Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
A digital elevation model service for Vexcel’s Elevate wide area program in the United States. View digital surface models (DSM) at a spatial resolution of 15-20cm, and at an absolute accuracy of 100-120cm. This DSM data shows surface of ground and objects on the earth, including both natural (trees, vegetation) and human-made structures (buildings).Vexcel's wide area collection program uses award-winning UltraCam sensors to capture aerial imagery and elevation data at the highest quality, accuracy, and consistency available. This DSM collection spans both urban and rural areas in the Lower 48 states in the United States.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This is a tiled collection of the 3D Elevation Program (3DEP) and is one meter resolution. The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The elevations in this DEM represent the topographic bare-earth surface. USGS standard one-meter DEMs are produced exclusively from high resolution light detection and ranging (lidar) source data of one-meter or higher resolution. One-meter DEM surfaces are seamless within collection projects, but, not necessarily seamless across projects. The spatial reference used for tiles of the one-meter DEM within the conterminous United States (CONUS) is Universal Transverse Mercator (UTM) in units of meters, and in conformance with the North American Datum of 1983 ...
Facebook
TwitterThis is a tiled collection of the 3D Elevation Program (3DEP) and is 1/3 arc-second (approximately 10 m) resolution. The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The elevations in this DEM represent the topographic bare-earth surface. The seamless 1/3 arc-second DEM layers are derived from diverse source data that are processed to a common coordinate system and unit of vertical measure. These data are distributed in geographic coordinates in units of decimal degrees, and in conformance with the North American Datum of 1983 (NAD 83). All elevation values are in meters and, over the continental United States, are referenced to the North American Vertical Datum of 1988 (NAVD88). The seamless 1/3 arc-second DEM layer provides coverage of the conterminous United States, Hawaii, Puerto Rico, other territorial islands, and in limited areas of Alaska. The seamless 1/3arc-second DEM is available as pre-staged current and historical products tiled in GeoTIFF format. The seamless 1/3 arc-second DEM layer is updated continually as new data become available in the current folder. Previously created 1 degree blocks are retained in the historical folder with an appended date suffix (YYYMMDD) when they were produced. Other 3DEP products are nationally seamless DEMs in resolutions of 1, and 2 arc seconds. These seamless DEMs were referred to as the National Elevation Dataset (NED) from about 2000 through 2015 at which time they became the seamless DEM layers under the 3DEP program and the NED name and system were retired. Other 3DEP products include one-meter DEMs produced exclusively from high resolution light detection and ranging (lidar) source data and five-meter DEMs in Alaska as well as various source datasets including the lidar point cloud and interferometric synthetic aperture radar (Ifsar) digital surface models and intensity images. All 3DEP products are public domain.
Facebook
TwitterAttribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
This dataset and its metadata statement were supplied to the Bioregional Assessment Programme by a third party and are presented here as originally supplied.
The 3 second (\~90m) Shuttle Radar Topographic Mission (SRTM) Digital Elevation Model (DEM) version 1.0 was derived from resampling the 1 arc second (\~30m) gridded DEM (ANZCW0703013355). The DEM represents ground surface topography, and excludes vegetation features. The dataset was derived from the 1 second Digital Surface Model (DSM; ANZCW0703013336) by automatically removing vegetation offsets identified using several vegetation maps and directly from the DSM. The 1 second product provides substantial improvements in the quality and consistency of the data relative to the original SRTM data, but is not free from artefacts. Man-made structures such as urban areas and power line towers have not been treated. The removal of vegetation effects has produced satisfactory results over most of the continent and areas with defects are identified in the quality assessment layers distributed with the data and described in the User Guide (Geoscience Australia and CSIRO Land & Water, 2010). A full description of the methods is in progress (Read et al., in prep; Gallant et al., in prep). The 3 second DEM was produced for use by government and the public under Creative Commons attribution.
The 3 second DSM and smoothed DEM are also available (DSM; ANZCW0703014216,
DEM-S; ANZCW0703014217).
Source data
SRTM 1 second Version 2 data (Slater et al., 2006), supplied by Defence Imagery and Geospatial Organisation (DIGO) as 813 1 x 1 degree tiles. Data was produced by NASA from radar data collected by the Shuttle Radar Topographic Mission in February 2000.
GEODATA 9 second DEM Version 3 (Geoscience Australia, 2008) used to fill voids.
SRTM Water Body Data (SWBD) shapefile accompanying the SRTM data (Slater et al., 2006). This defines the coastline and larger inland waterbodies for the DEM and DSM.
Vegetation masks and water masks applied to the DEM to remove vegetation.
1 second DEM resampled to 3 second DEM.
1 second DSM processing
The 1 second SRTM-derived Digital Surface Model (DSM) was derived from the 1 second Shuttle Radar Topographic Mission data by removing stripes, filling voids and reflattening water bodies. Further details are provided in the DSM metadata (ANZCW0703013336).
1 second DEM processing (vegetation offset removal)
Vegetation offsets were identified using Landsat-based mapping of woody vegetation. The height offsets were estimated around the edges of vegetation patches then interpolated to a continuous surface of vegetation height offset that was subtracted from the DSM to produce a bare-earth DEM. Further details are provided in the 1 second DSM metadata (ANZCW0703013355).
