100+ datasets found
  1. d

    Digital surface model (DSM) and digital elevation model (DEM) of the Los...

    • catalog.data.gov
    • data.usgs.gov
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Digital surface model (DSM) and digital elevation model (DEM) of the Los Padres Reservoir delta, Carmel River valley, CA, 2017-11-01 [Dataset]. https://catalog.data.gov/dataset/digital-surface-model-dsm-and-digital-elevation-model-dem-of-the-los-padres-reservoir-del-
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    U.S. Geological Survey
    Area covered
    Los Padres Dam, Carmel River, California
    Description

    This portion of the data release presents a digital surface model (DSM) and digital elevation model (DEM) of the exposed Los Padres Reservoir delta where the Carmel River enters the reservoir. The DSM and DEM have a resolution of 10 centimeters per pixel and were derived from structure-from-motion (SfM) processing of aerial imagery collected with an unoccupied aerial system (UAS) on 2017-11-01. The DSM represents the elevation of the highest object within the bounds of a cell, including vegetation, woody debris and other objects. The DEM represent the elevation of the ground surface where it was visible to the acquisiton system. Due to the nature of SfM processing, the DEM may not represent a true bare-earth surface in areas of thick vegetation cover; in these areas some DEM elevations may instead represent thick vegetation canopy. The raw imagery used to create these elevation models was acquired with a UAS fitted with a Ricoh GR II digital camera featuring a global shutter. The UAS was flown on pre-programmed autonomous flight lines spaced to provide approximately 70 percent overlap between images from adjacent lines. The camera was triggered at 1 Hz using a built-in intervalometer. The UAS was flown at an approximate altitude of 100 meters above ground level (AGL), resulting in a nominal ground-sample-distance (GSD) of 2.6 centimeters per pixel. The raw imagery was geotagged using positions from the UAS onboard single-frequency autonomous GPS. Twenty temporary ground control points (GCPs) consisting of small square tarps with black-and-white cross patterns were distributed throughout the area to establish survey control. The GCP positions were measured using real-time kinematic (RTK) GPS, using corrections from a GPS base station located on a benchmark designated SFML, located approximately 1 kilometer from the study area. The DSM and DEM have been formatted as cloud optimized GeoTIFFs with internal overviews and masks to facilitate cloud-based queries and display.

  2. G

    High Resolution Digital Elevation Model (HRDEM) - CanElevation Series

    • open.canada.ca
    • catalogue.arctic-sdi.org
    • +1more
    esri rest, geotif +5
    Updated Jun 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Resources Canada (2025). High Resolution Digital Elevation Model (HRDEM) - CanElevation Series [Dataset]. https://open.canada.ca/data/en/dataset/957782bf-847c-4644-a757-e383c0057995
    Explore at:
    shp, geotif, html, pdf, esri rest, json, kmzAvailable download formats
    Dataset updated
    Jun 17, 2025
    Dataset provided by
    Natural Resources Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    The High Resolution Digital Elevation Model (HRDEM) product is derived from airborne LiDAR data (mainly in the south) and satellite images in the north. The complete coverage of the Canadian territory is gradually being established. It includes a Digital Terrain Model (DTM), a Digital Surface Model (DSM) and other derived data. For DTM datasets, derived data available are slope, aspect, shaded relief, color relief and color shaded relief maps and for DSM datasets, derived data available are shaded relief, color relief and color shaded relief maps. The productive forest line is used to separate the northern and the southern parts of the country. This line is approximate and may change based on requirements. In the southern part of the country (south of the productive forest line), DTM and DSM datasets are generated from airborne LiDAR data. They are offered at a 1 m or 2 m resolution and projected to the UTM NAD83 (CSRS) coordinate system and the corresponding zones. The datasets at a 1 m resolution cover an area of 10 km x 10 km while datasets at a 2 m resolution cover an area of 20 km by 20 km. In the northern part of the country (north of the productive forest line), due to the low density of vegetation and infrastructure, only DSM datasets are generally generated. Most of these datasets have optical digital images as their source data. They are generated at a 2 m resolution using the Polar Stereographic North coordinate system referenced to WGS84 horizontal datum or UTM NAD83 (CSRS) coordinate system. Each dataset covers an area of 50 km by 50 km. For some locations in the north, DSM and DTM datasets can also be generated from airborne LiDAR data. In this case, these products will be generated with the same specifications as those generated from airborne LiDAR in the southern part of the country. The HRDEM product is referenced to the Canadian Geodetic Vertical Datum of 2013 (CGVD2013), which is now the reference standard for heights across Canada. Source data for HRDEM datasets is acquired through multiple projects with different partners. Since data is being acquired by project, there is no integration or edgematching done between projects. The tiles are aligned within each project. The product High Resolution Digital Elevation Model (HRDEM) is part of the CanElevation Series created in support to the National Elevation Data Strategy implemented by NRCan. Collaboration is a key factor to the success of the National Elevation Data Strategy. Refer to the “Supporting Document” section to access the list of the different partners including links to their respective data.

