Facebook
TwitterThis is an instructional document developed for volunteers who follow the Fluvanna History Initiative on One Shared Story's GIS Hub.Training was held at the Fluvanna County Public Library on Sunday September 29, 2019. This effort is being coordinated through an Esri GIS Premium Hub Community with assitance from GIS Corp and funding from the UVA Equity Atlas and the BAMA Works Fund.
Facebook
TwitterThis dataset includes a detailed example for using our method (described in paper linked to below) to digitize historical land-use maps in R. We also release all of the Swedish land-use maps that we digitized for this project. This includes the Economic Map of Sweden (Ekonomiska kartan) over Sweden's 15 southernmost counties (7069 25 km2 sheets), plus 11 sheets of the District Economic Map (Häradsekonomiska kartan - but see http://bolin.su.se/data/Cousins-2015 for more accurate manual digitization).
Facebook
TwitterThe files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. We converted the photointerpreted data into a format usable in a geographic information system (GIS) by employing three fundamental processes: (1) orthorectify, (2) digitize, and (3) develop the geodatabase. All digital map automation was projected in Universal Transverse Mercator (UTM), Zone 16, using the North American Datum of 1983 (NAD83). Orthorectify: We orthorectified the interpreted overlays by using OrthoMapper, a softcopy photogrammetric software for GIS. One function of OrthoMapper is to create orthorectified imagery from scanned and unrectified imagery (Image Processing Software, Inc., 2002). The software features a method of visual orientation involving a point-and-click operation that uses existing orthorectified horizontal and vertical base maps. Of primary importance to us, OrthoMapper also has the capability to orthorectify the photointerpreted overlays of each photograph based on the reference information provided. Digitize: To produce a polygon vector layer for use in ArcGIS (Environmental Systems Research Institute [ESRI], Redlands, California), we converted each raster-based image mosaic of orthorectified overlays containing the photointerpreted data into a grid format by using ArcGIS. In ArcGIS, we used the ArcScan extension to trace the raster data and produce ESRI shapefiles. We digitally assigned map-attribute codes (both map-class codes and physiognomic modifier codes) to the polygons and checked the digital data against the photointerpreted overlays for line and attribute consistency. Ultimately, we merged the individual layers into a seamless layer. Geodatabase: At this stage, the map layer has only map-attribute codes assigned to each polygon. To assign meaningful information to each polygon (e.g., map-class names, physiognomic definitions, links to NVCS types), we produced a feature-class table, along with other supportive tables and subsequently related them together via an ArcGIS Geodatabase. This geodatabase also links the map to other feature-class layers produced from this project, including vegetation sample plots, accuracy assessment (AA) sites, aerial photo locations, and project boundary extent. A geodatabase provides access to a variety of interlocking data sets, is expandable, and equips resource managers and researchers with a powerful GIS tool.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Sample sizes of the simulated map parameters.
Facebook
TwitterThe Digital City Map (DCM) data represents street lines and other features shown on the City Map, which is the official street map of the City of New York. The City Map consists of 5 different sets of maps, one for each borough, totaling over 8000 individual paper maps. The DCM datasets were created in an ongoing effort to digitize official street records and bring them together with other street information to make them easily accessible to the public. The Digital City Map (DCM) is comprised of seven datasets; Digital City Map, Street Center Line, City Map Alterations, Arterial Highways and Major Streets, Street Name Changes (areas), Street Name Changes (lines), and Street Name Changes (points). All of the Digital City Map (DCM) datasets are featured on the Streets App All previously released versions of this data are available at BYTES of the BIG APPLE- Archive
Facebook
TwitterAs part of the Long Term Ecological Research in the McMurdo Dry Valleys of Antarctica, bathymetric data was collected for Lakes Hoare, Fryxell and Bonney. This table contains the values for depth, perimeter length, polygon area and total area per contour used for contour map digitizing.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The Digital City Map (DCM) data represents street lines and other features shown on the City Map, which is the official street map of the City of New York. The City Map consists of 5 different sets of maps, one for each borough, totaling over 8000 individual paper maps. The DCM datasets were created in an ongoing effort to digitize official street records and bring them together with other street information to make them easily accessible to the public. The Digital City Map (DCM) is comprised of seven datasets; Digital City Map, Street Center Line, City Map Alterations, Arterial Highways and Major Streets, Street Name Changes (areas), Street Name Changes (lines), and Street Name Changes (points). All of the Digital City Map (DCM) datasets are featured on the Streets App All previously released versions of this data are available at BYTES of the BIG APPLE- Archive Updates for this dataset, along with other multilayered maps on NYC Open Data, are temporarily paused while they are moved to a new mapping format. Please visit https://www.nyc.gov/site/planning/data-maps/open-data/dwn-digital-city-map.page to utilize this data in the meantime.
