Facebook
TwitterDimensions of data quality.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ABSTRACT Although big data has become an integral part of businesses and society, there is still concern about the quality aspects of big data. Past research has focused on identifying various dimensions of big data. However, the research is scattered and there is a need to synthesize the ever involving phenomenon of big data. This research aims at providing a systematic literature review of the quality dimension of big data. Based on a review of 17 articles from academic research, we have presented a set of key quality dimensions of big data.
Facebook
TwitterThis data table provides the detailed data quality assessment scores for the Curtailment dataset. The quality assessment was carried out on the 31st of March. At SPEN, we are dedicated to sharing high-quality data with our stakeholders and being transparent about its' quality. This is why we openly share the results of our data quality assessments. We collaborate closely with Data Owners to address any identified issues and enhance our overall data quality. To demonstrate our progress we conduct, at a minimum, bi-annual assessments of our data quality - for datasets that are refreshed more frequently than this, please note that the quality assessment may be based on an earlier version of the dataset. To learn more about our approach to how we assess data quality, visit Data Quality - SP Energy Networks.We welcome feedback and questions from our stakeholders regarding this process. Our Open Data Team is available to answer any enquiries or receive feedback on the assessments. You can contact them via our Open Data mailbox at opendata@spenergynetworks.co.uk.The first phase of our comprehensive data quality assessment measures the quality of our datasets across three dimensions. Please refer to the data table schema for the definitions of these dimensions. We are now in the process of expanding our quality assessments to include additional dimensions to provide a more comprehensive evaluation and will update the data tables with the results when available.DisclaimerThe data quality assessment may not represent the quality of the current dataset that is published on the Open Data Portal. Please check the date of the latest quality assessment and compare to the 'Modified' date of the corresponding dataset. The data quality assessments will be updated on either a quarterly or annual basis, dependent on the update frequency of the dataset. This information can be found in the dataset metadata, within the Information tab. If you require a more up to date quality assessment, please contact the Open Data Team at opendata@spenergynetworks.co.uk and a member of the team will be in contact.
Facebook
TwitterDimensions of data quality in immunization programs.
Facebook
Twitterhttps://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/
Data Quality Tools Market size was valued at USD 2.71 Billion in 2024 and is projected to reach USD 4.15 Billion by 2032, growing at a CAGR of 5.46% from 2026 to 2032.Global Data Quality Tools Market DriversGrowing Data Volume and Complexity: Sturdy data quality technologies are necessary to guarantee accurate, consistent, and trustworthy information because of the exponential increase in the volume and complexity of data supplied by companies.Growing Knowledge of Data Governance: Businesses are realizing how critical it is to uphold strict standards for data integrity and data governance. Tools for improving data quality are essential for advancing data governance programs.Needs for Regulatory Compliance: Adoption of data quality technologies is prompted by strict regulatory requirements, like GDPR, HIPAA, and other data protection rules, which aim to ensure compliance and reduce the risk of negative legal and financial outcomes.Growing Emphasis on Analytics and Business Intelligence (BI): The requirement for accurate and trustworthy data is highlighted by the increasing reliance on corporate intelligence and analytics for well-informed decision-making. Tools for improving data quality contribute to increased data accuracy for analytics and reporting.Initiatives for Data Integration and Migration: Companies engaged in data integration or migration initiatives understand how critical it is to preserve data quality throughout these procedures. The use of data quality technologies is essential for guaranteeing seamless transitions and avoiding inconsistent data.Real-time data quality management is in demand: Organizations looking to make prompt decisions based on precise and current information are driving an increased need for real-time data quality management systems.The emergence of cloud computing and big data: Strong data quality tools are required to manage many data sources, formats, and environments while upholding high data quality standards as big data and cloud computing solutions become more widely used.Pay attention to customer satisfaction and experience: Businesses are aware of how data quality affects customer happiness and experience. Establishing and maintaining consistent and accurate customer data is essential to fostering trust and providing individualized services.Preventing Fraud and Data-Related Errors: By detecting and fixing mistakes in real time, data quality technologies assist firms in preventing errors, discrepancies, and fraudulent activities while lowering the risk of monetary losses and reputational harm.Linking Master Data Management (MDM) Programs: Integrating with MDM solutions improves master data management overall and guarantees high-quality, accurate, and consistent maintenance of vital corporate information.Offerings for Data Quality as a Service (DQaaS): Data quality tools are now more widely available and scalable for companies of all sizes thanks to the development of Data Quality as a Service (DQaaS), which offers cloud-based solutions to firms.