  3. n

    SMAPVEX19-22 Massachusetts Lidar Derived Digital Surface Model V001

    • cmr.earthdata.nasa.gov
    • nsidc.org
    • +2more
    not provided
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). SMAPVEX19-22 Massachusetts Lidar Derived Digital Surface Model V001 [Dataset]. http://doi.org/10.5067/PCJ5Z3NN0T1G
    Explore at:
    not providedAvailable download formats
    Dataset updated
    Apr 21, 2025
    Time period covered
    Aug 3, 2022 - Aug 5, 2022
    Area covered
    Description

    These digital surface model (DSM) data consist of surface elevations derived from source lidar measurements collected in August 2022 in the vicinity of Petersham, MA during the SMAPVEX19-22 campaign. The location was selected due to its forested land cover, as SMAPVEX19-22 aims to validate satellite derived soil moisture estimates in forested areas. The August collection period was selected to characterize ‘leaf-on’ conditions. DSM data represents the highest elevation of features on the Earth’s surface, which may include bare-earth, vegetation, and human-made objects.

  4. p

    Digital Surface Model (high DEM resolution)

    • data.public.lu
    zip
    Updated Jan 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Administration de la navigation aérienne (2024). Digital Surface Model (high DEM resolution) [Dataset]. https://data.public.lu/en/datasets/digital-surface-model-high-dem-resolution/
    Explore at:
    zip(12661151089)Available download formats
    Dataset updated
    Jan 11, 2024
    Dataset authored and provided by
    Administration de la navigation aérienne
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    In the scope of the International Civil Aviation Organization (ICAO) requiring countries and airports to provide electronic Terrain and Obstacle Data (eTOD), the Administration de la navigation aérienne has been tasked by the Government to take the steps necessary to comply with this requirement. This Digital Surface Model (DSM) is the result of a first LIDAR survey flight that has been done in October 2017 and is of a higher resolution than required by ICAO, thus for general purpose. For this reason this DSM also uses the national reference systems LUREF and NGL. The data itself is split up in 4 different areas, which are specified as follows: Area 1: The entire territory of Luxembourg; Area 2: Terminal Control Area (this area is larger than the territory of Luxembourg); Area 3: Aerodrome movement area; Area 4: Category II or III operations (Runway 24). The different areas come with different numerical requirements, such as data accuracy and resolution. Follow the links in the description or consult metadata for further Information.

