71 datasets found
  1. Data, R code and output Seurat Objects for single cell RNA-seq analysis of...

    • figshare.com
    application/gzip
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yunshun Chen; Gordon Smyth (2023). Data, R code and output Seurat Objects for single cell RNA-seq analysis of human breast tissues [Dataset]. http://doi.org/10.6084/m9.figshare.17058077.v1
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Yunshun Chen; Gordon Smyth
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains all the Seurat objects that were used for generating all the figures in Pal et al. 2021 (https://doi.org/10.15252/embj.2020107333). All the Seurat objects were created under R v3.6.1 using the Seurat package v3.1.1. The detailed information of each object is listed in a table in Chen et al. 2021.

  2. n

    Data from: Large-scale integration of single-cell transcriptomic data...

    • data.niaid.nih.gov
    • datadryad.org
    zip
    Updated Dec 14, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David McKellar; Iwijn De Vlaminck; Benjamin Cosgrove (2021). Large-scale integration of single-cell transcriptomic data captures transitional progenitor states in mouse skeletal muscle regeneration [Dataset]. http://doi.org/10.5061/dryad.t4b8gtj34
    Explore at:
    zipAvailable download formats
    Dataset updated
    Dec 14, 2021
    Dataset provided by
    Cornell University
    Authors
    David McKellar; Iwijn De Vlaminck; Benjamin Cosgrove
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Skeletal muscle repair is driven by the coordinated self-renewal and fusion of myogenic stem and progenitor cells. Single-cell gene expression analyses of myogenesis have been hampered by the poor sampling of rare and transient cell states that are critical for muscle repair, and do not inform the spatial context that is important for myogenic differentiation. Here, we demonstrate how large-scale integration of single-cell and spatial transcriptomic data can overcome these limitations. We created a single-cell transcriptomic dataset of mouse skeletal muscle by integration, consensus annotation, and analysis of 23 newly collected scRNAseq datasets and 88 publicly available single-cell (scRNAseq) and single-nucleus (snRNAseq) RNA-sequencing datasets. The resulting dataset includes more than 365,000 cells and spans a wide range of ages, injury, and repair conditions. Together, these data enabled identification of the predominant cell types in skeletal muscle, and resolved cell subtypes, including endothelial subtypes distinguished by vessel-type of origin, fibro/adipogenic progenitors defined by functional roles, and many distinct immune populations. The representation of different experimental conditions and the depth of transcriptome coverage enabled robust profiling of sparsely expressed genes. We built a densely sampled transcriptomic model of myogenesis, from stem cell quiescence to myofiber maturation and identified rare, transitional states of progenitor commitment and fusion that are poorly represented in individual datasets. We performed spatial RNA sequencing of mouse muscle at three time points after injury and used the integrated dataset as a reference to achieve a high-resolution, local deconvolution of cell subtypes. We also used the integrated dataset to explore ligand-receptor co-expression patterns and identify dynamic cell-cell interactions in muscle injury response. We provide a public web tool to enable interactive exploration and visualization of the data. Our work supports the utility of large-scale integration of single-cell transcriptomic data as a tool for biological discovery.

    Methods Mice. The Cornell University Institutional Animal Care and Use Committee (IACUC) approved all animal protocols, and experiments were performed in compliance with its institutional guidelines. Adult C57BL/6J mice (mus musculus) were obtained from Jackson Laboratories (#000664; Bar Harbor, ME) and were used at 4-7 months of age. Aged C57BL/6J mice were obtained from the National Institute of Aging (NIA) Rodent Aging Colony and were used at 20 months of age. For new scRNAseq experiments, female mice were used in each experiment.

    Mouse injuries and single-cell isolation. To induce muscle injury, both tibialis anterior (TA) muscles of old (20 months) C57BL/6J mice were injected with 10 µl of notexin (10 µg/ml; Latoxan; France). At 0, 1, 2, 3.5, 5, or 7 days post-injury (dpi), mice were sacrificed and TA muscles were collected and processed independently to generate single-cell suspensions. Muscles were digested with 8 mg/ml Collagenase D (Roche; Switzerland) and 10 U/ml Dispase II (Roche; Switzerland), followed by manual dissociation to generate cell suspensions. Cell suspensions were sequentially filtered through 100 and 40 μm filters (Corning Cellgro #431752 and #431750) to remove debris. Erythrocytes were removed through incubation in erythrocyte lysis buffer (IBI Scientific #89135-030).

    Single-cell RNA-sequencing library preparation. After digestion, single-cell suspensions were washed and resuspended in 0.04% BSA in PBS at a concentration of 106 cells/ml. Cells were counted manually with a hemocytometer to determine their concentration. Single-cell RNA-sequencing libraries were prepared using the Chromium Single Cell 3’ reagent kit v3 (10x Genomics, PN-1000075; Pleasanton, CA) following the manufacturer’s protocol. Cells were diluted into the Chromium Single Cell A Chip to yield a recovery of 6,000 single-cell transcriptomes. After preparation, libraries were sequenced using on a NextSeq 500 (Illumina; San Diego, CA) using 75 cycle high output kits (Index 1 = 8, Read 1 = 26, and Read 2 = 58). Details on estimated sequencing saturation and the number of reads per sample are shown in Sup. Data 1.

    Spatial RNA sequencing library preparation. Tibialis anterior muscles of adult (5 mo) C57BL6/J mice were injected with 10µl notexin (10 µg/ml) at 2, 5, and 7 days prior to collection. Upon collection, tibialis anterior muscles were isolated, embedded in OCT, and frozen fresh in liquid nitrogen. Spatially tagged cDNA libraries were built using the Visium Spatial Gene Expression 3’ Library Construction v1 Kit (10x Genomics, PN-1000187; Pleasanton, CA) (Fig. S7). Optimal tissue permeabilization time for 10 µm thick sections was found to be 15 minutes using the 10x Genomics Visium Tissue Optimization Kit (PN-1000193). H&E stained tissue sections were imaged using Zeiss PALM MicroBeam laser capture microdissection system and the images were stitched and processed using Fiji ImageJ software. cDNA libraries were sequenced on an Illumina NextSeq 500 using 150 cycle high output kits (Read 1=28bp, Read 2=120bp, Index 1=10bp, and Index 2=10bp). Frames around the capture area on the Visium slide were aligned manually and spots covering the tissue were selected using Loop Browser v4.0.0 software (10x Genomics). Sequencing data was then aligned to the mouse reference genome (mm10) using the spaceranger v1.0.0 pipeline to generate a feature-by-spot-barcode expression matrix (10x Genomics).

    Download and alignment of single-cell RNA sequencing data. For all samples available via SRA, parallel-fastq-dump (github.com/rvalieris/parallel-fastq-dump) was used to download raw .fastq files. Samples which were only available as .bam files were converted to .fastq format using bamtofastq from 10x Genomics (github.com/10XGenomics/bamtofastq). Raw reads were aligned to the mm10 reference using cellranger (v3.1.0).

    Preprocessing and batch correction of single-cell RNA sequencing datasets. First, ambient RNA signal was removed using the default SoupX (v1.4.5) workflow (autoEstCounts and adjustCounts; github.com/constantAmateur/SoupX). Samples were then preprocessed using the standard Seurat (v3.2.1) workflow (NormalizeData, ScaleData, FindVariableFeatures, RunPCA, FindNeighbors, FindClusters, and RunUMAP; github.com/satijalab/seurat). Cells with fewer than 750 features, fewer than 1000 transcripts, or more than 30% of unique transcripts derived from mitochondrial genes were removed. After preprocessing, DoubletFinder (v2.0) was used to identify putative doublets in each dataset, individually. BCmvn optimization was used for PK parameterization. Estimated doublet rates were computed by fitting the total number of cells after quality filtering to a linear regression of the expected doublet rates published in the 10x Chromium handbook. Estimated homotypic doublet rates were also accounted for using the modelHomotypic function. The default PN value (0.25) was used. Putative doublets were then removed from each individual dataset. After preprocessing and quality filtering, we merged the datasets and performed batch-correction with three tools, independently- Harmony (github.com/immunogenomics/harmony) (v1.0), Scanorama (github.com/brianhie/scanorama) (v1.3), and BBKNN (github.com/Teichlab/bbknn) (v1.3.12). We then used Seurat to process the integrated data. After initial integration, we removed the noisy cluster and re-integrated the data using each of the three batch-correction tools.

    Cell type annotation. Cell types were determined for each integration method independently. For Harmony and Scanorama, dimensions accounting for 95% of the total variance were used to generate SNN graphs (Seurat::FindNeighbors). Louvain clustering was then performed on the output graphs (including the corrected graph output by BBKNN) using Seurat::FindClusters. A clustering resolution of 1.2 was used for Harmony (25 initial clusters), BBKNN (28 initial clusters), and Scanorama (38 initial clusters). Cell types were determined based on expression of canonical genes (Fig. S3). Clusters which had similar canonical marker gene expression patterns were merged.

