential, and others are strategically adapting to these trends, focusing on both development and management across various property types and geographic locations. Analyzing regional data within the US (e.g., comparing growth in the Northeast versus the Southwest) will highlight market nuances and potential investment opportunities. While the global data provided is valuable for understanding broader market forces, focusing the analysis on the US market allows for a more granular understanding of the specific drivers, trends, and challenges within this significant segment of the real estate sector. The forecast period (2025-2033) suggests continued, albeit measured, expansion. Recent developments include: May 2022: Resource REIT Inc. completed the sale of all of its outstanding shares of common stock to Blackstone Real Estate Income Trust Inc. for USD 14.75 per share in an all-cash deal valued at USD 3.7 billion, including the assumption of the REIT's debt., February 2022: The largest owner of commercial real estate in the world and private equity company Blackstone is growing its portfolio of residential rentals and commercial properties in the United States. The company revealed that it would shell out about USD 6 billion to buy Preferred Apartment Communities, an Atlanta-based real estate investment trust that owns 44 multifamily communities and roughly 12,000 homes in the Southeast, mostly in Atlanta, Nashville, Charlotte, North Carolina, and the Florida cities of Jacksonville, Orlando, and Tampa.. Key drivers for this market are: Investment Plan Towards Urban Rail Development. Potential restraints include: Italy’s Fragmented Approach to Tenders. Notable trends are: Existing Home Sales Witnessing Strong Growth.
Autoscraping's Zillow USA Real Estate Data is a comprehensive and meticulously curated dataset that covers over 10 million property listings across the United States. This data product is designed to meet the needs of professionals across various sectors, including real estate investment, market analysis, urban planning, and academic research. Our dataset is unique in its depth, accuracy, and timeliness, ensuring that users have access to the most relevant and actionable information available.
What Makes Our Data Unique? The uniqueness of our data lies in its extensive coverage and the precision of the information provided. Each property listing is enriched with detailed attributes, including but not limited to, full addresses, asking prices, property types, number of bedrooms and bathrooms, lot size, and Zillow’s proprietary value and rent estimates. This level of detail allows users to perform in-depth analyses, make informed decisions, and gain a competitive edge in their respective fields.
Furthermore, our data is continually updated to reflect the latest market conditions, ensuring that users always have access to current and accurate information. We prioritize data quality, and each entry is carefully validated to maintain a high standard of accuracy, making this dataset one of the most reliable on the market.
Data Sourcing: The data is sourced directly from Zillow, one of the most trusted names in the real estate industry. By leveraging Zillow’s extensive real estate database, Autoscraping ensures that users receive data that is not only comprehensive but also highly reliable. Our proprietary scraping technology ensures that data is extracted efficiently and without errors, preserving the integrity and accuracy of the original source. Additionally, we implement strict data processing and validation protocols to filter out any inconsistencies or outdated information, further enhancing the quality of the dataset.
Primary Use-Cases and Vertical Applications: Autoscraping's Zillow USA Real Estate Data is versatile and can be applied across a variety of use cases and industries:
Real Estate Investment: Investors can use this data to identify lucrative opportunities, analyze market trends, and compare property values across different regions. The detailed pricing and valuation data allow for comprehensive due diligence and risk assessment.
Market Analysis: Market researchers can leverage this dataset to track real estate trends, evaluate the performance of different property types, and assess the impact of economic factors on property values. The dataset’s nationwide coverage makes it ideal for both local and national market studies.
Urban Planning and Development: Urban planners and developers can use the data to identify growth areas, plan new developments, and assess the demand for different property types in various regions. The detailed location data is particularly valuable for site selection and zoning analysis.
Academic Research: Universities and research institutions can utilize this data for studies on housing markets, urbanization, and socioeconomic trends. The comprehensive nature of the dataset allows for a wide range of academic applications.
Integration with Our Broader Data Offering: Autoscraping's Zillow USA Real Estate Data is part of our broader data portfolio, which includes various datasets focused on real estate, market trends, and consumer behavior. This dataset can be seamlessly integrated with our other offerings to provide a more holistic view of the market. For example, combining this data with our consumer demographic datasets can offer insights into the relationship between property values and demographic trends.
By choosing Autoscraping's data products, you gain access to a suite of complementary datasets that can be tailored to meet your specific needs. Whether you’re looking to gain a comprehensive understanding of the real estate market, identify new investment opportunities, or conduct advanced research, our data offerings are designed to provide you with the insights you need.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Average monthly House Prices (£) for Lincolnshire and Districts. The data shows prices for the following House types: All Houses, Detached, Semi-detached, Terraced, and Flat/maisonette. House Prices shown are based on Land Registry methodology. This dataset is updated on a monthly basis for a rolling 12 month period. Historical data is subject to revision. Source: Land Registry, UK House Price Index statistics. Copyright and licensing: Contains HM Land Registry data © Crown copyright and database right [year]. This data is licensed under the Open Government Licence v3.0.
Mexico's housing market demonstrates significant regional price variations, with Mexico City emerging as the most expensive area for residential property in 2024. The capital city's average house price of 3.91 million Mexican pesos far exceeds the national average of 1.73 million pesos, highlighting the stark contrast in property values across the country. This disparity reflects broader economic and demographic trends shaping Mexico's real estate landscape. Sustained growth in housing prices The Mexican housing market has experienced substantial growth over the past decade, with home prices more than doubling since 2010. By the third quarter of 2023, the nominal house price index reached 255.54 points, representing a 146 percent increase from the baseline year. Even when adjusted for inflation, the real house price index showed a notable 40 percent growth, underscoring the market's resilience and attractiveness to investors. The mortgage market is dominated by three main player types: Infonavit, Fovissste, and commercial banks including Sofomes. In 2023, Infonavit, a scheme by Mexico's National Housing Fund Institute which provides lending to workers in the formal sector, was responsible for the majority of mortgages granted to individuals. Challenges in mortgage lending Despite the overall growth in housing prices, Mexico's mortgage market has faced challenges in recent years. The number of new mortgage loans granted has declined over the past decade, falling by approximately 200,000 loans between 2008 and 2023. This decrease in lending activity may be attributed to various factors, including economic uncertainties and changing consumer preferences. The state of Mexico, which is home to 13 percent of the country's population, likely plays a significant role in shaping these trends, given its large demographic influence on the national housing market.
In 2023, approximately 50 percent of homes sold in Texas, United States fell in the 200,000 to 399,999 U.S. dollar price class. Luxury homes valued at over one million U.S. dollars were almost four percent of all sales. The housing market in Texas grew substantially between 2011 and 2023, with both sales volumes and house prices increasing notably.
In 2023, detached houses were the most expensive type of dwelling in the United Kingdom at an average price of 496,000 British pounds. Flats or maisonettes in converted houses, on the other hand, cost on average 260,000 British pounds, making them 714,000 British pounds less expensive than detached houses or 151,000 British pounds less than the average for all dwelling types. Prices also varied for new and existing housing, with existing properties fetching higher prices, on average.