Facebook
TwitterThe Digital City Map (DCM) data represents street lines and other features shown on the City Map, which is the official street map of the City of New York. The City Map consists of 5 different sets of maps, one for each borough, totaling over 8000 individual paper maps. The DCM datasets were created in an ongoing effort to digitize official street records and bring them together with other street information to make them easily accessible to the public. The Digital City Map (DCM) is comprised of seven datasets; Digital City Map, Street Center Line, City Map Alterations, Arterial Highways and Major Streets, Street Name Changes (areas), Street Name Changes (lines), and Street Name Changes (points).
All of the Digital City Map (DCM) datasets are featured on the Streets App
All previously released versions of this data are available at BYTES of the BIG APPLE- Archive
Updates for this dataset, along with other multilayered maps on NYC Open Data, are temporarily paused while they are moved to a new mapping format. Please visit https://www.nyc.gov/site/planning/data-maps/open-data/dwn-digital-city-map.page to utilize this data in the meantime.
Facebook
TwitterThis data set is a digital soil survey and generally is the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The information was prepared by digitizing maps, by compiling information onto a planimetric correct base and digitizing, or by revising digitized maps using remotely sensed and other information. This data set consists of georeferenced digital map data and computerized attribute data. The map data are in a soil survey area extent format and include a detailed, field verified inventory of soils and miscellaneous areas that normally occur in a repeatable pattern on the landscape and that can be cartographically shown at the scale mapped. A special soil features layer (point and line features) is optional. This layer displays the location of features too small to delineate at the mapping scale, but they are large enough and contrasting enough to significantly influence use and management. The soil map units are linked to attributes in the National Soil Information System relational database, which gives the proportionate extent of the component soils and their properties.
Facebook
TwitterThis data set is a digital soil survey and generally is the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The information was prepared by digitizing maps, by compiling information onto a planimetric correct base and digitizing, or by revising digitized maps using remotely sensed and other information. This data set consists of georeferenced digital map data and computerized attribute data. The map data are in a soil survey area extent format and include a detailed, field verified inventory of soils and miscellaneous areas that normally occur in a repeatable pattern on the landscape and that can be cartographically shown at the scale mapped. A special soil features layer (point and line features) is optional. This layer displays the location of features too small to delineate at the mapping scale, but they are large enough and contrasting enough to significantly influence use and management. The soil map units are linked to attributes in the National Soil Information System relational database, which gives the proportionate extent of the component soils and their properties.
Facebook
TwitterThis data set is a digital soil survey and generally is the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The information was prepared by digitizing maps, by compiling information onto a planimetric correct base and digitizing, or by revising digitized maps using remotely sensed and other information. This data set consists of georeferenced digital map data and computerized attribute data. The map data are in a soil survey area extent format and include a detailed, field verified inventory of soils and miscellaneous areas that normally occur in a repeatable pattern on the landscape and that can be cartographically shown at the scale mapped. A special soil features layer (point and line features) is optional. This layer displays the location of features too small to delineate at the mapping scale, but they are large enough and contrasting enough to significantly influence use and management. The soil map units are linked to attributes in the National Soil Information System relational database, which gives the proportionate extent of the component soils and their properties.