Void filling
Voids (areas without data) occur in the data due to low radar reflectance (typically open water or dry sandy soils) or topographic shadowing in high relief areas. Delta Surface Fill Method (Grohman et al., 2006) was adapted for this task, using GEODATA 9 second DEM as infill data source. The 9 second data was refined to 1 second resolution using ANUDEM 5.2 without drainage enforcement. Delta Surface Fill Method calculates height differences between SRTM and infill data to create a "delta" surface with voids where the SRTM has no values, then interpolates across voids. The void is then replaced by infill DEM adjusted by the interpolated delta surface, resulting in an exact match of heights at the edges of each void. Two changes to the Delta Surface Fill Method were made: interpolation of the delta surface was achieved with natural neighbour interpolation (Sibson, 1981; implemented in ArcGIS 9.3) rather than inverse distance weighted interpolation; and a mean plane inside larger voids was not used.
Water bodies
Water bodies defined from the SRTM Water Body Data as part of the DSM processing were set to the same elevations as in the DSM.
Edit rules for land surrounding water bodies
SRTM edit rules set all land adjacent to water at least 1m above water level to ensure containment of water (Slater et al., 2006). Following vegetation removal, void filling and water flattening, the heights of all grid cells adjacent to water was set to at least 1 cm above the water surface. The smaller offset (1cm rather than 1m) could be used because the cleaned digital surface model is in floating point format rather than integer format of the original SRTM.
Some small islands within water bodies are represented as voids within the SRTM due to edit rules. These voids are filled as part of void filling process, and their elevations set to a minimum of 1 cm above surrounding water surface across the entire void fill.
Overview of quality assessment
The quality of vegetation offset removal was manually assessed on a 1/8 ×1/8 degree grid. Issues with the vegetation removal were identified and recorded in ancillary data layers. The assessment was based on visible artefacts rather than comparison with reference data so relies on the detection of artefacts by edges.
The issues identified were:
\* vegetation offsets are still visible (not fully removed)
\* vegetation offset overestimated
\* linear vegetation offset not fully removed
\* incomplete removal of built infrastructure and other minor issues
DEM Ancillary data layers
The vegetation removal and assessment process produced two ancillary data layers:
\* A shapefile of 1/8 × 1/8 degree tiles indicating which tiles have been affected by vegetation removal and any issue noted with the vegetation offset removal
\* A difference surface showing the vegetation offset that has been removed; this shows the effect of vegetation on heights as observed by the SRTM radar
instrument and is related to vegetation height, density and structure.
The water and void fill masks for the 1 second DSM were also applied to the DEM. Further information is provided in the User Guide (Geoscience Australia and CSIRO Land & Water, 2010).
Resampling to 3 seconds
The 1 second SRTM derived Digital Elevation Model (DEM) was resampled to 3 seconds of arc (90m) in ArcGIS software using aggregation tool. This tool determines a new cell value based on multiplying the cell resolution by a factor of the input (in this case three) and determines the mean value of input cells with the new extent of the cell (i.e. Mean value of the 3x3 input cells). The 3 second SRTM was converted to integer format for the national mosaic to make the file size more manageable. It does not affect the accuracy of the data at this resolution. Further information on the processing is provided in the User Guide (Geoscience Australia and CSIRO Land & Water, 2010).
Further information can be found at http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_aac46307-fce9-449d-e044-00144fdd4fa6/SRTM-derived+3+Second+Digital+Elevation+Models+Version+1.0
Geoscience Australia (2010) Geoscience Australia, 3 second SRTM Digital Elevation Model (DEM) v01. Bioregional Assessment Source Dataset. Viewed 11 December 2018, http://data.bioregionalassessments.gov.au/dataset/12e0731d-96dd-49cc-aa21-ebfd65a3f67a.
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Overview:
The Copernicus DEM is a Digital Surface Model (DSM) which represents the surface of the Earth including buildings, infrastructure and vegetation. The original GLO-30 provides worldwide coverage at 30 meters (refers to 10 arc seconds). Note that ocean areas do not have tiles, there one can assume height values equal to zero. Data is provided as Cloud Optimized GeoTIFFs. Note that the vertical unit for measurement of elevation height is meters.
The Copernicus DEM for Europe at 100 meter resolution (EU-LAEA projection) in COG format has been derived from the Copernicus DEM GLO-30, mirrored on Open Data on AWS, dataset managed by Sinergise (https://registry.opendata.aws/copernicus-dem/).
Processing steps:
The original Copernicus GLO-30 DEM contains a relevant percentage of tiles with non-square pixels. We created a mosaic map in VRT format and defined within the VRT file the rule to apply cubic resampling while reading the data, i.e. importing them into GRASS GIS for further processing. We chose cubic instead of bilinear resampling since the height-width ratio of non-square pixels is up to 1:5. Hence, artefacts between adjacent tiles in rugged terrain could be minimized:
gdalbuildvrt -input_file_list list_geotiffs_MOOD.csv -r cubic -tr 0.000277777777777778 0.000277777777777778 Copernicus_DSM_30m_MOOD.vrt
In order to reproject the data to EU-LAEA projection while reducing the spatial resolution to 100 m, bilinear resampling was performed in GRASS GIS (using r.proj and the pixel values were scaled with 1000 (storing the pixels as Integer values) for data volume reduction. In addition, a hillshade raster map was derived from the resampled elevation map (using r.relief, GRASS GIS). Eventually, we exported the elevation and hillshade raster maps in Cloud Optimized GeoTIFF (COG) format, along with SLD and QML style files.
