This is a tiled collection of the 3D Elevation Program (3DEP) and is one meter resolution. The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The elevations in this DEM represent the topographic bare-earth surface. USGS standard one-meter DEMs are produced exclusively from high resolution light detection and ranging (lidar) source data of one-meter or higher resolution. One-meter DEM surfaces are seamless within collection projects, but, not necessarily seamless across projects. The spatial reference used for tiles of the one-meter DEM within the conterminous United States (CONUS) is Universal Transverse Mercator (UTM) in units of meters, and in conformance with the North American Datum of 1983 (NAD83). All bare earth elevation values are in meters and are referenced to the North American Vertical Datum of 1988 (NAVD88). Each tile is distributed in the UTM Zone in which it lies. If a tile crosses two UTM zones, it is delivered in both zones. The one-meter DEM is the highest resolution standard DEM offered in the 3DEP product suite. Other 3DEP products are nationally seamless DEMs in resolutions of 1/3, 1, and 2 arc seconds. These seamless DEMs were referred to as the National Elevation Dataset (NED) from about 2000 through 2015 at which time they became the seamless DEM layers under the 3DEP program and the NED name and system were retired. Other 3DEP products include five-meter DEMs in Alaska as well as various source datasets including the lidar point cloud and interferometric synthetic aperture radar (Ifsar) digital surface models and intensity images. All 3DEP products are public domain.
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
This dataset and its metadata statement were supplied to the Bioregional Assessment Programme by a third party and are presented here as originally supplied.
The 3 second (~90m) Shuttle Radar Topographic Mission (SRTM) Digital Elevation Model (DEM) version 1.0 was derived from resampling the 1 arc second (~30m) gridded DEM (ANZCW0703013355). The DEM represents ground surface topography, and excludes vegetation features. The dataset was derived from the 1 second Digital Surface Model (DSM; ANZCW0703013336) by automatically removing vegetation offsets identified using several vegetation maps and directly from the DSM. The 1 second product provides substantial improvements in the quality and consistency of the data relative to the original SRTM data, but is not free from artefacts. Man-made structures such as urban areas and power line towers have not been treated. The removal of vegetation effects has produced satisfactory results over most of the continent and areas with defects are identified in the quality assessment layers distributed with the data and described in the User Guide (Geoscience Australia and CSIRO Land & Water, 2010). A full description of the methods is in progress (Read et al., in prep; Gallant et al., in prep). The 3 second DEM was produced for use by government and the public under Creative Commons attribution.
The 3 second DSM and smoothed DEM are also available (DSM; ANZCW0703014216,
DEM-S; ANZCW0703014217).
Source data
SRTM 1 second Version 2 data (Slater et al., 2006), supplied by Defence Imagery and Geospatial Organisation (DIGO) as 813 1 x 1 degree tiles. Data was produced by NASA from radar data collected by the Shuttle Radar Topographic Mission in February 2000.
GEODATA 9 second DEM Version 3 (Geoscience Australia, 2008) used to fill voids.
SRTM Water Body Data (SWBD) shapefile accompanying the SRTM data (Slater et al., 2006). This defines the coastline and larger inland waterbodies for the DEM and DSM.
Vegetation masks and water masks applied to the DEM to remove vegetation.
1 second DEM resampled to 3 second DEM.
1 second DSM processing
The 1 second SRTM-derived Digital Surface Model (DSM) was derived from the 1 second Shuttle Radar Topographic Mission data by removing stripes, filling voids and reflattening water bodies. Further details are provided in the DSM metadata (ANZCW0703013336).
1 second DEM processing (vegetation offset removal)
Vegetation offsets were identified using Landsat-based mapping of woody vegetation. The height offsets were estimated around the edges of vegetation patches then interpolated to a continuous surface of vegetation height offset that was subtracted from the DSM to produce a bare-earth DEM. Further details are provided in the 1 second DSM metadata (ANZCW0703013355).
Void filling
Voids (areas without data) occur in the data due to low radar reflectance (typically open water or dry sandy soils) or topographic shadowing in high relief areas. Delta Surface Fill Method (Grohman et al., 2006) was adapted for this task, using GEODATA 9 second DEM as infill data source. The 9 second data was refined to 1 second resolution using ANUDEM 5.2 without drainage enforcement. Delta Surface Fill Method calculates height differences between SRTM and infill data to create a "delta" surface with voids where the SRTM has no values, then interpolates across voids. The void is then replaced by infill DEM adjusted by the interpolated delta surface, resulting in an exact match of heights at the edges of each void. Two changes to the Delta Surface Fill Method were made: interpolation of the delta surface was achieved with natural neighbour interpolation (Sibson, 1981; implemented in ArcGIS 9.3) rather than inverse distance weighted interpolation; and a mean plane inside larger voids was not used.
Water bodies
Water bodies defined from the SRTM Water Body Data as part of the DSM processing were set to the same elevations as in the DSM.
Edit rules for land surrounding water bodies
SRTM edit rules set all land adjacent to water at least 1m above water level to ensure containment of water (Slater et al., 2006). Following vegetation removal, void filling and water flattening, the heights of all grid cells adjacent to water was set to at least 1 cm above the water surface. The smaller offset (1cm rather than 1m) could be used because the cleaned digital surface model is in floating point format rather than integer format of the original SRTM.
Some small islands within water bodies are represented as voids within the SRTM due to edit rules. These voids are filled as part of void filling process, and their elevations set to a minimum of 1 cm above surrounding water surface across the entire void fill.