  5. Digital Surface Model of Spain

    • datos.gob.es
    Updated Jan 1, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centro Nacional de Información Geográfica (2020). Digital Surface Model of Spain [Dataset]. https://datos.gob.es/en/catalogo/e00125901-spaignmds
    Explore at:
    Dataset updated
    Jan 1, 2020
    Dataset authored and provided by
    Centro Nacional de Información Geográfica
    License

    https://www.ign.es/resources/licencia/Condiciones_licenciaUso_IGN.pdfhttps://www.ign.es/resources/licencia/Condiciones_licenciaUso_IGN.pdf

    Area covered
    Spain
    Description

    Digital Surface Model (DSM) has three layers. Two layers come from the rasterisation of the building and vegetation classes among all the points of the LiDAR file .las; and the third layer is the hydrography of the Geographical Reference Information. By applying a suitable colour for each layer, the final product is visualised. ECW file format. ETRS89 reference geodetic system (in the Canary Islands REGCAN95, compatible with ETRS89) and EPSG projection: 3857 throughout the national territory

  6. d

    2018 LiDAR - Normalized Digital Surface Model

    • catalog.data.gov
    • opendata.dc.gov
    • +4more
    Updated May 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    D.C. Office of the Chief Technology Officer (2025). 2018 LiDAR - Normalized Digital Surface Model [Dataset]. https://catalog.data.gov/dataset/2018-lidar-normalized-digital-surface-model
    Explore at:
    Dataset updated
    May 7, 2025
    Dataset provided by
    D.C. Office of the Chief Technology Officer
    Description

    Normalized Digital Surface Model - 1m resolution. The dataset contains the Normalized Digital Surface Model for the Washington Area. Voids exist in the data due to data redaction conducted under the guidance of the United States Secret Service. All lidar data returns and collected data were removed from the dataset based on the redaction footprint shapefile generated in 2017. This dataset provided as an ArcGIS Image service. Please note, the download feature for this image service in Open Data DC provides a compressed PNG, JPEG or TIFF. The compressed GeoTIFF raster dataset is available under additional options when viewing downloads.

  7. d

    Digital elevation model (DEM) and digital surface model (DSM) data for the...

    • catalog.data.gov
    • data.usgs.gov
    Updated Feb 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Digital elevation model (DEM) and digital surface model (DSM) data for the Colorado River corridor in Grand Canyon National Park and Glen Canyon National Recreation Area (2002, 2009, 2013 and 2021), including accuracy assessment data [Dataset]. https://catalog.data.gov/dataset/digital-elevation-model-dem-and-digital-surface-model-dsm-data-for-the-colorado-river-corr
    Explore at:
    Dataset updated
    Feb 22, 2025
    Dataset provided by
    U.S. Geological Survey
    Area covered
    Colorado River
    Description

    These datasets consist of four, 1-meter spatial resolution digital surface models (DSMs) that were generated to orthorectify airborne multispectral imagery acquired in 2002, 2009, 2013, and 2021 for the Colorado River in Grand Canyon in Arizona, USA. These datasets also consist of a 1-meter spatial resolution digital elevation model (DEM) that was generated from the 2021 DSM. The DSMs and DEM were also produced to support development of additional GIS products. Elevation values are expressed as ellipsoid heights. These datasets also include accuracy assessments that were performed to show the limitations of estimating elevation from the DSMs and DEM pixels locations on the landscape. Data were acquired during periods of low steady Colorado River flow of approximately 8,000 cubic feet per second released from Glen Canyon Dam.

  8. Data from: Digital Surface Model

    • planet.com
    Updated Dec 14, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Planet Labs PBC (2020). Digital Surface Model [Dataset]. https://www.planet.com/data/stac/browser/open-skysat-data/sp-crater/dsm.json
    Explore at:
    image/tiff; application=geotiff; profile=cloud-optimizedAvailable download formats
    Dataset updated
    Dec 14, 2020
    Dataset provided by
    Planet Labshttp://planet.com/
    Time period covered
    Dec 14, 2020
    Area covered
    Description

    Digital Surface Model (DSM) of SP Crater, Arizona, created from stereo images captured by a Planet SkySat satellite. It is distributed as a single band Cloud-optimized GeoTiff, with each pixel representing the height at that location.