Projection + EPSG code:
ETRS89-extended / LAEA Europe (EPSG: 3035)
Spatial extent:
north: 6874000
south: -485000
west: 869000
east: 8712000
Spatial resolution:
100 m
Pixel values:
meters * 1000 (scaled to Integer; example: value 23220 = 23.220 m a.s.l.)
Software used:
GDAL 3.2.2 and GRASS GIS 8.0.0 (r.proj; r.relief)
Original dataset license:
https://spacedata.copernicus.eu/documents/20126/0/CSCDA_ESA_Mission-specific+Annex.pdf
Processed by:
mundialis GmbH & Co. KG, Germany (https://www.mundialis.de/)
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset was derived by the Bioregional Assessment Programme from the 1 second SRTM Digital Elevation Model (DEM) dataset. The source dataset is identified in the Lineage field in this metadata statement. The processes undertaken to produce this derived dataset are described in the History field in this metadata statement.
A clipped version of the Australia wide 1 second -S DEM, version 1, which limits the size to the rectangular extent of the Galilee Basin Subregion, enhancing speed and efficiency for visualisation and processing.
The metadata for the Geoscience Australia 1 sec SRTM is below:
The 1 second DSM, DEM, DEM-S and DEM-H are national elevation data products derived from the Shuttle Radar Topography Mission (SRTM) data. The SRTM data is not suitable for routine application due to various artefacts and noise.
The data has been treated with several processes to produce more usable products:
\* A cleaned digital surface model (DSM)
\* regular grid representing ground surface topography as well as other features including vegetation and man-made structures
\* A bare-earth digital elevation model (DEM)
\* regular grid representing ground surface topography, and where possible, excluding other features such as vegetation and man-made structures.
\* A smoothed digital elevation model (DEM-S)
\* A smoothed DEM based on the bare-earth DEM that has been adaptively smoothed to reduce random noise typically associated with the SRTM data in low relief areas.
\* A hydrologically enforced digital elevation model (DEM-H)
\* A hydrologically enforced DEM is based on DEM-S that has had drainage lines imposed and been further smoothed using the ANUDEM interpolation software.
The last product, a hydrologically enforced DEM, is most similar to the DEMs commonly in use around Australia, such as the GEODATA 9 Second DEM and the 25 m resolution DEMs produced by State and Territory agencies from digitised topographic maps.
For any analysis where surface shape is important, one of the smoothed DEMs (DEM-S or DEM-H) should be used. DEM-S is preferred for shape and vertical accuracy and DEM-H for hydrological connectivity. The DSM is suitable if you want to see the vegetation as well as the land surface height. There are few cases where DEM is the best data source, unless access to a less processed product is necessary.
The 1 second DEM (in its various incarnations) has quite different characteristics to DEMs derived by interpolation from topographic data. Those DEMs are typically quite smooth and are based on fairly accurate but sparse source data, usually contours and spot heights supplemented by drainage lines. The SRTM data is derived from radar measurements that are dense (there is essentially a measurement at almost every grid cell) but noisy.
Version 1.0 of the DSM was released in early 2009 and version 1.0 of the DEM was released in late 2009. Version 1.0 of the DEM-S was released in July 2010 and version 1.0 of the hydrologically enforced DEM-H was released in October 2011. These products provide substantial improvements in the quality and consistency of the data relative to the original SRTM data, but are not free from artefacts. Improved products will be released over time.
The 3 second products were derived from the 1 second data and version 1.0 was released in August 2010. Future releases of these products will occur when the 1 second products have been improved. At this stage there is no 3 second DEM-H product, which requires re-interpolation with drainage enforcement at that resolution.
To enhance the speed and efficiency for visualisation and processing of the smoothed 1 second DEM data within the Galilee Basin Subregion
The original, Australia wide, 1 second smoothed DEM was clipped to rectangular extents of the Galilee subregion using the Spatial Analyst 'Extract By Rectangle' tool in ESRI ArcCatalog v10.0 with the following parameters:
Input raster: source 1 second SRTM
Extent: Galilee Basin subregion polygon
Extraction Area: INSIDE
'no data' values are created outside the clip extent therefore the extent of the dataset may still reflect the national DEM extent in ArcCatalog. Check the tool details for more info.
The lineage of the source 1 second SRTM is below:
The following datasets were used to derive this version of the 1 second DEM products:
Source data
SRTM 1 second Version 2 data (Slater et al., 2006), supplied by Defence Imagery and Geospatial Organisation (DIGO) as 813 1 x 1 degree tiles. Data were produced by NASA from radar data collected by the Shuttle Radar Topography Mission in February 2000.
GEODATA 9 second DEM Version 3 (Geoscience Australia, 2008) used to fill voids.
SRTM Water Body Data (SWBD) shapefile accompanying the SRTM data (Slater et al., 2006). This defines the coastline and larger inland waterbodies for the DEM and DSM.
Vegetation masks and water masks applied to the DEM to remove vegetation.
Full metadata, methodologies and lineage descriptions can be found in the PDF userguide within this dataset.