Overview of quality assessment
The quality of vegetation offset removal was manually assessed on a 1/8 ×1/8 degree grid. Issues with the vegetation removal were identified and recorded in ancillary data layers. The assessment was based on visible artefacts rather than comparison with reference data so relies on the detection of artefacts by edges.
The issues identified were:
* vegetation offsets are still visible (not fully removed)
* vegetation offset overestimated
* linear vegetation offset not fully removed
* incomplete removal of built infrastructure and other minor issues
DEM Ancillary data layers
The vegetation removal and assessment process produced two ancillary data layers:
* A shapefile of 1/8 × 1/8 degree tiles indicating which tiles have been affected by vegetation removal and any issue noted with the vegetation offset removal
* A difference surface showing the vegetation offset that has been removed; this shows the effect of vegetation on heights as observed by the SRTM radar
instrument and is related to vegetation height, density and structure.
The water and void fill masks for the 1 second DSM were also applied to the DEM. Further information is provided in the User Guide (Geoscience Australia and CSIRO Land & Water, 2010).
Resampling to 3 seconds
The 1 second SRTM derived Digital Elevation Model (DEM) was resampled to 3 seconds of arc (90m) in ArcGIS software using aggregation tool. This tool determines a new cell value based on multiplying the cell resolution by a factor of the input (in this case three) and determines the mean value of input cells with the new extent of the cell (i.e. Mean value of the 3x3 input cells). The 3 second SRTM was converted to integer format for the national mosaic to make the file size more manageable. It does not affect the accuracy of the data at this resolution. Further information on the processing is provided in the User Guide (Geoscience Australia and CSIRO Land & Water, 2010).
Further information can be found at http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_aac46307-fce9-449d-e044-00144fdd4fa6/SRTM-derived+3+Second+Digital+Elevation+Models+Version+1.0
Geoscience Australia (2010) Geoscience Australia, 3 second SRTM Digital Elevation Model (DEM) v01. Bioregional Assessment Source Dataset. Viewed 11 December 2018, http://data.bioregionalassessments.gov.au/dataset/12e0731d-96dd-49cc-aa21-ebfd65a3f67a.
This is a tiled collection of the 3D Elevation Program (3DEP) and is 1 arc-second (approximately 30 m) resolution. The elevations in this Digital Elevation Model (DEM) represent the topographic bare-earth surface. The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The seamless 1 arc-second DEM layers are derived from diverse source data that are processed to a common coordinate system and unit of vertical measure. These data are distributed in geographic coordinates in units of decimal degrees, and in conformance with the North American Datum of 1983 (NAD 83). All elevation values are in meters and, over the continental United States, are referenced to the North American Vertical Datum of 1988 (NAVD88). The seamless 1 arc-second DEM layer provides coverage of the conterminous United States, Hawaii, Puerto Rico, other territorial islands, and much of Alaska and Canada. The seamless 1 arc-second DEM is available as pre-staged current and historical products tiled in GeoTIFF format. The seamless 1 arc-second DEM layer is updated continually as new data become available in the current folder. Previously created 1 degree blocks are retained in the historical folder with an appended date suffix (YYYYMMDD) when they were produced. Other 3DEP products are nationally seamless DEMs in resolutions of 1 and 1/3 arc-second. These seamless DEMs were referred to as the National Elevation Dataset (NED) from about 2000 through 2015 at which time they became the seamless DEM layers under the 3DEP program and the NED name and system were retired. Other 3DEP products include one-meter DEMs produced exclusively from high resolution light detection and ranging (lidar) source data and five-meter DEMs in Alaska as well as various source datasets including the lidar point cloud and interferometric synthetic aperture radar (Ifsar) digital surface models and intensity images. All 3DEP products are public domain.
The EarthDEM Project provides high-resolution digital surface models (DSMs) for mid-latitude (non-polar) regions using optical stereo imagery, high-performance computing, and open-source photogrammetry software. EarthDEM version 1 DSM strips are a 20-year time series of elevation data derived from satellite imagery using photogrammetric methods.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset was derived by the Bioregional Assessment Programme from the 1 second SRTM Digital Elevation Model (DEM) dataset. The source dataset is identified in the Lineage field in this metadata statement. The processes undertaken to produce this derived dataset are described in the History field in this metadata statement.
A clipped version of the Australia wide 1 second -S DEM, version 1, which limits the size to the rectangular extent of the Galilee Basin Subregion, enhancing speed and efficiency for visualisation and processing.
The metadata for the Geoscience Australia 1 sec SRTM is below:
The 1 second DSM, DEM, DEM-S and DEM-H are national elevation data products derived from the Shuttle Radar Topography Mission (SRTM) data. The SRTM data is not suitable for routine application due to various artefacts and noise.
The data has been treated with several processes to produce more usable products:
* A cleaned digital surface model (DSM)
* regular grid representing ground surface topography as well as other features including vegetation and man-made structures
* A bare-earth digital elevation model (DEM)
* regular grid representing ground surface topography, and where possible, excluding other features such as vegetation and man-made structures.
* A smoothed digital elevation model (DEM-S)
* A smoothed DEM based on the bare-earth DEM that has been adaptively smoothed to reduce random noise typically associated with the SRTM data in low relief areas.
* A hydrologically enforced digital elevation model (DEM-H)
* A hydrologically enforced DEM is based on DEM-S that has had drainage lines imposed and been further smoothed using the ANUDEM interpolation software.
The last product, a hydrologically enforced DEM, is most similar to the DEMs commonly in use around Australia, such as the GEODATA 9 Second DEM and the 25 m resolution DEMs produced by State and Territory agencies from digitised topographic maps.