  9. r

    Data from: Digital Surface Model

    • researchdata.edu.au
    Updated Mar 7, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.vic.gov.au (2023). Digital Surface Model [Dataset]. https://researchdata.edu.au/digital-surface-model/2296110
    Explore at:
    Dataset updated
    Mar 7, 2023
    Dataset provided by
    data.vic.gov.au
    Description

    A terrain surface dataset that represents the height value of all natural and built features of the surface of the city. Each pixel within the image contains an elevation value in accordance with the Australian Height Datum (AHD).

    The data has been captured in May 2018 as GeoTiff files, and covers the entire municipality.

    A KML tile index file can be found in the attachments to indicate the location of each tile, along with a sample image.

    Capture Information:

    Capture Pixel Resolution: 0.1 metres

    Limitations:

    Whilst every effort is made to provide the data as accurate as possible, the content may not be free from errors, omissions or defects.

    Preview:


    Download:

    A zip file containing all relevant files representing the Digital Surface Model

    Download Digital Surface Model data (12.0GB)

  10. W

    LiDAR based Digital Surface Model (DSM) data for South West England

    • cloud.csiss.gmu.edu
    • hosted-metadata.bgs.ac.uk
    • +4more
    zip
    Updated Dec 21, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United Kingdom (2019). LiDAR based Digital Surface Model (DSM) data for South West England [Dataset]. https://cloud.csiss.gmu.edu/uddi/dataset/lidar-based-digital-surface-model-dsm-data-for-south-west-england
    Explore at:
    zipAvailable download formats
    Dataset updated
    Dec 21, 2019
    Dataset provided by
    United Kingdom
    License

    http://reference.data.gov.uk/id/open-government-licencehttp://reference.data.gov.uk/id/open-government-licence

    Area covered
    South West England, England
    Description

    This is a high resolution spatial dataset of Digital Surface Model (DSM) data in South West England. It is a part of outcomes from the CEH South West (SW) Project. There is also a Digital Terrain Model (DTM) dataset covering the same areas available from the SW project. Both DTM and DSM cover an area of 9424 km2 that includes all the land west of Exmouth (i.e. west of circa 3 degrees 21 minutes West). The DSM includes the height of features on the bare earth such as buildings or vegetation (if present). An overview of the TELLUS project is available on the web at http://www.tellusgb.ac.uk/. Full details about this dataset can be found at https://doi.org/10.5285/b81071f2-85b3-4e31-8506-cabe899f989a

  11. a

    Santa Clara County Digital Surface Model

    • opendata-mrosd.hub.arcgis.com
    Updated Jun 22, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Midpeninsula Regional Open Space District (2021). Santa Clara County Digital Surface Model [Dataset]. https://opendata-mrosd.hub.arcgis.com/maps/0b01f16dc5834af09a3311cdad199272
    Explore at:
    Dataset updated
    Jun 22, 2021
    Dataset authored and provided by
    Midpeninsula Regional Open Space District
    Area covered
    Santa Clara County
    Description