    Pseudotime workflow. Cells were subset based on the consensus cell types between all three integration methods. Harmony embedding values from the dimensions accounting for 95% of the total variance were used for further dimensional reduction with PHATE, using phateR (v1.0.4) (github.com/KrishnaswamyLab/phateR).

    Deconvolution of spatial RNA sequencing spots. Spot deconvolution was performed using the deconvolution module in BayesPrism (previously known as “Tumor microEnvironment Deconvolution”, TED, v1.0; github.com/Danko-Lab/TED). First, myogenic cells were re-labeled, according to binning along the first PHATE dimension, as “Quiescent MuSCs” (bins 4-5), “Activated MuSCs” (bins 6-7), “Committed Myoblasts” (bins 8-10), and “Fusing Myoctes” (bins 11-18). Culture-associated muscle stem cells were ignored and myonuclei labels were retained as “Myonuclei (Type IIb)” and “Myonuclei (Type IIx)”. Next, highly and differentially expressed genes across the 25 groups of cells were identified with differential gene expression analysis using Seurat (FindAllMarkers, using Wilcoxon Rank Sum Test; results in Sup. Data 2). The resulting genes were filtered based on average log2-fold change (avg_logFC > 1) and the percentage of cells within the cluster which express each gene (pct.expressed > 0.5), yielding 1,069 genes. Mitochondrial and ribosomal protein genes were also removed from this list, in line with recommendations in the BayesPrism vignette. For each of the cell types, mean raw counts were calculated across the 1,069 genes to generate a gene expression profile for BayesPrism. Raw counts for each spot were then passed to the run.Ted function, using

  3. Scripts for Analysis

    • figshare.com
    txt
    Updated Jul 18, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sneddon Lab UCSF (2018). Scripts for Analysis [Dataset]. http://doi.org/10.6084/m9.figshare.6783569.v2
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jul 18, 2018
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Sneddon Lab UCSF
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Scripts used for analysis of V1 and V2 Datasets.seurat_v1.R - initialize seurat object from 10X Genomics cellranger outputs. Includes filtering, normalization, regression, variable gene identification, PCA analysis, clustering, tSNE visualization. Used for v1 datasets. merge_seurat.R - merge two or more seurat objects into one seurat object. Perform linear regression to remove batch effects from separate objects. Used for v1 datasets. subcluster_seurat_v1.R - subcluster clusters of interest from Seurat object. Determine variable genes, perform regression and PCA. Used for v1 datasets.seurat_v2.R - initialize seurat object from 10X Genomics cellranger outputs. Includes filtering, normalization, regression, variable gene identification, and PCA analysis. Used for v2 datasets. clustering_markers_v2.R - clustering and tSNE visualization for v2 datasets. subcluster_seurat_v2.R - subcluster clusters of interest from Seurat object. Determine variable genes, perform regression and PCA analysis. Used for v2 datasets.seurat_object_analysis_v1_and_v2.R - downstream analysis and plotting functions for seurat object created by seurat_v1.R or seurat_v2.R. merge_clusters.R - merge clusters that do not meet gene threshold. Used for both v1 and v2 datasets. prepare_for_monocle_v1.R - subcluster cells of interest and perform linear regression, but not scaling in order to input normalized, regressed values into monocle with monocle_seurat_input_v1.R monocle_seurat_input_v1.R - monocle script using seurat batch corrected values as input for v1 merged timecourse datasets. monocle_lineage_trace.R - monocle script using nUMI as input for v2 lineage traced dataset. monocle_object_analysis.R - downstream analysis for monocle object - BEAM and plotting. CCA_merging_v2.R - script for merging v2 endocrine datasets with canonical correlation analysis and determining the number of CCs to include in downstream analysis. CCA_alignment_v2.R - script for downstream alignment, clustering, tSNE visualization, and differential gene expression analysis.

  4. Data from: Single cell multiomic analysis identifies key genes...

    • data.niaid.nih.gov
    • search.dataone.org
    • +1more
    zip
    Updated Jul 2, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abhinav Kaushik; Kari Nadeau (2024). Single cell multiomic analysis identifies key genes differentially expressed in innate lymphoid cells from COVID-19 patients [Dataset]. http://doi.org/10.5061/dryad.8931zcrz4
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 2, 2024
    Dataset provided by
    National Institute of Allergy and Infectious Diseaseshttp://www.niaid.nih.gov/
    Authors
    Abhinav Kaushik; Kari Nadeau
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Innate lymphoid cells (ILCs) are enriched at mucosal surfaces where they respond rapidly to environmental stimuli and contribute to both tissue inflammation and healing. To gain insight into the role of ILCs in the pathology and recovery from COVID-19 infection, we employed a multi-omic approach consisting of Abseq and targeted mRNA sequencing to respectively probe the surface marker expression, transcriptional profile and heterogeneity of ILCs in peripheral blood of patients with COVID-19 compared with healthy controls. We found that the frequency of ILC1 and ILC2 cells was significantly increased in COVID-19 patients. Moreover, all ILC subsets displayed a significantly higher frequency of CD69-expressing cells, indicating a heightened state of activation. ILC2s from COVID-19 patients had the highest number of significantly differentially expressed (DE) genes. The most notable genes DE in COVID-19 vs healthy participants included a) genes associated with responses to virus infections and b) genes that support ILC self-proliferation, activation and homeostasis. In addition, differential gene regulatory network analysis revealed ILC-specific regulons and their interactions driving the differential gene expression in each ILC. Overall, this study provides mechanistic insights into the characteristics of ILC subsets activated during COVID-19 infection. Methods Study participants, blood draws and processing Participants were recruited as described previously from adults who had a positive SARS-COV-2 RT-PCR test at Stanford Health Care (NCT04373148). Collection of Covid samples occurred between May to December 2020. The cohort used in this study consisted of asymptomatic (n=2), mild (n=17), and moderate (n=3) COVID-19 infections, some of whom developed long term COVID-19 (n=15). The clinical case severities at the time of diagnosis were defined as asymptomatic, moderate or mild according to the guidelines released by NIH. Long term (LT) COVID was defined as symptoms occurring 30 or more days after infection, consistent with CDC guidelines. Some participants in our study continued to have LT COVID symptoms 90 days after diagnosis (n=12). Exclusion criteria for COVID sample study were NIH severity diagnosis of severe or critical at the time of positive covid test. Samples selected for this study were obtained within 76 days of positive PCR COVID-19 test date. Healthy controls were selected who had sample collection before 2020. Informed consent was obtained from all participants. All protocols were approved by the Stanford Administrative Panel on Human Subjects in Medical Research. Peripheral blood was drawn by venipuncture and using validated and published procedures, peripheral blood mononuclear cells (PBMCs) were isolated by Ficoll-based density gradient centrifugation, frozen in aliquots and stored in liquid nitrogen at -80°C , until thawing. A summary of participant demographics is presented in Supp. Table 1.
    ILC Enrichment, single cell captures for Abseq and targeted mRNAseq Participant PBMCs were thawed, and each sample stained with Sample Tag (BD #633781) at room temperature for 20 minutes. Samples were combined in healthy control or COVID-19 tubes. Cells were surface stained with a panel of fluorochrome-conjugated antibodies (Supp. Table 2) in buffer (PBS with 0.25% BSA and 1mM EDTA) for 20 minutes at room temperature prior to immunomagnetic negative selection for ILCs. Following ILC enrichment using the EasySep human Pan-ILC enrichment kit (StemCell Technologies #17975), cells from healthy and COVID-19 recovered participants were counted and normalized before combining. ILCs were sorted using a BD FACS Aria at the Stanford FACS facility prior to incubation with AbSeq oligo-linked mAbs (Supp. Table 3). Sorted cells were processed by the Stanford Human Immune Monitoring Center (HIMC) using the BD Rhapsody platform. Library was prepared using the BD Immune Response Targeting Panel (BD Kit #633750) with addition of custom gene panel reagents (Supp. Table 4) and sequenced on Illumina NovaSeq 6000 at Stanford Genomics Sequencing Center (SGSC). ILCs were identified as Lineageneg (CD3neg, CD14neg, CD34neg, CD19neg), NKG2Aneg, CD45+ and ILCs further defined as CD127+CD161+ and as subsets: ILC1 (CD117negCRTH2neg), ILC2 (CRTH2+) and ILCp (CD117+CRTH2neg) (Supp. Fig. 1). Computational data analysis The above multi-modal setup allowed paired measurements of cellular transcriptome and cell surface protein abundance. The ILC1, ILC2 and ILCp cells were manually gated based on the abundance profile of CD127, CD117, CD161 and CRTH2 (Supp. Fig. 1). Before the integrative analysis, the complete multi-modal single cell dataset containing ILC subsets was converted into single Seurat object. All the subsequent protein-level and gene-level analyses were performed using multimodal data analysis pipeline of Seurat R package version 4.0. The normalized and scaled protein abundance profile was used for estimating the integrated harmony dimensions using runHarmony function in Seurat R package (reduction= ‘apca’ and group.by.vars = ‘batch’) . The batch corrected harmony embeddings were then used for computing the Uniform Manifold Approximation and Projection (UMAP) dimensions to visualize the clusters of ILC subsets. Differential marker analysis of surface proteins, between two groups of cells (COVID-19 and Healthy cohort), from abseq panels was computed with normalized and scaled expression values using FindMarkers function from Seurat R package (test.use=’wilcox’). Similarly, differential gene expression was performed on normalized and scaled gene expression values from between two groups of cells (COVID-19 and Healthy cohort) using the FindMarkers function from Seurat R package (test.use=’MAST’ and latent.vars=’batch’). Genes with log-fold change > 0.5 and adjusted p-value < 0.05 (method: Benjamini-Hochberg) (were considered as significant for further evaluation. The resulting adjusted p-values box-plots were plotted using ggplot2 R package (version 3.4.2) after computing the number of cells expressing a given protein or gene in each sample. Pathway enrichment analysis of DE genes was performed using web-server metascape (version 3.5). The AUCells score and gene regulatory network analysis was performed using pySCENIC pipeline (version 0.12.1). Gene regulatory network was reconstructed using GRNBoost2 algorithm and the list of TFs in humans (genome version: hg38) were obtained from cisTarget database. (https://resources.aertslab.org/cistarget). Cellular enrichment (aka AUCell) analysis that measures the activity of TF or gene signatures across all single cells was performed using aucell function in pySCENIC python library. The ggplot2 R package (version 3.4.2) was used for boxplot visualization. The differential gene co-expression analysis was performed using scSFMnet R package. Circular plots were generated using the R package circlize (version 0.4.15).