For any analysis where surface shape is important, one of the smoothed DEMs (DEM-S or DEM-H) should be used. DEM-S is preferred for shape and vertical accuracy and DEM-H for hydrological connectivity. The DSM is suitable if you want to see the vegetation as well as the land surface height. There are few cases where DEM is the best data source, unless access to a less processed product is necessary.
The 1 second DEM (in its various incarnations) has quite different characteristics to DEMs derived by interpolation from topographic data. Those DEMs are typically quite smooth and are based on fairly accurate but sparse source data, usually contours and spot heights supplemented by drainage lines. The SRTM data is derived from radar measurements that are dense (there is essentially a measurement at almost every grid cell) but noisy.
Version 1.0 of the DSM was released in early 2009 and version 1.0 of the DEM was released in late 2009. Version 1.0 of the DEM-S was released in July 2010 and version 1.0 of the hydrologically enforced DEM-H was released in October 2011. These products provide substantial improvements in the quality and consistency of the data relative to the original SRTM data, but are not free from artefacts. Improved products will be released over time.
The 3 second products were derived from the 1 second data and version 1.0 was released in August 2010. Future releases of these products will occur when the 1 second products have been improved. At this stage there is no 3 second DEM-H product, which requires re-interpolation with drainage enforcement at that resolution.
To enhance the speed and efficiency for visualisation and processing of the smoothed 1 second DEM data within the Galilee Basin Subregion
The original, Australia wide, 1 second smoothed DEM was clipped to rectangular extents of the Galilee subregion using the Spatial Analyst 'Extract By Rectangle' tool in ESRI ArcCatalog v10.0 with the following parameters:
Input raster: source 1 second SRTM
Extent: Galilee Basin subregion polygon
Extraction Area: INSIDE
'no data' values are created outside the clip extent therefore the extent of the dataset may still reflect the national DEM extent in ArcCatalog. Check the tool details for more info.
The lineage of the source 1 second SRTM is below:
The following datasets were used to derive this version of the 1 second DEM products:
Source data
SRTM 1 second Version 2 data (Slater et al., 2006), supplied by Defence Imagery and Geospatial Organisation (DIGO) as 813 1 x 1 degree tiles. Data were produced by NASA from radar data collected by the Shuttle Radar Topography Mission in February 2000.
GEODATA 9 second DEM Version 3 (Geoscience Australia, 2008) used to fill voids.
SRTM Water Body Data (SWBD) shapefile accompanying the SRTM data (Slater et al., 2006). This defines the coastline and larger inland waterbodies for the DEM and DSM.
Vegetation masks and water masks applied to the DEM to remove vegetation.
Full metadata, methodologies and lineage descriptions can be found in the PDF userguide within this dataset.
Bioregional Assessment Programme (2014) Smoothed Digital Elevation Model (DEM) - 1 arc second resolution - Clipped to Galilee Subregion extent. Bioregional Assessment Derived Dataset. Viewed 10 December 2018, http://data.bioregionalassessments.gov.au/dataset/0fe257aa-8845-4183-9d05-5b48edd98f34.
This product set contains high-resolution Interferometric Synthetic Aperture Radar (IFSAR) imagery and geospatial data for the Barrow Peninsula (155.39 - 157.48 deg W, 70.86 - 71.47 deg N) and Barrow Triangle (156.13 - 157.08 deg W, 71.14 - 71.42 deg N), for use in Geographic Information Systems (GIS) and remote sensing software. The primary IFSAR data sets were acquired by Intermap Technologies from 27 to 29 July 2002, and consist of Orthorectified Radar Imagery (ORRI), a Digital Surface Model (DSM), and a Digital Terrain Model (DTM). Derived data layers include aspect, shaded relief, and slope-angle grids (floating-point binary and ArcInfo grid format), as well as a vector layer of contour lines (ESRI Shapefile format). Also available are accessory layers compiled from other sources: 1:250,000- and 1:63,360-scale USGS Digital Raster Graphic (DRG) mosaic images (GeoTIFF format); 1:250,000- and 1:63,360-scale USGS quadrangle index maps (ESRI Shapefile format); a quarter-quadrangle index map for the 26 IFSAR tiles (ESRI Shapefile format); and a simple polygon layer of the extent of the Barrow Peninsula (ESRI Shapefile format). Unmodified IFSAR data comprise 26 data tiles across UTM zones 4 and 5. The DSM and DTM tiles (5 m resolution) are provided in floating-point binary format with header and projection files. The ORRI tiles (1.25 m resolution) are available in GeoTIFF format. FGDC-compliant metadata for all data sets are provided in text, HTML, and XML formats, along with the Intermap License Agreement and product handbook. The baseline geospatial data support education, outreach, and multi-disciplinary research of environmental change in Barrow, which is an area of focused scientific interest. Data are provided on five DVDs, available through licensing only to National Science Foundation (NSF)-funded investigators. An NSF award number must be provided when ordering data.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset was derived by the Bioregional Assessment Programme from the Geoscience Australia, 1 second SRTM Digital Elevation Model (DEM) dataset. The source dataset is identified in the Lineage field in this metadata statement. The processes undertaken to produce this derived dataset are described in the History field in this metadata statement.
This dataset provides a userguide and setup information relating to accessing the Geoscience Australia, 1 second SRTM Digital Elevation Model (DEM), for visualisation and analysis using ESRI ArcMap and ArcCatalog.
The 1 second DSM, DEM, DEM-S and DEM-H are national elevation data products derived from the Shuttle Radar Topography Mission (SRTM) data. The SRTM data is not suitable for routine application due to various artifacts and noise.