    Methods: The 2-foot resolution raster was produced from a ground classified 2020 Quality Level 1 lidar point cloud. This DSM was derived by Sanborn and Tukman Geospatial using the following process:QL1 airborne lidar point cloud collected countywide (Sanborn)Point cloud classification to assign ground points (Sanborn)First return points were used to create over 8,000 1-foot resolution hydro-flattened Raster DSM tiles. Using automated scripting routines within LP360, a GeoTIFF file was created for each tile. Each 2,500 x 2,500 foot tile was reviewed using Global Mapper to check for any surface anomalies or incorrect elevations found within the surface. (Sanborn)1-foot hydroflattened DSM tiles mosaicked together into a 1-foot resolution mosaiced hydroflattened DSM geotiff (Tukman Geospatial)1-foot hydroflattened DSM (geotiff) resampled to 2-foot hydro-flattened DSM using Bilinear interpolation and clipped to county boundary with 250-meter buffer (Tukman Geospatial)2-foot hydroflattened raster DEM (geotiff) posted on ArcGIS Online (Tukman Geospatial) The data was developed based on a horizontal projection/datum of NAD83 (2011), State Plane, Feet and vertical datum of NAVD88 (GEOID18), Feet. Lidar was collected in early 2020, while no snow was on the ground and rivers were at or below normal levels. To postprocess the lidar data to meet task order specifications and meet ASPRS vertical accuracy guidelines, Sanborn Map Company, Inc., utilized a total of 25 ground control points that were used to calibrate the lidar to known ground locations established throughout the project area.An additional 125 independent accuracy checkpoints, 70 in Bare Earth and Urban landcovers (70 NVA points), 55 in Tall Grass and Brushland/Low Trees categories (55 VVA points), were used to assess the vertical accuracy of the data. These check points were not used to calibrate or post process the data.Uses and Limitations:The DSM provides a raster depiction of the first (surface) returns for each 2x2 foot raster cell across Santa Clara County. The DSM will be most accurate in open terrain and less accurate in areas of very dense vegetation.Related Datasets:This dataset is part of a suite of lidar of derivatives for Santa Clara County. See table 1 for a list of all the derivatives. Table 1. lidar derivatives for Santa Clara CountyDatasetDescriptionLink to DataLink to DatasheetCanopy Height ModelPixel values represent the aboveground height of vegetation and trees.https://vegmap.press/clara_chmhttps://vegmap.press/clara_chm_datasheetCanopy Height Model – Veg Returns OnlySame as canopy height model, but does not include lidar returns labelled as ‘unclassified’ (uses only returns classified as vegetation)https://vegmap.press/clara_chm_veg_returnshttps://vegmap.press/clara_chm_veg_returns_datasheetCanopy CoverPixel values represent the presence or absence of tree canopy or vegetation greater than or equal to 15 feet tall.https://vegmap.press/clara_coverhttps://vegmap.press/clara_cover_datasheetCanopy Cover – Veg Returns OnlySame as canopy height model, but does not include lidar returns labelled as ‘unclassified’ (uses only returns classified as vegetation)https://vegmap.press/clara_cover_veg_returnshttps://vegmap.press/clara_cover_veg_returns_datasheet HillshadeThis depicts shaded relief based on the Hillshade. Hillshades are useful for visual reference when mapping features such as roads and drainages and for visualizing physical geography. https://vegmap.press/clara_hillshadehttps://vegmap.press/clara_hillshade_datasheetDigital Terrain ModelPixel values represent the elevation above sea level of the bare earth, with all above-ground features, such as trees and buildings, removed. The vertical datum is NAVD88 (GEOID18).https://vegmap.press/clara_dtmhttps://vegmap.press/clara_dtm_datasheetDigital Surface ModelPixel values represent the elevation above sea level of the highest surface, whether that surface for a given pixel is the bare earth, the top of vegetation, or the top of a building.https://vegmap.press/clara_dsmhttps://vegmap.press/clara_dsm_datasheet

  12. 2004 Coastal California IfSAR: Digital Surface Model (DSM)

    • fisheries.noaa.gov
    Updated Jun 15, 2004
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OCM Partners (2004). 2004 Coastal California IfSAR: Digital Surface Model (DSM) [Dataset]. https://www.fisheries.noaa.gov/inport/item/49439
    Explore at:
    Dataset updated
    Jun 15, 2004
    Dataset provided by
    OCM Partners, LLC
    Time period covered
    Jan 1, 2004 - Dec 31, 2004
    Area covered
    Description

    Intermap DEMs populate its data store. The DEM products are generated using Intermap's STAR technology (Interferometric Synthetic Aperture Radar). The system is mounted in an aircraft. The Digital Surface Model (DSM) products represent the first reflective surface as illuminated by the radar. Accuracy statements are based on areas of moderate terrain. Diminished accuracies are to be expected in...