Facebook
TwitterThis data table provides the detailed data quality assessment scores for the Single Digital View dataset. The quality assessment was carried out on the 31st of March. At SPEN, we are dedicated to sharing high-quality data with our stakeholders and being transparent about its' quality. This is why we openly share the results of our data quality assessments. We collaborate closely with Data Owners to address any identified issues and enhance our overall data quality. To demonstrate our progress we conduct, at a minimum, bi-annual assessments of our data quality - for datasets that are refreshed more frequently than this, please note that the quality assessment may be based on an earlier version of the dataset. To learn more about our approach to how we assess data quality, visit Data Quality - SP Energy Networks.We welcome feedback and questions from our stakeholders regarding this process. Our Open Data Team is available to answer any enquiries or receive feedback on the assessments. You can contact them via our Open Data mailbox at opendata@spenergynetworks.co.uk.The first phase of our comprehensive data quality assessment measures the quality of our datasets across three dimensions. Please refer to the data table schema for the definitions of these dimensions. We are now in the process of expanding our quality assessments to include additional dimensions to provide a more comprehensive evaluation and will update the data tables with the results when available.DisclaimerThe data quality assessment may not represent the quality of the current dataset that is published on the Open Data Portal. Please check the date of the latest quality assessment and compare to the 'Modified' date of the corresponding dataset. The data quality assessments will be updated on either a quarterly or annual basis, dependent on the update frequency of the dataset. This information can be found in the dataset metadata, within the Information tab. If you require a more up to date quality assessment, please contact the Open Data Team at opendata@spenergynetworks.co.uk and a member of the team will be in contact.
Facebook
TwitterThis data table provides the detailed data quality assessment scores for the Technical Limits dataset. The quality assessment was carried out on the 16th of September 2025. At SPEN, we are dedicated to sharing high-quality data with our stakeholders and being transparent about its' quality. This is why we openly share the results of our data quality assessments. We collaborate closely with Data Owners to address any identified issues and enhance our overall data quality. To demonstrate our progress we conduct, at a minimum, bi-annual assessments of our data quality - for datasets that are refreshed more frequently than this, please note that the quality assessment may be based on an earlier version of the dataset. To learn more about our approach to how we assess data quality, visit Data Quality - SP Energy Networks.We welcome feedback and questions from our stakeholders regarding this process. Our Open Data Team is available to answer any enquiries or receive feedback on the assessments. You can contact them via our Open Data mailbox at opendata@spenergynetworks.co.uk.The first phase of our comprehensive data quality assessment measures the quality of our datasets across three dimensions. Please refer to the data table schema for the definitions of these dimensions. We are now in the process of expanding our quality assessments to include additional dimensions to provide a more comprehensive evaluation and will update the data tables with the results when available.DisclaimerThe data quality assessment may not represent the quality of the current dataset that is published on the Open Data Portal. Please check the date of the latest quality assessment and compare to the 'Modified' date of the corresponding dataset. The data quality assessments will be updated on either a quarterly or annual basis, dependent on the update frequency of the dataset. This information can be found in the dataset metadata, within the Information tab. If you require a more up to date quality assessment, please contact the Open Data Team at opendata@spenergynetworks.co.uk and a member of the team will be in contact.
Facebook
TwitterThis data table provides the detailed data quality assessment scores for the Long Term Development Statement dataset. The quality assessment was carried out on 31st March. At SPEN, we are dedicated to sharing high-quality data with our stakeholders and being transparent about its' quality. This is why we openly share the results of our data quality assessments. We collaborate closely with Data Owners to address any identified issues and enhance our overall data quality; to demonstrate our progress we conduct annual assessments of our data quality in line with the dataset refresh rate. To learn more about our approach to how we assess data quality, visit Data Quality - SP Energy Networks.We welcome feedback and questions from our stakeholders regarding this process. Our Open Data Team is available to answer any enquiries or receive feedback on the assessments. You can contact them via our Open Data mailbox at opendata@spenergynetworks.co.uk.The first phase of our comprehensive data quality assessment measures the quality of our datasets across three dimensions. Please refer to the data table schema for the definitions of these dimensions. We are now in the process of expanding our quality assessments to include additional dimensions to provide a more comprehensive evaluation and will update the data tables with the results when available.DisclaimerThe data quality assessment may not represent the quality of the current dataset that is published on the Open Data Portal. Please check the date of the latest quality assessment and compare to the 'Modified' date of the corresponding dataset. The data quality assessments will be updated on either a quarterly or annual basis, dependent on the update frequency of the dataset. This information can be found in the dataset metadata, within the Information tab. If you require a more up to date quality assessment, please contact the Open Data Team at opendata@spenergynetworks.co.uk and a member of the team will be in contact.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains data collected during a study "Understanding the development of public data ecosystems: from a conceptual model to a six-generation model of the evolution of public data ecosystems" conducted by Martin Lnenicka (University of Hradec Králové, Czech Republic), Anastasija Nikiforova (University of Tartu, Estonia), Mariusz Luterek (University of Warsaw, Warsaw, Poland), Petar Milic (University of Pristina - Kosovska Mitrovica, Serbia), Daniel Rudmark (Swedish National Road and Transport Research Institute, Sweden), Sebastian Neumaier (St. Pölten University of Applied Sciences, Austria), Karlo Kević (University of Zagreb, Croatia), Anneke Zuiderwijk (Delft University of Technology, Delft, the Netherlands), Manuel Pedro Rodríguez Bolívar (University of Granada, Granada, Spain).