The data has been treated with several processes to produce more usable products:
\* A cleaned digital surface model (DSM)
o regular grid representing ground surface topography as well as other features including vegetation and man-made structures
\* A bare-earth digital elevation model (DEM)
o regular grid representing ground surface topography, and where possible, excluding other features such as vegetation and man-made structures.
\* A smoothed digital elevation model (DEM-S)
o A smoothed DEM based on the bare-earth DEM that has been adaptively smoothed to reduce random noise typically associated with the SRTM data in low relief areas.
\* A hydrologically enforced digital elevation model (DEM-H)
o A hydrologically enforced DEM is based on DEM-S that has had drainage lines imposed and been further smoothed using the ANUDEM interpolation software.
The last product, a hydrologically enforced DEM, is most similar to the DEMs commonly in use around Australia, such as the GEODATA 9 Second DEM and the 25 m resolution DEMs produced by State and Territory agencies from digitised topographic maps.
For any analysis where surface shape is important, one of the smoothed DEMs (DEM-S or DEM-H) should be used. DEM-S is preferred for shape and vertical accuracy and DEM-H for hydrological connectivity. The DSM is suitable if you want to see the vegetation as well as the land surface height. There are few cases where DEM is the best data source, unless access to a less processed product is necessary.
The 1 second DEM (in its various incarnations) has quite different characteristics to DEMs derived by interpolation from topographic data. Those DEMs are typically quite smooth and are based on fairly accurate but sparse source data, usually contours and spot heights supplemented by drainage lines. The SRTM data is derived from radar measurements that are dense (there is essentially a measurement at almost every grid cell) but noisy.
Version 1.0 of the DSM was released in early 2009 and version 1.0 of the DEM was released in late 2009. Version 1.0 of the DEM-S was released in July 2010 and version 1.0 of the hydrologically enforced DEM-H was released in October 2011. These products provide substantial improvements in the quality and consistency of the data relative to the original SRTM data, but are not free from artefacts. Improved products will be released over time.
The 3 second products were derived from the 1 second data and version 1.0 was released in August 2010. Future releases of these products will occur when the 1 second products have been improved. At this stage there is no 3 second DEM-H product, which requires re-interpolation with drainage enforcement at that resolution.
See readme file: readme file for gloucester basin 1sec srtm.xyz
This is ascii file created by CSIRO 3 september 2013 using Geosoft Oasis Montaj software
file is 1 second shuttle radar data (28.6 x 28.6 m) which has had buildings and vegetation removed
(processing by CSIRO and GA) DEM-S product
file format is gda94 easting, gda94 northing, height above sea level
mga zone 56 coordinates, all data in metres
origin (bottom left) is 379007E, 6400022N
1260 pts in east direction
2798 pts in north direction
Bioregional Assessment Programme (XXXX) GLO DEM 1sec SRTM MGA56. Bioregional Assessment Derived Dataset. Viewed 18 July 2018, http://data.bioregionalassessments.gov.au/dataset/ca38ed31-e15d-4bb5-a7ef-0aeba3dad3f4.
Note: Geoscience Australia no longer supports users' external hard drives. The data can either be downloaded from the ELVIS Portal or from the Related links. The 1 second Shuttle Radar Topography Mission (SRTM) Digital Elevation Models Version 1.0 package comprises three surface models: the Digital Elevation Model (DEM), the Smoothed Digital Elevation Model (DEM-S) and the Hydrologically Enforced Digital Elevation Model (DEM-H). The DEMs were derived from the SRTM data acquired by NASA in February 2000 and were publicly released under Creative Commons licensing from November 2011 in ESRI Grid format.
DEM represents ground surface topography, with vegetation features removed using an automatic process supported by several vegetation maps. This provides substantial improvements in the quality and consistency of the data relative to the original SRTM data, but is not free from artefacts. Man-made structures such as urban areas and power line towers have not been treated. The removal of vegetation effects has produced satisfactory results over most of the continent and areas with defects identified in supplementary layers distributed with the data, and described in the User Guide.
DEM-S represents ground surface topography, excluding vegetation features, and has been smoothed to reduce noise and improve the representation of surface shape. An adaptive smoothing process applied more smoothing in flatter areas than hilly areas, and more smoothing in noisier areas than in less noisy areas. This DEM-S supports calculation of local terrain shape attributes such as slope, aspect and curvature that could not be reliably derived from the unsmoothed 1 second DEM because of noise.
DEM-H is a hydrologically enforced version of the smoothed DEM-S. The DEM-H captures flow paths based on SRTM elevations and mapped stream lines, and supports delineation of catchments and related hydrological attributes. The dataset was derived from the 1 second smoothed Digital Elevation Model (DEM-S) by enforcing hydrological connectivity with the ANUDEM software, using selected AusHydro V1.6 (February 2010) 1:250,000 scale watercourse lines and lines derived from DEM-S to define the watercourses. The drainage enforcement has produced a consistent representation of hydrological connectivity with some elevation artefacts resulting from the drainage enforcement.
Further information can be found in the supplementary layers supplied with the data and in the User Guide.
The EarthDEM Project provides high-resolution digital surface models (DSMs) for mid-latitude (non-polar) regions using optical stereo imagery, high-performance computing, and open-source photogrammetry software. This record represents the DSM mosaic dataset, version 1, built from over 20 years of photogrammetrically-derived elevation data.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
A digital elevation model service for Vexcel’s Elevate wide area program in the United States. View digital surface models (DSM) at a spatial resolution of 15-20cm, and at an absolute accuracy of 100-120cm. This DSM data shows surface of ground and objects on the earth, including both natural (trees, vegetation) and human-made structures (buildings).Vexcel's wide area collection program uses award-winning UltraCam sensors to capture aerial imagery and elevation data at the highest quality, accuracy, and consistency available. This DSM collection spans both urban and rural areas in the Lower 48 states in the United States.
https://data.peelregion.ca/pages/licensehttps://data.peelregion.ca/pages/license
Peel's Digital Elevation Model (DEM) provides a generalized representation of both surface and ground features at a 1 metre resolution. The data is created using breaklines and a 10-metre grid of masspoints, both of which are photogrammatically created.