  5. Data used in SeuratIntegrate paper

    • zenodo.org
    application/gzip, bin +2
    Updated May 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florian Specque; Florian Specque; Macha Nikolski; Macha Nikolski; Domitille Chalopin; Domitille Chalopin (2025). Data used in SeuratIntegrate paper [Dataset]. http://doi.org/10.5281/zenodo.15496601
    Explore at:
    bin, pdf, txt, application/gzipAvailable download formats
    Dataset updated
    May 23, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Florian Specque; Florian Specque; Macha Nikolski; Macha Nikolski; Domitille Chalopin; Domitille Chalopin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This repository gathers the data and code used to generate hepatocellular carcinoma analyses in the paper presenting SeuratIntegrate. It contains the scripts to reproduce the figures presented in the article. Some figures are also available as pdf files.

    To be able to fully reproduce the results from the paper, one shoud:

    • download all the files
    • install R 4.3.3, with correspondig base R packages (stats, graphics, grDevices, utils, datasets, methods and base)
    • install R packages listed in the file sessionInfo.txt
    • install the provided version of SeuratIntegrate. In an R session, run:
    remotes::install_local("path/to/SeuratIntegrate_0.4.1.tar.gz")
    • install (mini)conda if necessary (we used miniconda version 23.11.0)
    • install the conda environments (if it fails with the *package-list.yml files, use the *package-list-from-history.yml files instead):
    conda env create --file SeuratIntegrate_bbknn_package-list.yml
    conda env create --file SeuratIntegrate_scanorama_package-list.yml
    conda env create --file SeuratIntegrate_scvi-tools_package-list.yml
    conda env create --file SeuratIntegrate_trvae_package-list.yml
    • open an R session to make the conda environments usable by SeuratIntegrate:
    library(SeuratIntegrate)
    
    UpdateEnvCache("bbknn", conda.env = "SeuratIntegrate_bbknn", conda.env.is.path = FALSE)
    UpdateEnvCache("scanorama", conda.env = "SeuratIntegrate_scanorama", conda.env.is.path = FALSE)
    UpdateEnvCache("scvi", conda.env = "SeuratIntegrate_scvi-tools", conda.env.is.path = FALSE)
    UpdateEnvCache("trvae", conda.env = "SeuratIntegrate_trvae", conda.env.is.path = FALSE)

    Once done, running the code in integrate.R should produce reproducible results. Note that lines 3 to 6 from integrate.R should be adapted to the user's setup.
    integrate.R is subdivided into six main parts:

    1. Preparation: lines 1-56
    2. Preprocessing: lines 58-74
    3. Integration: lines 76-121
    4. Processing of integration outputs: lines 126-267
    5. Scoring of integration outputs: lines 269-353
    6. Plotting: lines 380-507

    Intermediate SeuratObjects have been saved between steps 3 and 4 and 5 and 6 (liver10k_integrated_object.RDS and liver10k_integrated_scored_object.RDS respectively). It is possible to start with these intermediate SeuratObjects to avoid the preceding steps, given that the Preparation step is always run before.

  6. f

    ProjecTILs murine reference atlas of tumor-infiltrating T cells, version 1

    • figshare.com
    application/gzip
    Updated Jun 29, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Massimo Andreatta; Santiago Carmona (2023). ProjecTILs murine reference atlas of tumor-infiltrating T cells, version 1 [Dataset]. http://doi.org/10.6084/m9.figshare.12478571.v2
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    Jun 29, 2023
    Dataset provided by
    figshare
    Authors
    Massimo Andreatta; Santiago Carmona
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    We have developed ProjecTILs, a computational approach to project new data sets into a reference map of T cells, enabling their direct comparison in a stable, annotated system of coordinates. Because new cells are embedded in the same space of the reference, ProjecTILs enables the classification of query cells into annotated, discrete states, but also over a continuous space of intermediate states. By comparing multiple samples over the same map, and across alternative embeddings, the method allows exploring the effect of cellular perturbations (e.g. as the result of therapy or genetic engineering) and identifying genetic programs significantly altered in the query compared to a control set or to the reference map. We illustrate the projection of several data sets from recent publications over two cross-study murine T cell reference atlases: the first describing tumor-infiltrating T lymphocytes (TILs), the second characterizing acute and chronic viral infection.To construct the reference TIL atlas, we obtained single-cell gene expression matrices from the following GEO entries: GSE124691, GSE116390, GSE121478, GSE86028; and entry E-MTAB-7919 from Array-Express. Data from GSE124691 contained samples from tumor and from tumor-draining lymph nodes, and were therefore treated as two separate datasets. For the TIL projection examples (OVA Tet+, miR-155 KO and Regnase-KO), we obtained the gene expression counts from entries GSE122713, GSE121478 and GSE137015, respectively.Prior to dataset integration, single-cell data from individual studies were filtered using TILPRED-1.0 (https://github.com/carmonalab/TILPRED), which removes cells not enriched in T cell markers (e.g. Cd2, Cd3d, Cd3e, Cd3g, Cd4, Cd8a, Cd8b1) and cells enriched in non T cell genes (e.g. Spi1, Fcer1g, Csf1r, Cd19). Dataset integration was performed using STACAS (https://github.com/carmonalab/STACAS), a batch-correction algorithm based on Seurat 3. For the TIL reference map, we specified 600 variable genes per dataset, excluding cell cycling genes, mitochondrial, ribosomal and non-coding genes, as well as genes expressed in less than 0.1% or more than 90% of the cells of a given dataset. For integration, a total of 800 variable genes were derived as the intersection of the 600 variable genes of individual datasets, prioritizing genes found in multiple datasets and, in case of draws, those derived from the largest datasets. We determined pairwise dataset anchors using STACAS with default parameters, and filtered anchors using an anchor score threshold of 0.8. Integration was performed using the IntegrateData function in Seurat3, providing the anchor set determined by STACAS, and a custom integration tree to initiate alignment from the largest and most heterogeneous datasets.Next, we performed unsupervised clustering of the integrated cell embeddings using the Shared Nearest Neighbor (SNN) clustering method implemented in Seurat 3 with parameters {resolution=0.6, reduction=”umap”, k.param=20}. We then manually annotated individual clusters (merging clusters when necessary) based on several criteria: i) average expression of key marker genes in individual clusters; ii) gradients of gene expression over the UMAP representation of the reference map; iii) gene-set enrichment analysis to determine over- and under- expressed genes per cluster using MAST. In order to have access to predictive methods for UMAP, we recomputed PCA and UMAP embeddings independently of Seurat3 using respectively the prcomp function from basic R package “stats”, and the “umap” R package (https://github.com/tkonopka/umap).

  7. d

    Transcription start site analysis for heterogenous CD4+ T cells using 5′...