Bioregional Assessment Programme (2014) Smoothed Digital Elevation Model (DEM) - 1 arc second resolution - Clipped to Galilee Subregion extent. Bioregional Assessment Derived Dataset. Viewed 10 December 2018, http://data.bioregionalassessments.gov.au/dataset/0fe257aa-8845-4183-9d05-5b48edd98f34.
Facebook
TwitterThis product set contains high-resolution Interferometric Synthetic Aperture Radar (IFSAR) imagery and geospatial data for the Barrow Peninsula (155.39 - 157.48 deg W, 70.86 - 71.47 deg N) and Barrow Triangle (156.13 - 157.08 deg W, 71.14 - 71.42 deg N), for use in Geographic Information Systems (GIS) and remote sensing software. The primary IFSAR data sets were acquired by Intermap Technologies from 27 to 29 July 2002, and consist of Orthorectified Radar Imagery (ORRI), a Digital Surface Model (DSM), and a Digital Terrain Model (DTM). Derived data layers include aspect, shaded relief, and slope-angle grids (floating-point binary and ArcInfo grid format), as well as a vector layer of contour lines (ESRI Shapefile format). Also available are accessory layers compiled from other sources: 1:250,000- and 1:63,360-scale USGS Digital Raster Graphic (DRG) mosaic images (GeoTIFF format); 1:250,000- and 1:63,360-scale USGS quadrangle index maps (ESRI Shapefile format); a quarter-quadrangle index map for the 26 IFSAR tiles (ESRI Shapefile format); and a simple polygon layer of the extent of the Barrow Peninsula (ESRI Shapefile format). Unmodified IFSAR data comprise 26 data tiles across UTM zones 4 and 5. The DSM and DTM tiles (5 m resolution) are provided in floating-point binary format with header and projection files. The ORRI tiles (1.25 m resolution) are available in GeoTIFF format. FGDC-compliant metadata for all data sets are provided in text, HTML, and XML formats, along with the Intermap License Agreement and product handbook. The baseline geospatial data support education, outreach, and multi-disciplinary research of environmental change in Barrow, which is an area of focused scientific interest. Data are provided on five DVDs, available through licensing only to National Science Foundation (NSF)-funded investigators. An NSF award number must be provided when ordering data.
Facebook
TwitterThe EarthDEM Project provides high-resolution digital surface models (DSMs) for mid-latitude (non-polar) regions using optical stereo imagery, high-performance computing, and open-source photogrammetry software. EarthDEM version 1 DSM strips are a 20-year time series of elevation data derived from satellite imagery using photogrammetric methods.
Facebook
TwitterA Digital Elevation Model (DEM) and Digital Surface Model (DSM) were derived from airborne Light Detection and Ranging (LiDAR) data collected from Los Alamos National Laboratory's (LANL) heavy-lift unoccupied aerial system (UAS) quadcopter and hexacopter platforms operated by Next-Generation Ecosystem Experiments: Arctic (NGEE Arctic) scientists from the EES-14 group at LANL. These data were collected in August 2017 and July 2018 at the NGEE Arctic field site near mile marker 27 of the Bob Blodgett Nome-Teller Memorial Highway between Nome, Alaska and Teller, Alaska. A Vulcan Raven X8 Airframe (Mitcheldean, Gloucestershire, UK), DJI Matrice 600 Pro Airframe (Shenzhen, China), and Routescene UAV LiDARSystem (Edinburgh, Scotland, UK) were used to collect LiDAR data. Following pre-processing in Routescene LidarViewer Pro software, the LiDAR point clouds were cleaned and processed using CloudCompare software to separate ground and off-ground points. A high resolution DEM and DSM were then created using ArcGIS Pro software. This data package contains fully cleaned point clouds of ground and off-ground points (.las), a 25 cm DEM (.tif), and a 25 cm DSM (.tif) for the Teller 27 field site. Ancillary aircraft data, flight mission parameters, weather conditions, and raw lidar data and imagery can be found in the L0 datasets for these campaigns: NGA299 (2017) and NGA297 (2018). Minimally processed point clouds and auxiliary files can be found in the L1 dataset: NGA304 (2017 and 2018). The Next-Generation Ecosystem Experiments: Arctic (NGEE Arctic), was a 15-year research effort (2012-2027) to reduce uncertainty in Earth System Models by developing a predictive understanding of carbon-rich Arctic ecosystems and feedbacks to climate. NGEE Arctic was supported by the Department of Energy's Office of Biological and Environmental Research. The NGEE Arctic project had two field research sites: 1) located within the Arctic polygonal tundra coastal region on the Barrow Environmental Observatory (BEO) and the North Slope near Utqiagvik (Barrow), Alaska and 2) multiple areas on the discontinuous permafrost region of the Seward Peninsula north of Nome, Alaska. Through observations, experiments, and synthesis with existing datasets, NGEE Arctic provided an enhanced knowledge base for multi-scale modeling and contributed to improved process representation at global pan-Arctic scales within the Department of Energy's Earth system Model (the Energy Exascale Earth System Model, or E3SM), and specifically within the E3SM Land Model component (ELM).