  13. d

    2022 LiDAR - Normalized Digital Surface Model

    • catalog.data.gov
    • datasets.ai
    • +2more
    Updated May 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of the Chief Technology Officer (2025). 2022 LiDAR - Normalized Digital Surface Model [Dataset]. https://catalog.data.gov/dataset/2022-lidar-normalized-digital-surface-model
    Explore at:
    Dataset updated
    May 7, 2025
    Dataset provided by
    Office of the Chief Technology Officer
    Description

    Normalized Digital Surface Model - 1m resolution. The dataset contains the 1m Normalized Digital Surface Model for the District of Columbia. Some areas have limited data. The lidar dataset redaction was conducted under the guidance of the United States Secret Service. All data returns were removed from the dataset within the United States Secret Service redaction boundary except for classified ground points and classified water points.

  14. n

    NEON (National Ecological Observatory Network) Elevation - LiDAR...

    • data.neonscience.org
    zip
    Updated Jun 15, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). NEON (National Ecological Observatory Network) Elevation - LiDAR (DP3.30024.001) [Dataset]. https://data.neonscience.org/data-products/DP3.30024.001
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 15, 2023
    License

    https://www.neonscience.org/data-samples/data-policies-citationhttps://www.neonscience.org/data-samples/data-policies-citation

    Time period covered
    Jun 2013 - Jun 2025
    Area covered
    CPER, GUIL, DSNY, BLAN, SOAP, YELL, OSBS, SJER, SRER, LENO
    Description

    Bare earth elevation surface (DTM) and actual surface (DSM) given in meters in the NAVD88 (Geoid12A realization) vertical reference frame. Horizontal coordinates referenced to appropriate UTM zone. Bare earth is created by classifying and removing vegetation and man-made structures from lidar point cloud prior to surface generation. Both the DSM and DTM are mosaicked onto a spatially uniform grid at 1 m spatial resolution in 1 km by 1 km tiles provided in a geotiff format.

  15. d

    2024 LiDAR - Digital Surface Model

    • opendata.dc.gov
    • gimi9.com
    • +3more
    Updated Aug 22, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Washington, DC (2024). 2024 LiDAR - Digital Surface Model [Dataset]. https://opendata.dc.gov/datasets/79cf6f688b3749a2820fb3203a7b0dde
    Explore at:
    Dataset updated
    Aug 22, 2024
    Dataset authored and provided by
    City of Washington, DC
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    Digital Surface Model - 1m resolution. The dataset contains the 1m Digital Surface Model for the District of Columbia. These lidar data are processed classified LAS 1.4 files at USGS QL1 covering the District of Columbia. Some areas have limited data. The lidar dataset redaction was conducted under the guidance of the United States Secret Service. All data returns were removed from the dataset within the United States Secret Service redaction boundary except for classified ground points and classified water points.

  16. d

    Topographic digital surface model (DSM) for Whiskeytown Lake and surrounding...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Nov 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Topographic digital surface model (DSM) for Whiskeytown Lake and surrounding area, 2018-12-02 [Dataset]. https://catalog.data.gov/dataset/topographic-digital-surface-model-dsm-for-whiskeytown-lake-and-surrounding-area-2018-12-02
    Explore at:
    Dataset updated
    Nov 9, 2024
    Dataset provided by
    U.S. Geological Survey
    Area covered
    Whiskeytown Lake
    Description

    This portion of the data release presents a digital surface model (DSM) and hillshade of Whiskeytown Lake and the surrounding area derived from Structure from Motion (SfM) processing of aerial imagery acquired on 2018-12-02. Unlike a digital elevation model (DEM), the DSM represents the elevation of the highest object within the bounds of a cell. Vegetation, buildings and other objects have not been removed from the data. In addition, data artifacts resulting from noise and vegetation in the original imagery have not been removed. However, in unvegetated areas such as reservoir shorelines and deltas, the DSM is equivalent to a DEM because it represents the ground surface elevation. The raw imagery used to create this DSM was acquired from a manned aircraft on 2018-12-02. The acquisition flight was conducted by The 111th Group Aerial Photography, using a Nikon D850 camera. The imagery was acquired from an approximate altitude of 610 meters (2,000 feet) above ground level, to produce a nominal ground sample distance (pixel size) of 5 centimeters (2 inches). An onboard single-frequency GPS receiver was used to record the precise time and position of each image. Coordinates for ground control points consisting of photo-identifiable objects were measured independently using survey-grade post-processed kinematic (PPK) GPS.