    • search.dataone.org
    Updated Jul 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Akiko Oguchi; Yasuhiro Murakawa (2025). Transcription start site analysis for heterogenous CD4+ T cells using 5′ scRNA-seq [Dataset]. http://doi.org/10.5061/dryad.gtht76hv9
    Explore at:
    Dataset updated
    Jul 30, 2025
    Dataset provided by
    Dryad Digital Repository
    Authors
    Akiko Oguchi; Yasuhiro Murakawa
    Description

    These datasets are generated by ReapTEC (read-level pre-filtering and transcribed enhancer call) using 5' single-cell RNA-seq data on human heterogenous CD4+ T cells. By taking advantage of a unique “cap signature†derived from the 5′-end of a transcript, ReapTEC simultaneously profiles gene expression and enhancer activity at nucleotide resolution using 5′-end single-cell RNA-sequencing (5′ scRNA-seq). The detail of ReapTEC pipeline is described in https://github.com/MurakawaLab/ReapTEC., , , README: Transcription start site analysis for heterogenous CD4+ T cells using 5′ scRNA-seq

    https://doi.org/10.5061/dryad.gtht76hv9

    Description of the data and file structure

    Data_summary.xlsx.zip: Summary of single-cell experiments in this study.

    5scCTSSbed_All.zip: There are 102 files containing count data for analyzing transcription start site (TSS) signals. Details are as follows.

    Our original raw sequencing data and processed data of 5′ scRNA-seq have been deposited to National Bioscience Database Center (NBDC) Human Database (accession code: hum0350). Raw sequencing data originated from human subjects have been deposited to Japanese Genotype-phenotype Archive (JGA, accession code: JGAS000689). We retrieved 5′ scRNA-seq data for human memory CD4+ T cells stimulated with viral antigens from the Gene Expression Omnibus database (accession number GSE152522). In total, 102 5′ scRNA-seq datasets were processed by ReapTEC pipeline (https://github.com/MurakawaLab/ReapTEC)....

  8. f

    Skin sc-RNASeq from seven body sites (face, scalp, axilla, palmoplantar,...

    • plus.figshare.com
    bin
    Updated Mar 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lam C Tsoi; Rachael Bogle; Johann Gudjonsson; Meri Oliva; Bridget Riley-Gillis (2025). Skin sc-RNASeq from seven body sites (face, scalp, axilla, palmoplantar, arm, leg, and back) [Dataset]. http://doi.org/10.25452/figshare.plus.25696620.v2
    Explore at:
    binAvailable download formats
    Dataset updated
    Mar 11, 2025
    Dataset provided by
    Figshare+
    Authors
    Lam C Tsoi; Rachael Bogle; Johann Gudjonsson; Meri Oliva; Bridget Riley-Gillis
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This sc-RNAseq dataset is composed of disease-unaffected epidermal samples from 96 skin biopsies: 18 from published datasets - GSE173706, GSE249279 – and 78 newly generated ones. Biopsy sample and protocol details, and curated cell-type signature genes, are available in the scRNASeq_source_info_FigShare spreadsheet of this dataset. Processed Seurat object are provided herein. Raw data are available in SRA (id PRJNA1054546). Biopsies originated from seven body sites (face, scalp, axilla, palmoplantar, arm, leg, and back). The skin biopsies were separated into epidermis and dermis before dissociated and enriched for various cell fractions (keratinocytes, fibroblasts, and endothelial cells) and immune cells (myeloid and lymphoid cells) to up sample rare cell types. In total, across body sites, 274,834 cells were profiled, including 96,194 keratinocytes. Seurat v3.0. was utilized to normalize, scale, and reduce the dimensionality of the data. Low quality cells containing less than 200 genes per cell as well as greater than 5,000 genes per cell were filtered out. Cells containing more mitochondrial genes than the permitted quantile of 0.05 were removed. Ambient RNA was removed using R package SoupX v1.6.2. Doublets were removed using scDblFinder v1.12.0. Principal components (PC) were obtained from the topmost 2,000 variable genes, and the Uniform Manifold Approximation and Projection (UMAP) dimensional reduction technique was applied to the 30 topmost variable PC-reduced dataset. Batch effect correction was performed utilizing harmony v1.0, using donor as batch. After batch correction, cells were clustered using shared nearest neighbor modularity optimization-based clustering. Cluster marker genes were identified with FindAllMarkers; cluster corresponding cell type was identified by comparing marker genes to curated cell-type signature genes. Differential expression by keratinocyte subtype was performed with Seurat (v4.3.0) FindMarkers function by comparing keratinocyte subtype to non-keratinocyte clusters. The log fold-change of the average expression between a keratinocyte subtype cluster compared to the rest of clusters is utilized as keratinocyte-subtype gene expression statistic.

  9. Processed Seurat Object of scRNAseq data from wildtype and CaMKK2 KO immune...

    • zenodo.org
    bin
    Updated Jun 17, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    William Tomaszewski; William Tomaszewski (2022). Processed Seurat Object of scRNAseq data from wildtype and CaMKK2 KO immune infiltrate of CT2a preclinical murine glioma [Dataset]. http://doi.org/10.5281/zenodo.6654420
    Explore at:
    binAvailable download formats
    Dataset updated
    Jun 17, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    William Tomaszewski; William Tomaszewski
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This repository contains the processed Seurat objects generated from the raw data deposited at the Gene Expression Omnibus (GEO) under GSE197879.

    Details about the experiment and sequencing are available under GSE197879.

    Information on how the Seurat objects were created can be found in this GitHub repository https://github.com/wht10/CT2A_scRNAseq_CaMKK2KOvWT .

    Notable metadata within each Seurat object:

    1. Processed_CD45_Live_Fig2b.rds

    • Genotype - whether the cell is from a WT or CaMKK2 KO mouse
    • HTO_maxID - The biological replicate that the cell came from (4 biological replicates per genotype)
    • MouseID - A concatenation between the genotype and HTO_maxID, providing a unique identifier for each biological replicate
    • Cell.Type - The cell type annotations for each cell. Can be assigned to "Idents()" to change the name of the cell identities.
    • Geno.Ident - A concatenation between Genotype and Cell.Type. By re-assigning this to "Idents()" "FindMarkers()" can be used to investigate differentially expressed genes within a cell-type between genotypes.

    2. Reclustered_TILs_Fig3a.rds

    • Genotype - whether the cell is from a WT or CaMKK2 KO mouse
    • HTO_maxID - The biological replicate that the cell came from (4 biological replicates per genotype)
    • MouseID - A concatenation between the genotype and HTO_maxID, providing a unique identifier for each biological replicate
    • Celltype - The cell type annotations for each cell. Can be assigned to "Idents()" to change the name of the cell identities.
    • Geno_Ident - A concatenation between Genotype and cell-type. By re-assigning this to "Idents()" "FindMarkers()" can be used to investigate differentially expressed genes within a cell-type between genotypes.
  10. z

    Single-cell RNA-Seq and TCR-Seq analysis of PD-1+ CD8+ T-cells responding to...

    • zenodo.org
    bin, csv, zip
    Updated Oct 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bertram Bengsch; Bertram Bengsch; Sagar; Sagar; Zhen Zhang; Zhen Zhang (2024). Single-cell RNA-Seq and TCR-Seq analysis of PD-1+ CD8+ T-cells responding to anti-PD-1 and anti-PD-1/CTLA-4 immunotherapy in melanoma [Dataset]. http://doi.org/10.5281/zenodo.13971562
    Explore at:
    bin, csv, zipAvailable download formats
    Dataset updated
    Oct 24, 2024
    Dataset provided by
    Zenodo
    Authors
    Bertram Bengsch; Bertram Bengsch; Sagar; Sagar; Zhen Zhang; Zhen Zhang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset details the scRNASeq and TCR-Seq analysis of sorted PD-1+ CD8+ T cells from patients with melanoma treated with checkpoint therapy (anti-PD-1 monotherapy and anti-PD-1 & anti-CTLA-4 combination therapy) at baseline and after the first cycle of therapy. A major publication using this dataset is accessible here: (reference)

    *experimental design

    Single-cell RNA sequencing was performed using 10x Genomics with feature barcoding technology to multiplex cell samples from different patients undergoing mono or dual therapy so that they can be loaded on one well to reduce costs and minimize technical variability. Hashtag oligomers (oligos) were obtained as purified and already oligo-conjugated in TotalSeq-C format from BioLegend. Cells were thawed, counted and 20 million cells per patient and time point were used for staining. Cells were stained with barcoded antibodies together with a staining solution containing antibodies against CD3, CD4, CD8, PD-1/IgG4 and fixable viability dye (eBioscience) prior to FACS sorting. Barcoded antibody concentrations used were 0.5 µg per million cells, as recommended by the manufacturer (BioLegend) for flow cytometry applications. After staining, cells were washed twice in PBS containing 2% BSA and 0.01% Tween 20, followed by centrifugation (300 xg 5 min at 4 °C) and supernatant exchange. After the final wash, cells were resuspended in PBS and filtered through 40 µm cell strainers and proceeded for sorting. Sorted cells were counted and approximately 75,000 cells were processed through 10x Genomics single-cell V(D)J workflow according to the manufacturer’s instructions. Gene expression, hashing and TCR libraries were pooled to desired quantities to obtain the sequencing depths of 15,000 reads per cell for gene expression libraries and 5,000 reads per cell for hashing and TCR libraries. Libraries were sequenced on a NovaSeq 6000 flow cell in a 2X100 paired-end format.