Available products
Peel Digital Elevation Model in TIFF format - 1.5 Gigabytes
Specifications
Capture year: Spring 2022 Spatial resolution: 1-metre File format: GeoTIFF, losslessly compressed Pixel type and depth: 32-bit float Horizontal projection: NAD 1983 UTM Zone 17N (EPSG: 26917) Vertical projection: CGVD 1928 (EPSG: 5713) Horizontal accuracy: ±50 centimetres Vertical accuracy: ±50 centimetres Method of creation: photogrammetric
Other data (Lidar) The Region of Peel doesn't have Lidar data in-house. The Province of Ontario through Land Information Ontario provides the following Lidar and Lidar-based datasets through their open data program:
Lidar-derived Digital Terrain Model (DTM) Lidar-derived Digital Surface Model (DSM) Lidar-derived classified point cloud - by request
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Overview:
The Copernicus DEM is a Digital Surface Model (DSM) which represents the surface of the Earth including buildings, infrastructure and vegetation. The original GLO-30 provides worldwide coverage at 30 meters (refers to 10 arc seconds). Note that ocean areas do not have tiles, there one can assume height values equal to zero. Data is provided as Cloud Optimized GeoTIFFs. Note that the vertical unit for measurement of elevation height is meters.
The Copernicus DEM for Europe at 100 meter resolution (EU-LAEA projection) in COG format has been derived from the Copernicus DEM GLO-30, mirrored on Open Data on AWS, dataset managed by Sinergise (https://registry.opendata.aws/copernicus-dem/).
Processing steps:
The original Copernicus GLO-30 DEM contains a relevant percentage of tiles with non-square pixels. We created a mosaic map in VRT format and defined within the VRT file the rule to apply cubic resampling while reading the data, i.e. importing them into GRASS GIS for further processing. We chose cubic instead of bilinear resampling since the height-width ratio of non-square pixels is up to 1:5. Hence, artefacts between adjacent tiles in rugged terrain could be minimized:
gdalbuildvrt -input_file_list list_geotiffs_MOOD.csv -r cubic -tr 0.000277777777777778 0.000277777777777778 Copernicus_DSM_30m_MOOD.vrt
In order to reproject the data to EU-LAEA projection while reducing the spatial resolution to 100 m, bilinear resampling was performed in GRASS GIS (using r.proj
and the pixel values were scaled with 1000 (storing the pixels as Integer values) for data volume reduction. In addition, a hillshade raster map was derived from the resampled elevation map (using r.relief
, GRASS GIS). Eventually, we exported the elevation and hillshade raster maps in Cloud Optimized GeoTIFF (COG) format, along with SLD and QML style files.
Projection + EPSG code:
ETRS89-extended / LAEA Europe (EPSG: 3035)
Spatial extent:
north: 6874000
south: -485000
west: 869000
east: 8712000
Spatial resolution:
100 m
Pixel values:
meters * 1000 (scaled to Integer; example: value 23220 = 23.220 m a.s.l.)
Software used:
GDAL 3.2.2 and GRASS GIS 8.0.0 (r.proj; r.relief)
Original dataset license:
https://spacedata.copernicus.eu/documents/20126/0/CSCDA_ESA_Mission-specific+Annex.pdf
Processed by:
mundialis GmbH & Co. KG, Germany (https://www.mundialis.de/)
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
This dataset and its metadata statement were supplied to the Bioregional Assessment Programme by a third party and are presented here as originally supplied.
This dataset provides a userguide and setup information relating to accessing the Gescience Australia, 1 second SRTM Digital Elevation Model (DEM), for visualisation and analysis using ESRI ArcMap and ArcCatalog.
The 1 second DSM, DEM, DEM-S and DEM-H are national elevation data products derived from the Shuttle Radar Topography Mission (SRTM) data. The SRTM data is not suitable for routine application due to various artefacts and noise.
The data has been treated with several processes to produce more usable products:
* A cleaned digital surface model (DSM)
* regular grid representing ground surface topography as well as other features including vegetation and man-made structures
* A bare-earth digital elevation model (DEM)
* regular grid representing ground surface topography, and where possible, excluding other features such as vegetation and man-made structures.
* A smoothed digital elevation model (DEM-S)
* A smoothed DEM based on the bare-earth DEM that has been adaptively smoothed to reduce random noise typically associated with the SRTM data in low relief areas.
* A hydrologically enforced digital elevation model (DEM-H)
* A hydrologically enforced DEM is based on DEM-S that has had drainage lines imposed and been further smoothed using the ANUDEM interpolation software.
The last product, a hydrologically enforced DEM, is most similar to the DEMs commonly in use around Australia, such as the GEODATA 9 Second DEM and the 25 m resolution DEMs produced by State and Territory agencies from digitised topographic maps.
For any analysis where surface shape is important, one of the smoothed DEMs (DEM-S or DEM-H) should be used. DEM-S is preferred for shape and vertical accuracy and DEM-H for hydrological connectivity. The DSM is suitable if you want to see the vegetation as well as the land surface height. There are few cases where DEM is the best data source, unless access to a less processed product is necessary.