Facebook
TwitterNote: Geoscience Australia no longer supports users' external hard drives. The data can either be downloaded from the ELVIS Portal or from the Related links. The 1 second Shuttle Radar Topography Mission (SRTM) Digital Elevation Models Version 1.0 package comprises three surface models: the Digital Elevation Model (DEM), the Smoothed Digital Elevation Model (DEM-S) and the Hydrologically Enforced Digital Elevation Model (DEM-H). The DEMs were derived from the SRTM data acquired by NASA in February 2000 and were publicly released under Creative Commons licensing from November 2011 in ESRI Grid format.
DEM represents ground surface topography, with vegetation features removed using an automatic process supported by several vegetation maps. This provides substantial improvements in the quality and consistency of the data relative to the original SRTM data, but is not free from artefacts. Man-made structures such as urban areas and power line towers have not been treated. The removal of vegetation effects has produced satisfactory results over most of the continent and areas with defects identified in supplementary layers distributed with the data, and described in the User Guide.
DEM-S represents ground surface topography, excluding vegetation features, and has been smoothed to reduce noise and improve the representation of surface shape. An adaptive smoothing process applied more smoothing in flatter areas than hilly areas, and more smoothing in noisier areas than in less noisy areas. This DEM-S supports calculation of local terrain shape attributes such as slope, aspect and curvature that could not be reliably derived from the unsmoothed 1 second DEM because of noise.
DEM-H is a hydrologically enforced version of the smoothed DEM-S. The DEM-H captures flow paths based on SRTM elevations and mapped stream lines, and supports delineation of catchments and related hydrological attributes. The dataset was derived from the 1 second smoothed Digital Elevation Model (DEM-S) by enforcing hydrological connectivity with the ANUDEM software, using selected AusHydro V1.6 (February 2010) 1:250,000 scale watercourse lines and lines derived from DEM-S to define the watercourses. The drainage enforcement has produced a consistent representation of hydrological connectivity with some elevation artefacts resulting from the drainage enforcement.
Further information can be found in the supplementary layers supplied with the data and in the User Guide.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Photogrammetry is a remote sensing technology, i.e. the technology is not in direct contact with what is being measured. From drone, aeroplane or helicopter, photographs are taken. Multiple overlapping photographs of the ground are taken. Precise measurements from the photographs can be taken to create topography maps.This data was collected using a drone carrying a digital camera in 2020 and 2021.A software package was used extract points (X,Y,Z (x & y coordinates) and z (height)) from the photographs. The data is then converted into gridded (GeoTIFF) data to create a Digital Surface Model of the earth.An ordnance datum (OD) is a vertical datum used as the basis for deriving heights on maps. This data is referenced to the Malin Head Vertical Datum which is the mean sea level of the tide gauge at Malin Head, County Donegal. It was adopted as the national datum in 1970 from readings taken between 1960 and 1969 and all heights on national grid maps are measured above this datum. Digital Terrain Models (DTM) are bare earth models (no trees or buildings) of the Earth’s surface.Digital Surface Models (DSM) are earth models in its current state. For example, a DSM includes elevations from buildings, tree canopy, electrical power lines and other features.Hillshading is a method which gives a 3D appearance to the terrain. It shows the shape of hills and mountains using shading (levels of grey) on a map, by the use of graded shadows that would be cast by high ground if light was shining from a chosen direction.This data shows the hillshade of the DSM.The Kilmichael Point and Dalkey Island data was collected by the Geological Survey Ireland. The Bremore Head, Bunmahon, Dunbeg, Ferriters and Illauntannig data was collected by the CHERISH Project. The CHERISH project looks at coastal sites that are important to human history. These sites have important structures (for example buildings or burial sites) that may be impacted by changes to our coast. All data formats are provided as GeoTIFF rasters. Raster data is another name for gridded data. Raster data stores information in pixels (grid cells). Each raster grid makes up a matrix of cells (or pixels) organised into rows and columns. This data has a grid cell size of 0.25 meter by 0.25 meter. This means that each cell (pixel) represents an area of 0.25meters squared.
Facebook
TwitterAttribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
This dataset and its metadata statement were supplied to the Bioregional Assessment Programme by a third party and are presented here as originally supplied.
This dataset provides a userguide and setup information relating to accessing the Gescience Australia, 1 second SRTM Digital Elevation Model (DEM), for visualisation and analysis using ESRI ArcMap and ArcCatalog.
The 1 second DSM, DEM, DEM-S and DEM-H are national elevation data products derived from the Shuttle Radar Topography Mission (SRTM) data. The SRTM data is not suitable for routine application due to various artefacts and noise.
The data has been treated with several processes to produce more usable products:
\* A cleaned digital surface model (DSM)
\* regular grid representing ground surface topography as well as other features including vegetation and man-made structures
\* A bare-earth digital elevation model (DEM)
\* regular grid representing ground surface topography, and where possible, excluding other features such as vegetation and man-made structures.
\* A smoothed digital elevation model (DEM-S)
\* A smoothed DEM based on the bare-earth DEM that has been adaptively smoothed to reduce random noise typically associated with the SRTM data in low relief areas.
\* A hydrologically enforced digital elevation model (DEM-H)
\* A hydrologically enforced DEM is based on DEM-S that has had drainage lines imposed and been further smoothed using the ANUDEM interpolation software.
The last product, a hydrologically enforced DEM, is most similar to the DEMs commonly in use around Australia, such as the GEODATA 9 Second DEM and the 25 m resolution DEMs produced by State and Territory agencies from digitised topographic maps.