    *extract protocol

    PBMCs were thawed, counted and 20 million cells per patient and time point were used for staining. Cells were stained with barcoded antibodies together with a staining solution containing antibodies against CD3, CD4, CD8, PD-1/IgG4 and fixable viability dye (eBioscience) prior to FACS sorting. Barcoded antibody concentrations used were 0.5 µg per million cells, as recommended by the manufacturer (BioLegend) for flow cytometry applications. After staining, cells were washed twice in PBS containing 2% BSA and 0.01% Tween 20, followed by centrifugation (300 xg 5 min at 4 °C) and supernatant exchange. After the final wash, cells were resuspended in PBS and filtered through 40 µm cell strainers and proceeded for sorting. Sorted cells were counted and approximately 75,000 cells were processed through 10x Genomics single-cell V(D)J workflow according to the manufacturer’s instructions.

    *library construction protocol

    Sorted cells were counted and approximately 75,000 cells were processed through 10x Genomics single-cell V(D)J workflow according to the manufacturer’s instructions. Gene expression, hashing and TCR libraries were pooled to desired quantities to obtain the sequencing depths of 15,000 reads per cell for gene expression libraries and 5,000 reads per cell for hashing and TCR libraries. Libraries were sequenced on a NovaSeq 6000 flow cell in a 2X100 paired-end format.

    *library strategy

    scRNA-seq and scTCR-seq

    *data processing step

    Pre-processing of sequencing results to generate count matrices (gene expression and HTO barcode counts) was performed using the 10x genomics Cell Ranger pipeline.

    Further processing was done with Seurat (cell and gene filtering, hashtag identification, clustering, differential gene expression analysis based on gene expression).

    *genome build/assembly

    Alignment was performed using prebuilt Cell Ranger human reference GRCh38.

    *processed data files format and content

    RNA counts and HTO counts are in sparse matrix format and TCR clonotypes are in csv format.

    Datasets were merged and analyzed by Seurat and the analyzed objects are in rds format.

    file name

    file checksum

    PD1CD8_160421_filtered_feature_bc_matrix.zip

    da2e006d2b39485fd8cf8701742c6d77

    PD1CD8_190421_filtered_feature_bc_matrix.zip

    e125fc5031899bba71e1171888d78205

    PD1CD8_160421_filtered_contig_annotations.csv

    927241805d507204fbe9ef7045d0ccf4

    PD1CD8_190421_filtered_contig_annotations.csv

    8ca544d27f06e66592b567d3ab86551e

    *processed data file

    antibodies/tags

    PD1CD8_160421_filtered_feature_bc_matrix.zip

    none

    PD1CD8_160421_filtered_feature_bc_matrix.zip

    TotalSeq™-C0251 anti-human Hashtag 1 Antibody - (HASH_1) - M1_base_monotherapy
    TotalSeq™-C0252 anti-human Hashtag 2 Antibody - (HASH_2) - M1_post_monotherapy
    TotalSeq™-C0253 anti-human Hashtag 3 Antibody - (HASH_3) - C1_base_combined_therapy
    TotalSeq™-C0254 anti-human Hashtag 4 Antibody - (HASH_4) - C1_post_combined_therapy
    TotalSeq™-C0255 anti-human Hashtag 5 Antibody - (HASH_5) - C2_base_combined_therapy
    TotalSeq™-C0256 anti-human Hashtag 6 Antibody - (HASH_6) - C2_post_combined_therapy

    PD1CD8_160421_filtered_contig_annotations.csv

    none

    PD1CD8_190421_filtered_feature_bc_matrix.zip

    none

    PD1CD8_190421_filtered_feature_bc_matrix.zip

    TotalSeq™-C0251 anti-human Hashtag 1 Antibody - (HASH_1) - M2_base_monotherapy
    TotalSeq™-C0252 anti-human Hashtag 2 Antibody - (HASH_2) - M2_post_monotherapy
    TotalSeq™-C0253 anti-human Hashtag 3 Antibody - (HASH_3) - M3_base_monotherapy
    TotalSeq™-C0254 anti-human Hashtag 4 Antibody - (HASH_4) - M3_post_monotherapy
    TotalSeq™-C0255 anti-human Hashtag 5 Antibody - (HASH_5) - C3_base_combined_therapy
    TotalSeq™-C0256 anti-human Hashtag 6 Antibody - (HASH_6) - C3_post_combined_therapy

    PD1CD8_190421_filtered_contig_annotations.csv

    none

  11. l

    cellCounts

    • opal.latrobe.edu.au
    • researchdata.edu.au
    bin
    Updated Dec 19, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yang Liao; Dinesh Raghu; Bhupinder Pal; Lisa Mielke; Wei Shi (2022). cellCounts [Dataset]. http://doi.org/10.26181/21588276.v3
    Explore at:
    binAvailable download formats
    Dataset updated
    Dec 19, 2022
    Dataset provided by
    La Trobe
    Authors
    Yang Liao; Dinesh Raghu; Bhupinder Pal; Lisa Mielke; Wei Shi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This page includes the data and code necessary to reproduce the results of the following paper: Yang Liao, Dinesh Raghu, Bhupinder Pal, Lisa Mielke and Wei Shi. cellCounts: fast and accurate quantification of 10x Chromium single-cell RNA sequencing data. Under review. A Linux computer running an operating system of CentOS 7 (or later) or Ubuntu 20.04 (or later) is recommended for running this analysis. The computer should have >2 TB of disk space and >64 GB of RAM. The following software packages need to be installed before running the analysis. Software executables generated after installation should be included in the $PATH environment variable.

    R (v4.0.0 or newer) https://www.r-project.org/ Rsubread (v2.12.2 or newer) http://bioconductor.org/packages/3.16/bioc/html/Rsubread.html CellRanger (v6.0.1) https://support.10xgenomics.com/single-cell-gene-expression/software/overview/welcome STARsolo (v2.7.10a) https://github.com/alexdobin/STAR sra-tools (v2.10.0 or newer) https://github.com/ncbi/sra-tools Seurat (v3.0.0 or newer) https://satijalab.org/seurat/ edgeR (v3.30.0 or newer) https://bioconductor.org/packages/edgeR/ limma (v3.44.0 or newer) https://bioconductor.org/packages/limma/ mltools (v0.3.5 or newer) https://cran.r-project.org/web/packages/mltools/index.html

    Reference packages generated by 10x Genomics are also required for this analysis and they can be downloaded from the following link (2020-A version for individual human and mouse reference packages should be selected): https://support.10xgenomics.com/single-cell-gene-expression/software/downloads/latest After all these are done, you can simply run the shell script ‘test-all-new.bash’ to perform all the analyses carried out in the paper. This script will automatically download the mixture scRNA-seq data from the SRA database, and it will output a text file called ‘test-all.log’ that contains all the screen outputs and speed/accuracy results of CellRanger, STARsolo and cellCounts.