Facebook
TwitterThe Digital City Map (DCM) data represents street lines and other features shown on the City Map, which is the official street map of the City of New York. The City Map consists of 5 different sets of maps, one for each borough, totaling over 8000 individual paper maps. The DCM datasets were created in an ongoing effort to digitize official street records and bring them together with other street information to make them easily accessible to the public. The Digital City Map (DCM) is comprised of seven datasets; Digital City Map, Street Center Line, City Map Alterations, Arterial Highways and Major Streets, Street Name Changes (areas), Street Name Changes (lines), and Street Name Changes (points). All of the Digital City Map (DCM) datasets are featured on the Streets App All previously released versions of this data are available at BYTES of the BIG APPLE- Archive Updates for this dataset, along with other multilayered maps on NYC Open Data, are temporarily paused while they are moved to a new mapping format. Please visit https://www.nyc.gov/site/planning/data-maps/open-data/dwn-digital-city-map.page to utilize this data in the meantime.
Facebook
TwitterNew_Jersey_1971_78_Digitized_Shoreline.zip features a digitized historic shoreline for the New Jersey coastline (Point Pleasant, NJ to Longport, NJ) from 1971 to 1978. Imagery of the New Jersey coastline was acquired from the New Jersey Geographic Information Network (NJGIN) as two images: “1970 NJDEP Wetlands Basemap” (1971-78) and the “1977 Tidelands Basemaps” (1977-78). These images are available as a web mapping service (WMS) through the NJGIN website (https://njgin.state.nj.us/NJ_NJGINExplorer/jviewer.jsp?pg=wms_instruct). To reduce digitizing error, the imagery was acquired on a hard drive from the NJGIN via personal communication. Using ArcMap 10.3.1, the "1970 NJDEP Wetlands Basemap" was used to delineate and digitize historical foreshore, backshore, mainland, and island shoreline positions, with the “1977 Tidelands Basemaps” being used to fill in missing shorelines and clarify areas of uncertainty from the 1970s imagery. These shorelines were digitized for use in long-term shoreline and wetland analyses for Hurricane Sandy wetland physical change assessment.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This feature class represents the special soil features that are delineated as one or more points. It is generally the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The information was prepared by digitizing maps, by compiling information onto a planimetric correct base and digitizing, or by revising digitized maps using remotely sensed and other information. This layer displays the location of features too small to delineate at the mapping scale, but they are large enough and contrasting enough to significantly influence use and management. The features are linked to attributes in the featdesc attribute table. The map data are in a state-wide extent format.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This data set is a digital soil survey and generally is the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The information was prepared by digitizing maps, by compiling information onto a planimetric correct base and digitizing, or by revising digitized maps using remotely sensed and other information. This data set consists of georeferenced digital map data and computerized attribute data. The map data are in a soil survey area extent format and include a detailed, field verified inventory of soils and miscellaneous areas that normally occur in a repeatable pattern on the landscape and that can be cartographically shown at the scale mapped. A special soil features layer (point and line features) is optional. This layer displays the location of features too small to delineate at the mapping scale, but they are large enough and contrasting enough to significantly influence use and management. The soil map units are linked to attributes in the National Soil Information System relational database, which gives the proportionate extent of the component soils and their properties.
Facebook
TwitterThis data set is a digital soil survey and generally is the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The information was prepared by digitizing maps, by compiling information onto a planimetric correct base and digitizing, or by revising digitized maps using remotely sensed and other information. This data set consists of georeferenced digital map data and computerized attribute data. The map data are in a soil survey area extent format and include a detailed, field verified inventory of soils and miscellaneous areas that normally occur in a repeatable pattern on the landscape and that can be cartographically shown at the scale mapped. A special soil features layer (point and line features) is optional. This layer displays the location of features too small to delineate at the mapping scale, but they are large enough and contrasting enough to significantly influence use and management. The soil map units are linked to attributes in the National Soil Information System relational database, which gives the proportionate extent of the component soils and their properties.