  17. g

    Data from: Digital surface model

    • publish.geo.be
    Updated Sep 18, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Geographic Institute (2019). Digital surface model [Dataset]. https://publish.geo.be/geonetwork/srv/api/records/af70738f-e738-11ec-be46-186571a04de2
    Explore at:
    www:link-1.0-http--linkAvailable download formats
    Dataset updated
    Sep 18, 2019
    Dataset provided by
    National Geographic Institute
    License

    http://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitationshttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitations

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    DSM 1m is a homogeneous and regular point grid indicating the height of the Earth’s surface level in order to model its landscape. DSM 1m is achieved by interpolating in Lambert 2008 source data in Lambert 72 and at a 1m-resolution from the Flemish and Brussels Regions, and by adding Lambert 2008 data at 1m-resolution from the Walloon Region.

  18. d

    LiDAR - Normalized Digital Surface Model - Tiles

    • opendata.dc.gov
    • catalog.data.gov
    • +3more
    Updated Mar 16, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Washington, DC (2021). LiDAR - Normalized Digital Surface Model - Tiles [Dataset]. https://opendata.dc.gov/datasets/lidar-normalized-digital-surface-model-tiles/api
    Explore at:
    Dataset updated
    Mar 16, 2021
    Dataset authored and provided by
    City of Washington, DC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Normalizd Digital Surface Model - 1m resolution. The dataset contains the 1m Digital Surface Model for the District of Columbia.Some areas have limited data. The lidar dataset redaction was conducted under the guidance of the United States Secret Service. Except for classified ground points and classified water points, all lidar data returns and collected data were removed from the dataset within the United States Secret Service 1m redaction boundary generated for the 2017 orthophoto flight

  19. d

    LIDAR Composite First Return Digital Surface Model (FZ_DSM) - 1m

    • environment.data.gov.uk
    • gimi9.com
    Updated Dec 15, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Environment Agency (2023). LIDAR Composite First Return Digital Surface Model (FZ_DSM) - 1m [Dataset]. https://environment.data.gov.uk/dataset/df4e3ec3-315e-48aa-aaaf-b5ae74d7b2bb
    Explore at:
    Dataset updated
    Dec 15, 2023
    Dataset authored and provided by
    Environment Agency
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    The LIDAR Composite First Return DSM (Digital Surface Model) is a raster elevation model covering ~99% of England at 1m spatial resolution. The first return DSM is produced from the first or only laser pulse returned to the sensor and includes heights of objects, such as vehicles, buildings and vegetation, as well as the terrain surface where the first or only return was the ground.

    Produced by the Environment Agency in 2022, the first return DSM is derived from data captured as part of our national LIDAR programme between 11 November 2016 and 5th May 2022. This programme divided England into ~300 blocks for survey over continuous winters from 2016 onwards. These surveys are merged together to create the first return LIDAR composite using a feathering technique along the overlaps to remove any small differences in elevation between surveys. Please refer to the metadata index catalgoues which show for any location which survey was used in the production of the LIDAR composite.

    The first return DSM will not match in coverage or extent of the LIDAR composite last return digital surface model (LZ_DSM) as the last return DSM composite is produced from both the national LIDAR programme and Timeseries surveys.

    The data is available to download as GeoTiff rasters in 5km tiles aligned to the OS National grid. The data is presented in metres, referenced to Ordinance Survey Newlyn and using the OSTN’15 transformation method. All individual LIDAR surveys going into the production of the composite had a vertical accuracy of +/-15cm RMSE.