The 1 second DEM (in its various incarnations) has quite different characteristics to DEMs derived by interpolation from topographic data. Those DEMs are typically quite smooth and are based on fairly accurate but sparse source data, usually contours and spot heights supplemented by drainage lines. The SRTM data is derived from radar measurements that are dense (there is essentially a measurement at almost every grid cell) but noisy.
Version 1.0 of the DSM was released in early 2009 and version 1.0 of the DEM was released in late 2009. Version 1.0 of the DEM-S was released in July 2010 and version 1.0 of the hydrologically enforced DEM-H was released in October 2011. These products provide substantial improvements in the quality and consistency of the data relative to the original SRTM data, but are not free from artefacts. Improved products will be released over time.
The 3 second products were derived from the 1 second data and version 1.0 was released in August 2010. Future releases of these products will occur when the 1 second products have been improved. At this stage there is no 3 second DEM-H product, which requires re-interpolation with drainage enforcement at that resolution.
The following datasets were used to derive this version of the 1 second DEM products:
Source data
SRTM 1 second Version 2 data (Slater et al., 2006), supplied by Defence Imagery and Geospatial Organisation (DIGO) as 813 1 x 1 degree tiles. Data were produced by NASA from radar data collected by the Shuttle Radar Topography Mission in February 2000.
GEODATA 9 second DEM Version 3 (Geoscience Australia, 2008) used to fill voids.
SRTM Water Body Data (SWBD) shapefile accompanying the SRTM data (Slater et al., 2006). This defines the coastline and larger inland waterbodies for the DEM and DSM.
Vegetation masks and water masks applied to the DEM to remove vegetation.
Full metadata, methodologies and lineage descriptions can be found in the PDF userguide within this dataset.
Further information can be found at http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_72759
Geoscience Australia (2011) Geoscience Australia, 1 second SRTM Digital Elevation Model (DEM). Bioregional Assessment Source Dataset. Viewed 10 December 2018, http://data.bioregionalassessments.gov.au/dataset/9a9284b6-eb45-4a13-97d0-91bf25f1187b.
A Digital Elevation Model (DEM) and Digital Surface Model (DSM) were derived from airborne Light Detection and Ranging (LiDAR) data collected from Los Alamos National Laboratory's (LANL) heavy-lift unoccupied aerial system (UAS) quadcopter and hexacopter platforms operated by Next-Generation Ecosystem Experiments: Arctic (NGEE Arctic) scientists from the EES-14 group at LANL. These data were collected in August 2017 and July 2018 at the NGEE Arctic field site near mile marker 27 of the Bob Blodgett Nome-Teller Memorial Highway between Nome, Alaska and Teller, Alaska. A Vulcan Raven X8 Airframe (Mitcheldean, Gloucestershire, UK), DJI Matrice 600 Pro Airframe (Shenzhen, China), and Routescene UAV LiDARSystem (Edinburgh, Scotland, UK) were used to collect LiDAR data. Following pre-processing in Routescene LidarViewer Pro software, the LiDAR point clouds were cleaned and processed using CloudCompare software to separate ground and off-ground points. A high resolution DEM and DSM were then created using ArcGIS Pro software. This data package contains fully cleaned point clouds of ground and off-ground points (.las), a 25 cm DEM (.tif), and a 25 cm DSM (.tif) for the Teller 27 field site. Ancillary aircraft data, flight mission parameters, weather conditions, and raw lidar data and imagery can be found in the L0 datasets for these campaigns: NGA299 (2017) and NGA297 (2018). Minimally processed point clouds and auxiliary files can be found in the L1 dataset: NGA304 (2017 and 2018). The Next-Generation Ecosystem Experiments: Arctic (NGEE Arctic), was a 15-year research effort (2012-2027) to reduce uncertainty in Earth System Models by developing a predictive understanding of carbon-rich Arctic ecosystems and feedbacks to climate. NGEE Arctic was supported by the Department of Energy's Office of Biological and Environmental Research. The NGEE Arctic project had two field research sites: 1) located within the Arctic polygonal tundra coastal region on the Barrow Environmental Observatory (BEO) and the North Slope near Utqiagvik (Barrow), Alaska and 2) multiple areas on the discontinuous permafrost region of the Seward Peninsula north of Nome, Alaska. Through observations, experiments, and synthesis with existing datasets, NGEE Arctic provided an enhanced knowledge base for multi-scale modeling and contributed to improved process representation at global pan-Arctic scales within the Department of Energy's Earth system Model (the Energy Exascale Earth System Model, or E3SM), and specifically within the E3SM Land Model component (ELM).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Polar Geospatial Center’s ArcticDEM elevation products are the result of an institutional collaboration between the U.S. National Geospatial-Intelligence Agency (NGA) and the National Science Foundation (NSF). The objective of these efforts are to automatically produce high-resolution, high-quality digital surface models (DSM) of polar regions using optical imagery, high-performance computing, and open source photogrammetry software. The result is a collection of time-dependent DSM strips and seamless terrain mosaics. ArcticDEM can be used and distributed without restriction.This Image Service drives the ArcticDEM Explorer application developed in partnership with ESRI. See the ArcticDEM v4.1 Storymap for visual examples illustrating how we built the newest mosaic layers.Key PropertiesGeographic Coverage: Arctic - land and offshore areas north of 60°N plus all of