For any analysis where surface shape is important, one of the smoothed DEMs (DEM-S or DEM-H) should be used. DEM-S is preferred for shape and vertical accuracy and DEM-H for hydrological connectivity. The DSM is suitable if you want to see the vegetation as well as the land surface height. There are few cases where DEM is the best data source, unless access to a less processed product is necessary.
The 1 second DEM (in its various incarnations) has quite different characteristics to DEMs derived by interpolation from topographic data. Those DEMs are typically quite smooth and are based on fairly accurate but sparse source data, usually contours and spot heights supplemented by drainage lines. The SRTM data is derived from radar measurements that are dense (there is essentially a measurement at almost every grid cell) but noisy.
Version 1.0 of the DSM was released in early 2009 and version 1.0 of the DEM was released in late 2009. Version 1.0 of the DEM-S was released in July 2010 and version 1.0 of the hydrologically enforced DEM-H was released in October 2011. These products provide substantial improvements in the quality and consistency of the data relative to the original SRTM data, but are not free from artefacts. Improved products will be released over time.
The 3 second products were derived from the 1 second data and version 1.0 was released in August 2010. Future releases of these products will occur when the 1 second products have been improved. At this stage there is no 3 second DEM-H product, which requires re-interpolation with drainage enforcement at that resolution.
The following datasets were used to derive this version of the 1 second DEM products:
Source data
SRTM 1 second Version 2 data (Slater et al., 2006), supplied by Defence Imagery and Geospatial Organisation (DIGO) as 813 1 x 1 degree tiles. Data were produced by NASA from radar data collected by the Shuttle Radar Topography Mission in February 2000.
GEODATA 9 second DEM Version 3 (Geoscience Australia, 2008) used to fill voids.
SRTM Water Body Data (SWBD) shapefile accompanying the SRTM data (Slater et al., 2006). This defines the coastline and larger inland waterbodies for the DEM and DSM.
Vegetation masks and water masks applied to the DEM to remove vegetation.
Full metadata, methodologies and lineage descriptions can be found in the PDF userguide within this dataset.
Further information can be found at http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_72759
Geoscience Australia (2011) Geoscience Australia, 1 second SRTM Digital Elevation Model (DEM). Bioregional Assessment Source Dataset. Viewed 10 December 2018, http://data.bioregionalassessments.gov.au/dataset/9a9284b6-eb45-4a13-97d0-91bf25f1187b.
Facebook
TwitterThis product set contains reduced-resolution Interferometric Synthetic Aperture Radar (IFSAR) imagery and geospatial data for the Barrow Peninsula (155.39 - 157.48 deg W, 70.86 - 71.47 deg N), for use in Geographic Information Systems (GIS) and remote sensing software. The primary IFSAR data sets were acquired by Intermap Technologies from 27 to 29 July 2002, and consist of an Orthorectified Radar Imagery (ORRI), a Digital Surface Model (DSM), and a Digital Terrain Model (DTM). Derived data layers include aspect, shaded relief, and slope-angle grids (floating-point binary format), as well as a vector layer of contour lines (ESRI Shapefile format). Also available are accessory layers compiled from other sources: 1:250,000- and 1:63,360-scale USGS Digital Raster Graphic (DRG) mosaic images (GeoTIFF format); 1:250,000- and 1:63,360-scale USGS quadrangle index maps (ESRI Shapefile format); and a simple polygon layer of the extent of the Barrow Peninsula (ESRI Shapefile format). The DSM and DTM data sets (20 m resolution) are provided in floating-point binary format with header and projection files. The ORRI mosaic (5 m resolution) is available in GeoTIFF format. FGDC-compliant metadata for all data sets are provided in text, HTML, and XML formats, along with the Intermap License Agreement and product handbook. The baseline geospatial data support education, outreach, and multi-disciplinary research of environmental change in Barrow, which is an area of focused scientific interest. Data are available via FTP and CD-ROM.
Facebook
TwitterDownload In State Plane Projection Here The 2017 Digital Terrain Model (DTM) is a 2 foot pixel resolution raster in Erdas IMG format. This was created using the ground (class = 2) lidar points and incorporating the breaklines. The DTMs were developed using LiDAR data. LiDAR is an acronym for LIght Detection And Ranging. Light detection and ranging is the science of using a laser to measure distances to specific points. A specially equipped airplane with positioning tools and LiDAR technology was used to measure the distance to the surface of the earth to determine ground elevation. The classified points were developed using data collected in April to May 2017. The LiDAR points, specialized software, and technology provide the ability to create a high precision three-dimensional digital elevation and/or terrain models (DEM/DTM). The use of LiDAR significantly reduces the cost for developing this information. The DTMs are intended to correspond to the orthometric heights of the bare surface of the county (no buildings or vegetation cover). DTM data is used by county agencies to study drainage issues such as flooding and erosion; contour generation; slope and aspect; and hill shade images. This dataset was compiled to meet the American Society for Photogrammetry and Remote Sensing (ASPRS) Accuracy Standards for Large-Scale Maps, CLASS 1 map accuracy. The U.S. Army Corps of Engineers Engineering and Design Manual for Photogrammetric Production recommends that data intended for this usage scale be used for any of the following purposes: route location, preliminary alignment and design, preliminary project planning, hydraulic sections, rough earthwork estimates, or high-gradient terrain / low unit cost earthwork excavation estimates. The manual does not recommend that these data be used for final design, excavation and grading plans, earthwork computations for bid estimates or contract measurement and payment. This dataset does not take the place of an on-site survey for design, construction or regulatory purposes.