  12. Processed Seurat objects for GeneTrajectory inference (Gene Trajectory...

    • figshare.com
    application/gzip
    Updated Feb 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rihao Qu; Peggy Myung (2024). Processed Seurat objects for GeneTrajectory inference (Gene Trajectory Inference for Single-cell Data by Optimal Transport Metrics) [Dataset]. http://doi.org/10.6084/m9.figshare.25243225.v1
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    Feb 19, 2024
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Rihao Qu; Peggy Myung
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    These are processed Seurat objects for the two biological datasets in GeneTrajectory inference (https://github.com/KlugerLab/GeneTrajectory/):Human myeloid dataset analysisMyeloid cells were extracted from a publicly available 10x scRNA-seq dataset (https:// support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.0/pbmc 10k v3). QC was performed using the same workflow in (https://github.com/satijalab/ Integration2019/blob/master/preprocessing scripts/pbmc 10k v3.R). After standard normalization, highly-variable gene selection and scaling using the Seurat R package, we applied PCA and retained the top 30 principal components. Four sub-clusters of myeloid cells were identified based on Louvian clustering with a resolution of 0.3. Wilcoxon rank-sum test was employed to find cluster-specific gene markers for cell type annotation.For gene trajectory inference, we first applied Diffusion Map on the cell PC embedding (using a local-adaptive kernel, each bandwidth is determined by the distance to its k-nearest neighbor, k = 10) to generate a spectral embedding of cells. We constructed a cell-cell kNN (k = 10) graph based on their coordinates of the top 5 non-trivial Diffusion Map eigenvectors. Among the top 2,000 variable genes, genes expressed by 0.5% − 75% of cells were retained for pairwise gene-gene Wasserstein distance computation. The original cell graph was coarse-grained into a graph of size 1,000. We then built a gene-gene graph where the affinity between genes is transformed from the Wasserstein distance using a Gaussian kernel (local-adaptive, k = 5). Diffusion Map was employed to visualize the embedding of gene graph. For trajectory identification, we used a series of time steps (11,21,8) to extract three gene trajectories. Mouse embryo skin data analysisWe separated out dermal cell populations from the newly collected mouse embryo skin samples. Cells from the wildtype and the Wls mutant were pooled for analyses. After standard normalization, highly-variable gene selection and scaling using Seurat, we applied PCA and retained the top 30 principal components. Three dermal celltypes were stratified based on the expression of canonical dermal markers, including Sox2, Dkk1, and Dkk2. For gene trajectory inference, we first applied Diffusion Map on the cell PC embedding (using a local-adaptive kernel bandwidth, k = 10) to generate a spectral embedding of cells. We constructed a cell-cell kNN (k = 10) graph based on their coordinates of the top 10 non-trivial Diffusion Map eigenvectors. Among the top 2,000 variable genes, genes expressed by 1% − 50% of cells were retained for pairwise gene-gene Wasserstein distance computation. The original cell graph was coarse-grained into a graph of size 1,000. We then built a gene-gene graph where the affinity between genes is transformed from the Wasserstein distance using a Gaussian kernel (local-adaptive, k = 5). Diffusion Map was employed to visualize the embedding of gene graph. For trajectory identification, we used a series of time steps (9,16,5) to sequentially extract three gene trajectories. To compare the differences between the wiltype and the Wls mutant, we stratified Wnt-active UD cells into seven stages according to their expression profiles of the genes binned along the DC gene trajectory.

  13. Data from: Systematic reconstruction of molecular pathway signatures using...

    • zenodo.org
    bin, pdf, txt, zip
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Longda Jiang; Longda Jiang; Carol Dalgarno; Carol Dalgarno; Efthymia Papalexi; Efthymia Papalexi; Isabella Mascio; Isabella Mascio; Hans-Hermann Wessels; Hans-Hermann Wessels; Huiyoung Yun; Huiyoung Yun; Nika Iremadze; Gila Lithwick-Yanai; Doron Lipson; Rahul Satija; Rahul Satija; Nika Iremadze; Gila Lithwick-Yanai; Doron Lipson (2025). Systematic reconstruction of molecular pathway signatures using scalable single-cell perturbation screens [Dataset]. http://doi.org/10.5281/zenodo.14518762
    Explore at:
    pdf, bin, zip, txtAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Longda Jiang; Longda Jiang; Carol Dalgarno; Carol Dalgarno; Efthymia Papalexi; Efthymia Papalexi; Isabella Mascio; Isabella Mascio; Hans-Hermann Wessels; Hans-Hermann Wessels; Huiyoung Yun; Huiyoung Yun; Nika Iremadze; Gila Lithwick-Yanai; Doron Lipson; Rahul Satija; Rahul Satija; Nika Iremadze; Gila Lithwick-Yanai; Doron Lipson
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This repo contains Seurat objects, differential expression analysis results, and pathway gene lists for the manuscript "Systematic reconstruction of molecular pathway signatures using scalable single-cell perturbation screens"
    List of files:

    1. Seurat_object_IFNB_Perturb_seq.rds: Seurat object of the Perturb-seq data for Interferon-beta pathway
    2. Seurat_object_IFNG_Perturb_seq.rds: Seurat object of the Perturb-seq data for Interferon-gamma pathway
    3. Seurat_object_TNFA_Perturb_seq.rds: Seurat object of the Perturb-seq data for TNF-alpha pathway
    4. Seurat_object_TGFB1_Perturb_seq.rds: Seurat object of the Perturb-seq data for TGF-beta1 pathway
    5. Seurat_object_INS_Perturb_seq.rds: Seurat object of the Perturb-seq data for insulin pathway
    6. Pathway_genelist.rds: The pathway gene lists from MultiCCA analysis
    7. Pathway_Exclusive_genelist.rds: The pathway exclusive gene lists generated from Pathway_genelist.rds
    8. HClust_Pathway_celltype_specific_genelist.rds: The cell-line specific pathway gene lists from hierarchical clustering analysis independently done on each cell line
    9. DE_results_all_pathway.zip: The DE test results for all the regulators, cell lines, and pathways (from Mixscale weighted DE test.)
    10. Bulk_RNAseq_Seurat_object_IFNG_and_TGFB_stim.rds: Seurat object for the bulk RNA-seq data for interferon-gamma and TGF-beta stimulation experiments
    11. Parse_Guide_Capture_Protocol.pdf: The guide RNA capture protocol developed for Parse Evercode Whole Transcriptome kit

  14. Lung ECs scRNA-seq: Gene Expression and Metadata

    • zenodo.org
    application/gzip
    Updated Oct 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eric Engelbrecht; Eric Engelbrecht (2024). Lung ECs scRNA-seq: Gene Expression and Metadata [Dataset]. http://doi.org/10.5281/zenodo.14004479
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    Oct 29, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Eric Engelbrecht; Eric Engelbrecht
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Normalized gene expression and cell metadata derived from a Seurat object.

  15. pbmc single cell RNA-seq matrix

    • zenodo.org
    csv
    Updated May 4, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Samuel Buchet; Samuel Buchet; Francesco Carbone; Morgan Magnin; Morgan Magnin; Mickaël Ménager; Olivier Roux; Olivier Roux; Francesco Carbone; Mickaël Ménager (2021). pbmc single cell RNA-seq matrix [Dataset]. http://doi.org/10.5281/zenodo.4730807
    Explore at:
    csvAvailable download formats
    Dataset updated
    May 4, 2021
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Samuel Buchet; Samuel Buchet; Francesco Carbone; Morgan Magnin; Morgan Magnin; Mickaël Ménager; Olivier Roux; Olivier Roux; Francesco Carbone; Mickaël Ménager
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Single cell RNA-sequencing dataset of peripheral blood mononuclear cells (pbmc: T, B, NK and monocytes) extracted from two healthy donors.

    Cells labeled as C26 come from a 30 years old female and cells labeled as C27 come from a 53 years old male. Cells have been isolated from blood using ficoll. Samples were sequenced using standard 3' v3 chemistry protocols by 10x genomics. Cellranger v4.0.0 was used for the processing, and reads were aligned to the ensembl GRCg38 human genome (GRCg38_r98-ensembl_Sept2019). QC metrics were calculated on the count matrix generated by cellranger (filtered_feature_bc_matrix). Cells with less than 3 genes per cells, less than 500 reads per cell and more than 20% of mithocondrial genes were discarded.

    The processing steps was performed with the R package Seurat (https://satijalab.org/seurat/), including sample integration, data normalisation and scaling, dimensional reduction, and clustering. SCTransform method was adopted for the normalisation and scaling steps. The clustered cells were manually annotated using known cell type markers.

    Files content:

    - raw_dataset.csv: raw gene counts

    - normalized_dataset.csv: normalized gene counts (single cell matrix)

    - cell_types.csv: cell types identified from annotated cell clusters

    - cell_types_macro.csv: cell macro types

    - UMAP_coordinates.csv: 2d cell coordinates computed with UMAP algorithm in Seurat

  16. Spatial Transcriptomics of chicken pectoralis major muscle

    • agdatacommons.nal.usda.gov
    bin
    Updated Mar 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of Delaware (2025). Spatial Transcriptomics of chicken pectoralis major muscle [Dataset]. https://agdatacommons.nal.usda.gov/articles/dataset/Spatial_Transcriptomics_of_chicken_pectoralis_major_muscle/25078415
    Explore at:
    binAvailable download formats
    Dataset updated
    Mar 11, 2025
    Dataset provided by
    National Center for Biotechnology Informationhttp://www.ncbi.nlm.nih.gov/
    Authors
    University of Delaware
    License

    https://rightsstatements.org/vocab/UND/1.0/https://rightsstatements.org/vocab/UND/1.0/

    Description

    This study aims to use spatial transcriptomics to characterize the cell-type-specific expression profile associated with the microscopic features observed in Wooden Breast myopathy. 1 cm3 muscle sample was dissected from the cranial part of the right pectoralis major muscle from three randomly sampled broiler chickens at 23 days post-hatch and processed with Visium Spatial Gene Expression kits (10X Genomics), followed by high-resolution imaging and sequencing on the Illumina Nextseq 2000 system. WB classification was based on histopathologic features identified. Sequence reads were aligned to the chicken reference genome (Galgal6) and mapped to histological images. Unsupervised K-means clustering and Seurat integrative analysis differentiated histologic features and their specific gene expression pattern, including lipid laden macrophages (LLM), unaffected myofibers, myositis and vasculature. In particular, LLM exhibited reprogramming of lipid metabolism with up-regulated lipid transporters and genes in peroxisome proliferator-activated receptors pathway, possibly through P. Moreover, overexpression of fatty acid binding protein 5 could enhance fatty acid uptake in adjacent veins. In myositic regions, increased expression of cathepsins may play a role in muscle homeostasis and repair by mediating lysosomal activity and apoptosis. A better knowledge of different cell-type interactions at early stages of WB is essential in developing a comprehensive understanding.