  20. LIDAR Composite Digital Terrain Model (DTM) - 1m

    • environment.data.gov.uk
    Updated Dec 15, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Environment Agency (2023). LIDAR Composite Digital Terrain Model (DTM) - 1m [Dataset]. https://environment.data.gov.uk/dataset/13787b9a-26a4-4775-8523-806d13af58fc
    Explore at:
    Dataset updated
    Dec 15, 2023
    Dataset authored and provided by
    Environment Agencyhttps://www.gov.uk/ea
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    The LIDAR Composite DTM (Digital Terrain Model) is a raster elevation model covering ~99% of England at 1m spatial resolution. The DTM (Digital Terrain Model) is produced from the last or only laser pulse returned to the sensor. We remove surface objects from the Digital Surface Model (DSM), using bespoke algorithms and manual editing of the data, to produce a terrain model of just the surface.

    Produced by the Environment Agency in 2022, the DTM is derived from a combination of our Time Stamped archive and National LIDAR Programme surveys, which have been merged and re-sampled to give the best possible coverage. Where repeat surveys have been undertaken the newest, best resolution data is used. Where data was resampled a bilinear interpolation was used before being merged.

    The 2022 LIDAR Composite contains surveys undertaken between 6th June 2000 and 2nd April 2022. Please refer to the metadata index catalgoues which show for any location which survey was used in the production of the LIDAR composite.

    The data is available to download as GeoTiff rasters in 5km tiles aligned to the OS National grid. The data is presented in metres, referenced to Ordinance Survey Newlyn and using the OSTN’15 transformation method. All individual LIDAR surveys going into the production of the composite had a vertical accuracy of +/-15cm RMSE.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S. Geological Survey (2024). Digital surface model (DSM) and digital elevation model (DEM) of the Los Padres Reservoir delta, Carmel River valley, CA, 2017-11-01 [Dataset]. https://catalog.data.gov/dataset/digital-surface-model-dsm-and-digital-elevation-model-dem-of-the-los-padres-reservoir-del-

Digital surface model (DSM) and digital elevation model (DEM) of the Los Padres Reservoir delta, Carmel River valley, CA, 2017-11-01

Explore at:
Dataset updated
Jul 6, 2024
Dataset provided by
U.S. Geological Survey
Area covered
Los Padres Dam, Carmel River, California
Description

This portion of the data release presents a digital surface model (DSM) and digital elevation model (DEM) of the exposed Los Padres Reservoir delta where the Carmel River enters the reservoir. The DSM and DEM have a resolution of 10 centimeters per pixel and were derived from structure-from-motion (SfM) processing of aerial imagery collected with an unoccupied aerial system (UAS) on 2017-11-01. The DSM represents the elevation of the highest object within the bounds of a cell, including vegetation, woody debris and other objects. The DEM represent the elevation of the ground surface where it was visible to the acquisiton system. Due to the nature of SfM processing, the DEM may not represent a true bare-earth surface in areas of thick vegetation cover; in these areas some DEM elevations may instead represent thick vegetation canopy. The raw imagery used to create these elevation models was acquired with a UAS fitted with a Ricoh GR II digital camera featuring a global shutter. The UAS was flown on pre-programmed autonomous flight lines spaced to provide approximately 70 percent overlap between images from adjacent lines. The camera was triggered at 1 Hz using a built-in intervalometer. The UAS was flown at an approximate altitude of 100 meters above ground level (AGL), resulting in a nominal ground-sample-distance (GSD) of 2.6 centimeters per pixel. The raw imagery was geotagged using positions from the UAS onboard single-frequency autonomous GPS. Twenty temporary ground control points (GCPs) consisting of small square tarps with black-and-white cross patterns were distributed throughout the area to establish survey control. The GCP positions were measured using real-time kinematic (RTK) GPS, using corrections from a GPS base station located on a benchmark designated SFML, located approximately 1 kilometer from the study area. The DSM and DEM have been formatted as cloud optimized GeoTIFFs with internal overviews and masks to facilitate cloud-based queries and display.

Search
Clear search
Close search
Google apps
Main menu