Facebook
TwitterA digital elevation model service for Vexcel’s Elevate wide area program in Larimer County, CO. View digital surface models (DSM) at a spatial resolution of 15-20cm, and at an absolute accuracy of 100-120cm. This DSM data shows surface of ground and objects on the earth, including both natural (trees, vegetation) and human-made structures (buildings).Vexcel's wide area collection program uses award-winning UltraCam sensors to capture aerial imagery and elevation data at the highest quality, accuracy, and consistency available. This DSM collection spans both urban and rural areas in the Lower 48 states in the United States
Facebook
TwitterThis dataset includes a suite of post-seismic, 2-meter resolution optical digital surface models (DSMs) post-dating the July 2019 Ridgecrest earthquakes. The DSMs were constructed using DigitalGlobe base imagery (©DigitalGlobe 2019) and the open source SETSM software package . DSMs are vertically and horizontally registered to a separate pre-event optical DSM that was registered to ICESat-1 data. The base imagery includes 0.5m and 0.3m panchromatic in-track stereo imagery acquired from the WorldView-2 and WorldView-3 satellites. The generation of this data sets was funded in part by SCEC in cooperation with the U.S. Geological Survey. The naming description of individual DSMs is as follows: sensor_date _id1_id2_dem_2m-DEM.tif where sensor is the sensor from which imagery was acquired (WV02-WorldView2, WV03-WorldView3), date is the acquisition dates in format YYMMMDD (i.e., 13AUG11), and id1 and id2 are the image identifier numbers provided by DigitalGlobe.
Facebook
TwitterThis 1m Digital Surface Model (DSM) is derived from first-stop Light Detection and Ranging (LiDAR) point cloud data from September 2005 for the Green Lakes Valley, near Boulder Colorado. The DSM was created from LiDAR point cloud tiles subsampled to 1-meter postings, acquired by the National Center for Airborne Laser Mapping (NCALM) project. This data was collected in collaboration between the University of Colorado, Institute of Arctic and Alpine Research (INSTAAR) and NCALM, which is funded by the National Science Foundation (NSF). The DSM has the functionality of a map layer for use in Geographic Information Systems (GIS) or remote sensing software. Total area imaged is 35 km^2. The LiDAR point cloud data was acquired with an Optech 1233 Airborne Laser Terrain Mapper (ALTM) and mounted in a twin engine Piper Chieftain (N931SA) with Inertial Measurement Unit (IMU) at a flying height of 600 m. Data from two GPS (Global Positioning System) ground stations were used for aircraft trajectory determination. The continuous DSM surface was created by mosaicing and then kriging 1 km2 LiDAR point cloud LAS-formated tiles using Golden Software's Surfer 8 Kriging algorithm. Horizontal accuracy and vertical accuracy is unknown. cm RMSE at 1 sigma. The layer is available in GEOTIF format approx. 265 MB of data. It has a UTM zone 13 projection, with a NAD83 horizonal datum and a NAVD88 vertical datum computed using NGS GEOID03 model, with FGDC-compliant metadata. A shaded relief model was also generated. A similar layer, the Digital Terrain Model (DTM), is a ground-surface elevation dataset better suited for derived layers such as slope angle, aspect, and contours. A processing report and readme file are included with this data release. The DSM is available through an unrestricted public license. The LiDAR DEMs will be of interest to land managers, scientists, and others for study of topography, ecosystems, and environmental change. NOTE: This EML metadata file does not contain important geospatial data processing information. Before using any NWT LTER geospatial data read the arcgis metadata XML file in either ISO or FGDC compliant format, using ArcGIS software (ArcCatalog > description), or by viewing the .xml file provided with the geospatial dataset.
Facebook
TwitterThis 1m Digital Surface Model (DSM) shaded relief is derived from first-stop Light Detection and Ranging (LiDAR) point cloud data from September 2005 for the Green Lakes Valley, near Boulder Colorado. The DSM was created from LiDAR point cloud tiles subsampled to 1-meter postings, acquired by the National Center for Airborne Laser Mapping (NCALM) project. This data was collected in collaboration between the University of Colorado, Institute of Arctic and Alpine Research (INSTAAR) and NCALM, which is funded by the National Science Foundation (NSF). The DSM shaded relief has the functionality of a map layer for use in Geographic Information Systems (GIS) or remote sensing software. Total area imaged is 35 km^2. The LiDAR point cloud data was acquired with an Optech 1233 Airborne Laser Terrain Mapper (ALTM) and mounted in a twin engine Piper Chieftain (N931SA) with Inertial Measurement Unit (IMU) at a flying height of 600 m. Data from two GPS (Global Positioning System) ground stations were used for aircraft trajectory determination. The continuous DSM surface was created by mosaicing and then kriging 1 km2 LiDAR point cloud LAS-formated tiles using Golden Software's Surfer 8 Kriging algorithm. Horizontal accuracy and vertical accuracy is unknown. cm RMSE at 1 sigma. The layer is available in GEOTIF format approx. 265 MB of data. It has a UTM zone 13 projection, with a NAD83 horizonal datum and a NAVD88 vertical datum computed using NGS GEOID03 model, with FGDC-compliant metadata. This shaded relief model was also generated. A similar layer, the Digital Terrain Model (DTM), is a ground-surface elevation dataset better suited for derived layers such as slope angle, aspect, and contours. A processing report and readme file are included with this data release. The DSM dataset is available through an unrestricted public license. The LiDAR DEMs will be of interest to land managers, scientists, and others for study of topography, ecosystems, and environmental change. NOTE: This EML metadata file does not contain important geospatial data processing information. Before using any NWT LTER geospatial data read the arcgis metadata XML file in either ISO or FGDC compliant format, using ArcGIS software (ArcCatalog > description), or by viewing the .xml file provided with the geospatial dataset.