  17. Data from: Systematic reconstruction of molecular pathway signatures using...

    • zenodo.org
    bin, txt, zip
    Updated Mar 22, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Longda Jiang; Longda Jiang; Carol Dalgarno; Carol Dalgarno; Efthymia Papalexi; Efthymia Papalexi; Isabella Mascio; Isabella Mascio; Hans-Hermann Wessels; Hans-Hermann Wessels; Huiyoung Yun; Huiyoung Yun; Nika Iremadze; Gila Lithwick-Yanai; Doron Lipson; Rahul Satija; Rahul Satija; Nika Iremadze; Gila Lithwick-Yanai; Doron Lipson (2024). Systematic reconstruction of molecular pathway signatures using scalable single-cell perturbation screens [Dataset]. http://doi.org/10.5281/zenodo.10520190
    Explore at:
    bin, txt, zipAvailable download formats
    Dataset updated
    Mar 22, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Longda Jiang; Longda Jiang; Carol Dalgarno; Carol Dalgarno; Efthymia Papalexi; Efthymia Papalexi; Isabella Mascio; Isabella Mascio; Hans-Hermann Wessels; Hans-Hermann Wessels; Huiyoung Yun; Huiyoung Yun; Nika Iremadze; Gila Lithwick-Yanai; Doron Lipson; Rahul Satija; Rahul Satija; Nika Iremadze; Gila Lithwick-Yanai; Doron Lipson
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Seurat objects, differential expression analysis results, and pathway gene lists for the manuscript "Systematic reconstruction of molecular pathway signatures using scalable single-cell perturbation screens"

    1. Seurat_object_IFNB_Perturb_seq.rds: Seurat object of the Perturb-seq data for Interferon-beta pathway
    2. Seurat_object_IFNG_Perturb_seq.rds: Seurat object of the Perturb-seq data for Interferon-gamma pathway
    3. Seurat_object_TNFA_Perturb_seq.rds: Seurat object of the Perturb-seq data for TNF-alpha pathway
    4. Seurat_object_TGFB1_Perturb_seq.rds: Seurat object of the Perturb-seq data for TGF-beta1 pathway
    5. Seurat_object_INS_Perturb_seq.rds: Seurat object of the Perturb-seq data for insulin pathway

    6. Pathway_genelist.rds: The pathway gene lists from MultiCCA analysis
    7. Pathway_Exclusive_genelist.rds: The pathway exclusive gene lists generated from Pathway_genelist.rds
    8. HClust_Pathway_celltype_specific_genelist.rds: The pathway gene lists from hierarchical clustering analysis independently done on each cell line

    9. DE_results_all_pathway.zip: The DE test results for all the regulators, cell lines, and pathways (from Mixscale weighted DE test)

  18. n

    Data from: Single cell RNA-seq analysis reveals that prenatal arsenic...

    • data.niaid.nih.gov
    • datadryad.org
    • +1more
    zip
    Updated Jun 1, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Britton Goodale; Kevin Hsu; Kenneth Ely; Thomas Hampton; Bruce Stanton; Richard Enelow (2020). Single cell RNA-seq analysis reveals that prenatal arsenic exposure results in long-term, adverse effects on immune gene expression in response to Influenza A infection [Dataset]. http://doi.org/10.5061/dryad.vt4b8gtp6
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 1, 2020
    Dataset provided by
    Dartmouth College
    Dartmouth–Hitchcock Medical Center
    Authors
    Britton Goodale; Kevin Hsu; Kenneth Ely; Thomas Hampton; Bruce Stanton; Richard Enelow
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Arsenic exposure via drinking water is a serious environmental health concern. Epidemiological studies suggest a strong association between prenatal arsenic exposure and subsequent childhood respiratory infections, as well as morbidity from respiratory diseases in adulthood, long after systemic clearance of arsenic. We investigated the impact of exclusive prenatal arsenic exposure on the inflammatory immune response and respiratory health after an adult influenza A (IAV) lung infection. C57BL/6J mice were exposed to 100 ppb sodium arsenite in utero, and subsequently infected with IAV (H1N1) after maturation to adulthood. Assessment of lung tissue and bronchoalveolar lavage fluid (BALF) at various time points post IAV infection reveals greater lung damage and inflammation in arsenic exposed mice versus control mice. Single-cell RNA sequencing analysis of immune cells harvested from IAV infected lungs suggests that the enhanced inflammatory response is mediated by dysregulation of innate immune function of monocyte derived macrophages, neutrophils, NK cells, and alveolar macrophages. Our results suggest that prenatal arsenic exposure results in lasting effects on the adult host innate immune response to IAV infection, long after exposure to arsenic, leading to greater immunopathology. This study provides the first direct evidence that exclusive prenatal exposure to arsenic in drinking water causes predisposition to a hyperinflammatory response to IAV infection in adult mice, which is associated with significant lung damage.

    Methods Whole lung homogenate preparation for single cell RNA sequencing (scRNA-seq).

    Lungs were perfused with PBS via the right ventricle, harvested, and mechanically disassociated prior to straining through 70- and 30-µm filters to obtain a single-cell suspension. Dead cells were removed (annexin V EasySep kit, StemCell Technologies, Vancouver, Canada), and samples were enriched for cells of hematopoetic origin by magnetic separation using anti-CD45-conjugated microbeads (Miltenyi, Auburn, CA). Single-cell suspensions of 6 samples were loaded on a Chromium Single Cell system (10X Genomics) to generate barcoded single-cell gel beads in emulsion, and scRNA-seq libraries were prepared using Single Cell 3’ Version 2 chemistry. Libraries were multiplexed and sequenced on 4 lanes of a Nextseq 500 sequencer (Illumina) with 3 sequencing runs. Demultiplexing and barcode processing of raw sequencing data was conducted using Cell Ranger v. 3.0.1 (10X Genomics; Dartmouth Genomics Shared Resource Core). Reads were aligned to mouse (GRCm38) and influenza A virus (A/PR8/34, genome build GCF_000865725.1) genomes to generate unique molecular index (UMI) count matrices. Gene expression data have been deposited in the NCBI GEO database and are available at accession # GSE142047.

    Preprocessing of single cell RNA sequencing (scRNA-seq) data

    Count matrices produced using Cell Ranger were analyzed in the R statistical working environment (version 3.6.1). Preliminary visualization and quality analysis were conducted using scran (v 1.14.3, Lun et al., 2016) and Scater (v. 1.14.1, McCarthy et al., 2017) to identify thresholds for cell quality and feature filtering. Sample matrices were imported into Seurat (v. 3.1.1, Stuart., et al., 2019) and the percentage of mitochondrial, hemoglobin, and influenza A viral transcripts calculated per cell. Cells with < 1000 or > 20,000 unique molecular identifiers (UMIs: low quality and doublets), fewer than 300 features (low quality), greater than 10% of reads mapped to mitochondrial genes (dying) or greater than 1% of reads mapped to hemoglobin genes (red blood cells) were filtered from further analysis. Total cells per sample after filtering ranged from 1895-2482, no significant difference in the number of cells was observed in arsenic vs. control. Data were then normalized using SCTransform (Hafemeister et al., 2019) and variable features identified for each sample. Integration anchors between samples were identified using canonical correlation analysis (CCA) and mutual nearest neighbors (MNNs), as implemented in Seurat V3 (Stuart., et al., 2019) and used to integrate samples into a shared space for further comparison. This process enables identification of shared populations of cells between samples, even in the presence of technical or biological differences, while also allowing for non-overlapping populations that are unique to individual samples.

    Clustering and reference-based cell identity labeling of single immune cells from IAV-infected lung with scRNA-seq

    Principal components were identified from the integrated dataset and were used for Uniform Manifold Approximation and Projection (UMAP) visualization of the data in two-dimensional space. A shared-nearest-neighbor (SNN) graph was constructed using default parameters, and clusters identified using the SLM algorithm in Seurat at a range of resolutions (0.2-2). The first 30 principal components were used to identify 22 cell clusters ranging in size from 25 to 2310 cells. Gene markers for clusters were identified with the findMarkers function in scran. To label individual cells with cell type identities, we used the singleR package (v. 3.1.1) to compare gene expression profiles of individual cells with expression data from curated, FACS-sorted leukocyte samples in the Immgen compendium (Aran D. et al., 2019; Heng et al., 2008). We manually updated the Immgen reference annotation with 263 sample group labels for fine-grain analysis and 25 CD45+ cell type identities based on markers used to sort Immgen samples (Guilliams et al., 2014). The reference annotation is provided in Table S2, cells that were not labeled confidently after label pruning were assigned “Unknown”.