Facebook
TwitterA digital map of all North Carolina water system service-area boundaries based on information available in 2019. See the readme file for information on data sources, digitization process, coverage, and important provisos. When using this geopackage, please cite: Gonsenhauser, R., Hansen, K., Grimshaw, W., Morris, J., Albertin, K. and Mullin, M. (2020), Digitizing a Statewide Map of Community Water System Service Areas. J Am Water Works Assoc, 112: 56-61. https://doi.org/10.1002/awwa.1595
Facebook
TwitterBackground and Data Limitations The Massachusetts 1830 map series represents a unique data source that depicts land cover and cultural features during the historical period of widespread land clearing for agricultural. To our knowledge, Massachusetts is the only state in the US where detailed land cover information was comprehensively mapped at such an early date. As a result, these maps provide unusual insight into land cover and cultural patterns in 19th century New England. However, as with any historical data, the limitations and appropriate uses of these data must be recognized: (1) These maps were originally developed by many different surveyors across the state, with varying levels of effort and accuracy. (2) It is apparent that original mapping did not follow consistent surveying or drafting protocols; for instance, no consistent minimum mapping unit was identified or used by different surveyors; as a result, whereas some maps depict only large forest blocks, others also depict small wooded areas, suggesting that numerous smaller woodlands may have gone unmapped in many towns. Surveyors also were apparently not consistent in what they mapped as ‘woodlands’: comparison with independently collected tax valuation data from the same time period indicates substantial lack of consistency among towns in the relative amounts of ‘woodlands’, ‘unimproved’ lands, and ‘unimproveable’ lands that were mapped as ‘woodlands’ on the 1830 maps. In some instances, the lack of consistent mapping protocols resulted in substantially different patterns of forest cover being depicted on maps from adjoining towns that may in fact have had relatively similar forest patterns or in woodlands that ‘end’ at a town boundary. (3) The degree to which these maps represent approximations of ‘primary’ woodlands (i.e., areas that were never cleared for agriculture during the historical period, but were generally logged for wood products) varies considerably from town to town, depending on whether agricultural land clearing peaked prior to, during, or substantially after 1830. (4) Despite our efforts to accurately geo-reference and digitize these maps, a variety of additional sources of error were introduced in converting the mapped information to electronic data files (see detailed methods below). Thus, we urge considerable caution in interpreting these maps. Despite these limitations, the 1830 maps present an incredible wealth of information about land cover patterns and cultural features during the early 19th century, a period that continues to exert strong influence on the natural and cultural landscapes of the region. For users without access to GIS software, the data are available for viewing at: http://harvardforest.fas.harvard.edu/research/1830instructions.html Acknowledgements Financial support for this project was provided by the BioMap Project of the Massachusetts Natural Heritage and Endangered Species Program, the National Science Foundation, and the Andrew Mellon Foundation. This project is a contribution of the Harvard Forest Long Term Ecological Research Program.
Facebook
TwitterThis map is to support the application that is used for the digitizing and data collection of sidewalks on state routes. For questions please contact Jonathan Harman (jharman@utah.gov).
Facebook
TwitterThe files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. We converted the photointerpreted data into a GIS-usable format employing three fundamental processes; (1) orthorectify, (2) digitize, and (3) database enhancement. All digital map automation was projected in Universal Transverse Mercator (UTM) projection, Zone 12, using North American Datum of 1983 (NAD83). To produce a polygon vector coverage for use in GIS, we converted each raster-based image mosaic of orthorectified overlays containing the photointerpreted data into a grid format using ArcInfo (Version 8.0.2, Environmental Systems Research Institute, Redlands, California). In ArcTools, we used the ArcScan utility to trace the polygon data and produce ArcInfo vector-based coverages. We digitally assigned map attribute codes (both map class codes and physiognomic modifier codes) to the polygons, and checked the digital data against the photointerpreted overlays for line and attribute consistency. Ultimately, we merged the 78 individual coverages into a seamless map coverage of GNP and immediate environs. We synchronized polygons and attributes along the boundary between the GNP and WLNP map coverages. Although GNP and WLNP are two separate map coverages, they are seamless in the sense they edge tie perfectly in both polygon _location and map attribute.
Facebook
TwitterThis is an instructional document developed for volunteers who follow the Fluvanna History Initiative on One Shared Story's GIS Hub.Training was held at the Fluvanna County Public Library on Sunday September 29, 2019. This effort is being coordinated through an Esri GIS Premium Hub Community with assitance from GIS Corp and funding from the UVA Equity Atlas and the BAMA Works Fund.