Greenland, Alaska (before June 2022), and the Kamchatka PeninsulaTemporal Coverage: 2007 – 2024Refresh Rate: YearlyProduct Type: Digital surface model, which includes surface features such as man-made structures and vegetationProduct Values: Elevation in meters above the WG84 ellipsoidSpatial Resolution: 2-meters per pixelCoordinate System: NSIDC Sea Ice Polar Stereographic North WGS84 (EPSG:3413)Data ProductsElevation products are built using the Surface Extraction from Tin-based Search-space Minimization (SETSM) and median mosaic algorithms developed by Myong-Jong Noh and Ian Howat at the Byrd Polar Research and Climate Center. Individual DEM strips are extracted from pairs of Maxar images. DEM strip dimensions will vary according to the sensor, off-nadir angle of collection, and the corresponding stereo-pair overlap. Most strips are between 16 km and 18 km in width, and 110 km and 120 km in length.DEM Tiles are compiled from multiple strips that have been co-registered, blended, and feathered to reduce edge-matching artifacts. Tile sizes are standardized at 50 km x 50 km.ApplicationsThe time-dependent nature of the strip DEM files allows users to perform change detection analysis and to compare observations of topographic data acquired in different seasons or years. The mosaic DEM tiles are assembled from multiple strip DEMs with the intention of providing a more consistent and comprehensive product over larger areas while also providing a per-pixel minimum and maximum date range to enable change detection.ArcticDEM products can be used for a variety of applications:Terrain correction for radar and optical remote sensingFusion with lidar-based systemGlacier monitoring and change measurementVegetation characterization and analysisHydrologic modellingFine-scale mapping Dynamic Renderings The default rendering is Hillshade Elevation TintedVarious pre-defined on-the-fly Raster Functions can be selected:
Rendering
Description
Height EllisoidalElevation values in meters above the ellipsoid (WGS84) Height OrthometricElevation values in meters above the geoid (EGM08) Hillshade GrayHillshade image with a solar azimuth of 315 degrees and solar altitude of 45 degrees. Z-factor defaults to 4, but can be specified via the the REST API Hillshade Elevation TintedHillshade image with color tints indicating elevation values (default) Hillshade MultidirectionalHillshade image derived weighted contributions of six different directions Contour 2525-meter contour lines Contour Smoothed 2525-meter smoothed contour lines Aspect DegreesAspect in degrees Aspect MapColor representation of aspect values Slope DegreesSlope in degrees Slope MapColor representation of slope values
Additional Usage NotesWithout ground control points absolute accuracy is approximately 4 meters in horizontal and vertical planes. Uniform ground control must be applied to achieve higher accuracy.The data has not been edited to remove processing anomalies. Pits, spikes, false landforms, and other DEM anomalies may exist in this dataset. Hydrographic features have not been flattened in the DEM Strips.Optically-derived DEMs are subject to clouds, fog, shadows, and other atmospheric obstructions obscuring the ground and resulting in data gaps.The data spans multiple years and seasons.Mosaic tiles are displayed by default. Strips can be selected and displayed via image filtering.For more information on the source data and project, see the ArcticDEM website and the ArcticDEM Explorer app.
JALBTCX FEMA Post-Hurricane Ian 1m Digital Surface Model (First Return LiDAR) UTM 17. Covers the Florida coast from Anclote Key to Marco Island. This layer provides Digital Surface Models developed by the USACE National Coastal Mapping Program (NCMP). The USACE NCMP acquires high-resolution, high-accuracy topographic/bathymetric lidar elevation and imagery on a recurring basis along the sandy shorelines of the US. The program's survey footprint includes an approximately 1-mile wide swath of topography, bathymetry and imagery 500-m onshore and 1000-m offshore. The standard suite of NCMP data products include topographic/bathymetric lidar point clouds, digital surface and elevation models, shoreline vectors and both true-color and hyperspectral imagery mosaics. Value-added derivative information products may include laser reflectance images, landcover classification images and volume change metrics. USACE Headquarters initiated the NCMP in 2004. The program's update cycle follows counter-clockwise along the US West Coast, Gulf Coast, East Coast and Great Lakes approximately every 5 years. Surveys in support of USACE project-specific missions and external partners are included constituent to the current NCMP schedule and reimbursable funding. All work is coordinated with Federal mapping partners through the Interagency Working Group on Ocean and Coastal Mapping (IWGOCM) and the 3D Elevation Program (3DEP).NCMP operations are executed by the Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX). The JALBTCX mission is to perform operations, research and development in airborne lidar bathymetry and complementary technologies to support the coastal mapping and charting requirements of the US Army Corps of Engineers, the US Naval Meteorology and Oceanography Command and the National Oceanic and Atmospheric Administration. Survey operations are conducted worldwide using the Coastal Zone Mapping and Imaging (CZMIL) system and other industry-based coastal mapping and charting systems.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Stereo SPOT 6 satellite imagery was processed with the open-source software MicMac to produce a 1.6 meter Digital Surface Model (DSM). Satellite images were collected between May 2016 to November 2016 along a 1200 square kilometer section of the Wadi Al-Akhdar Graben, Saudi Arabia.