    Differential gene expression by immune cells

    Differential gene expression within individual cell types was performed by pooling raw count data from cells of each cell type on a per-sample basis to create a pseudo-bulk count table for each cell type. Differential expression analysis was only performed on cell types that were sufficiently represented (>10 cells) in each sample. In droplet-based scRNA-seq, ambient RNA from lysed cells is incorporated into droplets, and can result in spurious identification of these genes in cell types where they aren’t actually expressed. We therefore used a method developed by Young and Behjati (Young et al., 2018) to estimate the contribution of ambient RNA for each gene, and identified genes in each cell type that were estimated to be > 25% ambient-derived. These genes were excluded from analysis in a cell-type specific manner. Genes expressed in less than 5 percent of cells were also excluded from analysis. Differential expression analysis was then performed in Limma (limma-voom with quality weights) following a standard protocol for bulk RNA-seq (Law et al., 2014). Significant genes were identified using MA/QC criteria of P < .05, log2FC >1.

    Analysis of arsenic effect on immune cell gene expression by scRNA-seq.

    Sample-wide effects of arsenic on gene expression were identified by pooling raw count data from all cells per sample to create a count table for pseudo-bulk gene expression analysis. Genes with less than 20 counts in any sample, or less than 60 total counts were excluded from analysis. Differential expression analysis was performed using limma-voom as described above.

  19. e

    Dawnn benchmarking dataset: Heart cells processing and label simulation -...

    • b2find.eudat.eu
    Updated Aug 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Dawnn benchmarking dataset: Heart cells processing and label simulation - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/3c606d62-65d1-5ede-a0c1-4b7124717ed9
    Explore at:
    Dataset updated
    Aug 1, 2024
    Description

    This project is a collection of files to allow users to reproduce the model development and benchmarking in "Dawnn: single-cell differential abundance with neural networks" (Hall and Castellano, under review). Dawnn is a tool for detecting differential abundance in single-cell RNAseq datasets. It is available as an R package here. Please contact us if you are unable to reproduce any of the analysis in our paper. The files in this collection correspond to the benchmarking dataset based on single-cell RNAseq of heart cells. FILES: Input data Dataset from: "Integrated multi-omic characterization of congenital heart disease". Nature 608 pp. 181-191 (2022). heart_barcodes.tsv.gz Cell barcode list heart_genes.tsv.gz Gene list heart_expression_matrix.mtx.gz Cell-by-gene expression matrix Data processing code process_heart_cells.R Generates benchmarking dataset from input data. (Reads heart_barcodes.tsv.gz, heart_genes.tsv.gz, and heart_expression_matrix.mtx.gz; Runs the standard Seurat pipeline; Saves the resulting Seurat dataset as heart_tissue_cells.RDS and the resulting cell labels as benchmark_dataset_heart_data_type_labels.csv) Resulting datasets heart_tissue_cells.RDS Seurat dataset generated by process_heart_cells.R. benchmark_dataset_heart_data_type_labels.csv Cell labels generated by process_heart_cells.R.

  20. Z

    Repository for Single Cell RNA Sequencing Analysis of The EMT6 Dataset

    • data.niaid.nih.gov
    Updated Nov 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stoop, Allart (2023). Repository for Single Cell RNA Sequencing Analysis of The EMT6 Dataset [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_10011621
    Explore at:
    Dataset updated
    Nov 20, 2023
    Dataset provided by
    Stoop, Allart
    Hsu, Jonathan
    Description

    Table of Contents

    Main Description File Descriptions Linked Files Installation and Instructions

    1. Main Description

    This is the Zenodo repository for the manuscript titled "A TCR β chain-directed antibody-fusion molecule that activates and expands subsets of T cells and promotes antitumor activity.". The code included in the file titled marengo_code_for_paper_jan_2023.R was used to generate the figures from the single-cell RNA sequencing data. The following libraries are required for script execution:

    Seurat scReportoire ggplot2 stringr dplyr ggridges ggrepel ComplexHeatmap

    File Descriptions

    The code can be downloaded and opened in RStudios. The "marengo_code_for_paper_jan_2023.R" contains all the code needed to reproduce the figues in the paper The "Marengo_newID_March242023.rds" file is available at the following address: https://zenodo.org/badge/DOI/10.5281/zenodo.7566113.svg (Zenodo DOI: 10.5281/zenodo.7566113). The "all_res_deg_for_heat_updated_march2023.txt" file contains the unfiltered results from DGE anlaysis, also used to create the heatmap with DGE and volcano plots. The "genes_for_heatmap_fig5F.xlsx" contains the genes included in the heatmap in figure 5F.

    Linked Files

    This repository contains code for the analysis of single cell RNA-seq dataset. The dataset contains raw FASTQ files, as well as, the aligned files that were deposited in GEO. The "Rdata" or "Rds" file was deposited in Zenodo. Provided below are descriptions of the linked datasets:

    Gene Expression Omnibus (GEO) ID: GSE223311(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE223311)

    Title: Gene expression profile at single cell level of CD4+ and CD8+ tumor infiltrating lymphocytes (TIL) originating from the EMT6 tumor model from mSTAR1302 treatment. Description: This submission contains the "matrix.mtx", "barcodes.tsv", and "genes.tsv" files for each replicate and condition, corresponding to the aligned files for single cell sequencing data. Submission type: Private. In order to gain access to the repository, you must use a reviewer token (https://www.ncbi.nlm.nih.gov/geo/info/reviewer.html).

    Sequence read archive (SRA) repository ID: SRX19088718 and SRX19088719

    Title: Gene expression profile at single cell level of CD4+ and CD8+ tumor infiltrating lymphocytes (TIL) originating from the EMT6 tumor model from mSTAR1302 treatment. Description: This submission contains the raw sequencing or .fastq.gz files, which are tab delimited text files. Submission type: Private. In order to gain access to the repository, you must use a reviewer token (https://www.ncbi.nlm.nih.gov/geo/info/reviewer.html).

    Zenodo DOI: 10.5281/zenodo.7566113(https://zenodo.org/record/7566113#.ZCcmvC2cbrJ)

    Title: A TCR β chain-directed antibody-fusion molecule that activates and expands subsets of T cells and promotes antitumor activity. Description: This submission contains the "Rdata" or ".Rds" file, which is an R object file. This is a necessary file to use the code. Submission type: Restricted Acess. In order to gain access to the repository, you must contact the author.

    Installation and Instructions

    The code included in this submission requires several essential packages, as listed above. Please follow these instructions for installation:

    Ensure you have R version 4.1.2 or higher for compatibility.

    Although it is not essential, you can use R-Studios (Version 2022.12.0+353 (2022.12.0+353)) for accessing and executing the code.

    1. Download the *"Rdata" or ".Rds" file from Zenodo (https://zenodo.org/record/7566113#.ZCcmvC2cbrJ) (Zenodo DOI: 10.5281/zenodo.7566113).
    2. Open R-Studios (https://www.rstudio.com/tags/rstudio-ide/) or a similar integrated development environment (IDE) for R.
    3. Set your working directory to where the following files are located:

    marengo_code_for_paper_jan_2023.R Install_Packages.R Marengo_newID_March242023.rds genes_for_heatmap_fig5F.xlsx all_res_deg_for_heat_updated_march2023.txt

    You can use the following code to set the working directory in R:

    setwd(directory)

    1. Open the file titled "Install_Packages.R" and execute it in R IDE. This script will attempt to install all the necessary pacakges, and its dependencies in order to set up an environment where the code in "marengo_code_for_paper_jan_2023.R" can be executed.
    2. Once the "Install_Packages.R" script has been successfully executed, re-start R-Studios or your IDE of choice.
    3. Open the file "marengo_code_for_paper_jan_2023.R" file in R-studios or your IDE of choice.
    4. Execute commands in the file titled "marengo_code_for_paper_jan_2023.R" in R-Studios or your IDE of choice to generate the plots.
Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Yunshun Chen; Gordon Smyth (2023). Data, R code and output Seurat Objects for single cell RNA-seq analysis of human breast tissues [Dataset]. http://doi.org/10.6084/m9.figshare.17058077.v1
Organization logo

Data, R code and output Seurat Objects for single cell RNA-seq analysis of human breast tissues

Explore at:
application/gzipAvailable download formats
Dataset updated
May 31, 2023
Dataset provided by
Figsharehttp://figshare.com/
Authors
Yunshun Chen; Gordon Smyth
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

This dataset contains all the Seurat objects that were used for generating all the figures in Pal et al. 2021 (https://doi.org/10.15252/embj.2020107333). All the Seurat objects were created under R v3.6.1 using the Seurat package v3.1.1. The detailed information of each object is listed in a table in Chen et al. 2021.

Search
Clear search
Close search
Google apps
Main menu