Facebook
TwitterThis is a 1 arc-second (approximately 30 m) resolution tiled collection of the 3D Elevation Program (3DEP) seamless data products . 3DEP data serve as the elevation layer of The National Map, and provide basic elevation information for Earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for global change research, hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. 3DEP data compose an elevation dataset that consists of seamless layers and a high resolution layer. Each of these layers consists of the best available raster elevation data of the conterminous United States, Alaska, Hawaii, territorial islands, Mexico and Canada. 3DEP data are updated continually as new data become available. Seamless 3DEP data are derived from diverse source data that are processed to a common coordinate system and unit of vertical measure. These data are distributed in geographic coordinates in units of decimal degrees, and in conformance with the North American Datum of 1983 (NAD 83). All elevation values are in meters and, over the conterminous United States, are referenced to the North American Vertical Datum of 1988 (NAVD 88). The vertical reference will vary in other areas. The elevations in these DEMs represent the topographic bare-earth surface. All 3DEP products are public domain. This dataset includes data over Canada and Mexico as part of an international, interagency collaboration with the Mexico's National Institute of Statistics and Geography (INEGI) and the Natural Resources Canada (NRCAN) Centre for Topographic Information-Sherbrook, Ottawa. For more details on the data provenance of this dataset, visit here and here. Click here for a broad overview of this dataset
Facebook
TwitterTo advance the U.S. Geological Survey 3D National Topography Model (3DNTM) including the next generation of the 3D Elevation Program (3DEP) and the 3D Hydrography Program (3DHP), the USGS researched and created a Seamless 1-meter resolution (S1M) Digital Elevation Model (DEM) for the conterminous United States (CONUS). This dataset is a result of a joint project between the National Geospatial Technical Operations Center (NGTOC) and the Earth Resources Observation and Science Center (EROS) of the USGS National Geospatial Directorate (NGD). Scientists and resource managers can use the S1M data for global change research, hydrologic modeling, resource monitoring, mapping, visualization, and many other applications. A S1M DEM requires merging multiple lidar projects in which the lidar sensor, bare-earth DEM generation methodology, source resolution, datums/projection, unit of measure, and geoid (mean sea level model) can vary between projects. This tile of the Seamless 1-m DEM was created from the best available 3DEP Original Product Resolution source DEMs from one or several intersecting 3DEP data collection projects. Spatially referenced metadata are contained within an open-source GeoPackage that stores footprints for each of the input source DEMs along with source data characteristics. The source DEMs were processed to align vertically to North American Vertical Datum of 1988 (EPSG: 5703) updated to the current GEOID18 model and projected horizontally to North American Datum of 1983 (2011) USA Contiguous Albers Equal Area Conic projection (EPSG: 6350). Horizontal units and elevation values are in meters. Large data voids wider than 10 meters in the tile were backfilled with 1/9 arc-second or 1/3 arc-second DEMs in the 3DEP data repository while small data voids were interpolated across using bilinear interpolation. For tiles containing more than one 3DEP project or with large data voids, up to three blending routines were used: a simple blend, narrow blend, or a backfill blend. The spatial metadata GeoPackage contains information on where backfilling, void interpolation, and blending occurs within the tile. The tile spatial extent is 10 km x 10 km. The S1M DEM is available in a Cloud Optimized Georeferenced Tagged Image File Format (GeoTIFF). The S1M DEM has floating point numeric values and a spatial resolution of one meter. NoData values (areas where data is incomplete due to lack of full data coverage) are represented with the numeric value of -999999. Other 3DEP products are nationally seamless DEMs in resolutions of 1/3, 1, and 2 arc seconds. These seamless DEMs were referred to as the National Elevation Dataset (NED) from about 2000 through 2015 at which time they became the seamless DEM layers under the 3DEP program and the NED name and system were retired. Other 3DEP products include project-based one-meter DEMs in CONUS, five-meter DEMs in Alaska as well as various source datasets including the lidar point cloud and interferometric synthetic aperture radar (Ifsar) digital surface models and intensity images. All 3DEP products are public domain.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
A digital elevation model service for Vexcel’s Elevate wide area program in the United States. View digital surface models (DSM) at a spatial resolution of 15-20cm, and at an absolute accuracy of 100-120cm. This DSM data shows surface of ground and objects on the earth, including both natural (trees, vegetation) and human-made structures (buildings).Vexcel's wide area collection program uses award-winning UltraCam sensors to capture aerial imagery and elevation data at the highest quality, accuracy, and consistency available. This DSM collection spans both urban and rural areas in the Lower 48 states in the United States.