A 10-meter resolution land surface digital elevation model (DEM) for the islands of Palau from U.S. Geological Survey (USGS) 1/3 arc-second DEM quadrangles. For a grayscale hillshade image layer of this dataset, see "pw_usgs_all_dem10m_hillshade" in the distribution links listed in the metadata. acknowledgement=The Pacific Islands Ocean Observing System (PacIOOS) is funded through the National Oceanic and Atmospheric Administration (NOAA) as a Regional Association within the U.S. Integrated Ocean Observing System (IOOS). PacIOOS is coordinated by the University of Hawaii School of Ocean and Earth Science and Technology (SOEST). cdm_data_type=Grid comment=These data are provided by USGS and subsequently distributed via THREDDS Data Server (TDS) and ERDDAP by PacIOOS. Conventions=CF-1.6, ACDD-1.3 date_metadata_modified=2023-01-20 drawLandMask=off Easternmost_Easting=134.64967501368815 geospatial_bounds=POLYGON ((6.874626 134.096848, 7.754260 134.096848, 7.754260 134.693147, 6.874626 134.693147, 6.874626 134.096848)) geospatial_bounds_crs=EPSG:4326 geospatial_lat_max=7.754213715821437 geospatial_lat_min=6.874765028140425 geospatial_lat_resolution=9.25930393431261E-5 geospatial_lat_units=degrees_north geospatial_lon_max=134.64967501368815 geospatial_lon_min=134.09689456880972 geospatial_lon_resolution=9.259303934312171E-5 geospatial_lon_units=degrees_east history=2015-05-11T00:00:00Z PacIOOS obtained ArcInfo Binary Grids from The National Map Viewer of USGS then mosaicked and converted to NetCDF format and EPSG:4326 spatial reference system. id=usgs_dem_10m_palau infoUrl=https://www.usgs.gov/core-science-systems/national-geospatial-program/national-map institution=U.S. Geological Survey (USGS) instrument=Not Applicable > Not Applicable instrument_vocabulary=GCMD Instrument Keywords ISO_Topic_Categories=elevation keywords_vocabulary=GCMD Science Keywords locations=Ocean > Pacific Ocean > Western Pacific Ocean > Micronesia > Palau locations_vocabulary=GCMD Location Keywords metadata_link=https://www.pacioos.hawaii.edu/metadata/usgs_dem_10m_palau.html naming_authority=org.pacioos Northernmost_Northing=7.754213715821437 platform=Models/Analyses > > DEM > Digital Elevation Model platform_vocabulary=GCMD Platform Keywords program=Pacific Islands Ocean Observing System (PacIOOS) project=Pacific Islands Ocean Observing System (PacIOOS) references=https://www.pacioos.hawaii.edu/metadata/pw_usgs_all_dem10m_hillshade.html source=USGS 1/3 arc-second DEM quadrangles sourceUrl=https://pae-paha.pacioos.hawaii.edu/thredds/dodsC/usgs_dem_10m_palau Southernmost_Northing=6.874765028140425 standard_name_vocabulary=CF Standard Name Table v39 time_coverage_duration=P0D time_coverage_resolution=P0D Westernmost_Easting=134.09689456880972
This normalized digital surface model (nDSM) was part of a suite of datasets produced during a forest inventory enhancement research project, funded by the Environment and Natural Resources Trust Fund in 2016. The nDSM was produced at 1-m spatial resolution using high density lidar point cloud LAS files and USFS FUSION software. The source lidar was collected in October 2017 using single photon lidar (SPL; green laser) by Quantum Spatial Inc (QSI). There were on average 27.8 points per square meter.
An nDSM is a height above ground model, where every pixel represents the elevation of the highest lidar return among all lidar returns within the grid cell. The production of the nDSM involved two basic steps: 1) filtering ground returns (i.e., points that sit on top of the bare-earth) to create a ground surface model, and 2) subtracting the ground elevations from all other above ground lidar return elevations. Any elevation values less than zero and above 50-m were not included.
The information displayed here, summarizing the above ground height of a pixel, is even more useful with the picture. Accompanied by this lidar was four band aerial photography, also available by Web Mapping Service on the Minnesota Geospatial Commons. Having both height and visual information available, analysts and managers can strategically plan with data-driven results.
This dataset includes a suite of post-seismic, 2-meter resolution optical digital surface models (DSMs) post-dating the July 2019 Ridgecrest earthquakes. The DSMs were constructed using DigitalGlobe base imagery (©DigitalGlobe 2019) and the open source SETSM software package . DSMs are vertically and horizontally registered to a separate pre-event optical DSM that was registered to ICESat-1 data. The base imagery includes 0.5m and 0.3m panchromatic in-track stereo imagery acquired from the WorldView-2 and WorldView-3 satellites. The generation of this data sets was funded in part by SCEC in cooperation with the U.S. Geological Survey. The naming description of individual DSMs is as follows: sensor_date _id1_id2_dem_2m-DEM.tif where sensor is the sensor from which imagery was acquired (WV02-WorldView2, WV03-WorldView3), date is the acquisition dates in format YYMMMDD (i.e., 13AUG11), and id1 and id2 are the image identifier numbers provided by DigitalGlobe.
This is a tiled collection of the 3D Elevation Program (3DEP) and is one meter resolution. The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The elevations in this DEM represent the topographic bare-earth surface. USGS standard one-meter DEMs are produced exclusively from high resolution light detection and ranging (lidar) source data of one-meter or higher resolution. One-meter DEM surfaces are seamless within collection projects, but, not necessarily seamless across projects. The spatial reference used for tiles of the one-meter DEM within the conterminous United States (CONUS) is Universal Transverse Mercator (UTM) in units of meters, and in conformance with the North American Datum of 1983 (NAD83). All bare earth elevation values are in meters and are referenced to the North American Vertical Datum of 1988 (NAVD88). Each tile is distributed in the UTM Zone in which it lies. If a tile crosses two UTM zones, it is delivered in both zones. The one-meter DEM is the highest resolution standard DEM offered in the 3DEP product suite. Other 3DEP products are nationally seamless DEMs in resolutions of 1/3, 1, and 2 arc seconds. These seamless DEMs were referred to as the National Elevation Dataset (NED) from about 2000 through 2015 at which time they became the seamless DEM layers under the 3DEP program and the NED name and system were retired. Other 3DEP products include five-meter DEMs in Alaska as well as various source datasets including the lidar point cloud and interferometric synthetic aperture radar (Ifsar) digital surface models and intensity images. All 3DEP products are public domain.