As there is a lack of understanding of the elements that constitute different types of value-adding public data ecosystems and how these elements form and shape the development of these ecosystems over time, which can lead to misguided efforts to develop future public data ecosystems, the aim of the study is: (1) to explore how public data ecosystems have developed over time and (2) to identify the value-adding elements and formative characteristics of public data ecosystems. Using an exploratory retrospective analysis and a deductive approach, we systematically review 148 studies published between 1994 and 2023. Based on the results, this study presents a typology of public data ecosystems and develops a conceptual model of elements and formative characteristics that contribute most to value-adding public data ecosystems, and develops a conceptual model of the evolutionary generation of public data ecosystems represented by six generations called Evolutionary Model of Public Data Ecosystems (EMPDE). Finally, three avenues for a future research agenda are proposed.
This dataset is being made public both to act as supplementary data for "Understanding the development of public data ecosystems: from a conceptual model to a six-generation model of the evolution of public data ecosystems ", Telematics and Informatics*, and its Systematic Literature Review component that informs the study.
Description of the data in this data set
PublicDataEcosystem_SLR provides the structure of the protocol
Spreadsheet#1 provides the list of results after the search over three indexing databases and filtering out irrelevant studies
Spreadsheets #2 provides the protocol structure.
Spreadsheets #3 provides the filled protocol for relevant studies.
The information on each selected study was collected in four categories:(1) descriptive information,(2) approach- and research design- related information,(3) quality-related information,(4) HVD determination-related information
Descriptive Information
Article number
A study number, corresponding to the study number assigned in an Excel worksheet
Complete reference
The complete source information to refer to the study (in APA style), including the author(s) of the study, the year in which it was published, the study's title and other source information.
Year of publication
The year in which the study was published.
Journal article / conference paper / book chapter
The type of the paper, i.e., journal article, conference paper, or book chapter.
Journal / conference / book
Journal article, conference, where the paper is published.
DOI / Website
A link to the website where the study can be found.
Number of words
A number of words of the study.
Number of citations in Scopus and WoS
The number of citations of the paper in Scopus and WoS digital libraries.
Availability in Open Access
Availability of a study in the Open Access or Free / Full Access.
Keywords
Keywords of the paper as indicated by the authors (in the paper).
Relevance for our study (high / medium / low)
What is the relevance level of the paper for our study
Approach- and research design-related information
Approach- and research design-related information
Objective / Aim / Goal / Purpose & Research Questions
The research objective and established RQs.
Research method (including unit of analysis)
The methods used to collect data in the study, including the unit of analysis that refers to the country, organisation, or other specific unit that has been analysed such as the number of use-cases or policy documents, number and scope of the SLR etc.
Study’s contributions
The study’s contribution as defined by the authors
Qualitative / quantitative / mixed method
Whether the study uses a qualitative, quantitative, or mixed methods approach?
Availability of the underlying research data
Whether the paper has a reference to the public availability of the underlying research data e.g., transcriptions of interviews, collected data etc., or explains why these data are not openly shared?
Period under investigation
Period (or moment) in which the study was conducted (e.g., January 2021-March 2022)
Use of theory / theoretical concepts / approaches? If yes, specify them
Does the study mention any theory / theoretical concepts / approaches? If yes, what theory / concepts / approaches? If any theory is mentioned, how is theory used in the study? (e.g., mentioned to explain a certain phenomenon, used as a framework for analysis, tested theory, theory mentioned in the future research section).
Quality-related information
Quality concerns
Whether there are any quality concerns (e.g., limited information about the research methods used)?
Public Data Ecosystem-related information
Public data ecosystem definition
How is the public data ecosystem defined in the paper and any other equivalent term, mostly infrastructure. If an alternative term is used, how is the public data ecosystem called in the paper?
Public data ecosystem evolution / development
Does the paper define the evolution of the public data ecosystem? If yes, how is it defined and what factors affect it?
What constitutes a public data ecosystem?
What constitutes a public data ecosystem (components & relationships) - their "FORM / OUTPUT" presented in the paper (general description with more detailed answers to further additional questions).
Components and relationships
What components does the public data ecosystem consist of and what are the relationships between these components? Alternative names for components - element, construct, concept, item, helix, dimension etc. (detailed description).
Stakeholders
What stakeholders (e.g., governments, citizens, businesses, Non-Governmental Organisations (NGOs) etc.) does the public data ecosystem involve?
Actors and their roles
What actors does the public data ecosystem involve? What are their roles?
Data (data types, data dynamism, data categories etc.)
What data do the public data ecosystem cover (is intended / designed for)? Refer to all data-related aspects, including but not limited to data types, data dynamism (static data, dynamic, real-time data, stream), prevailing data categories / domains / topics etc.
Processes / activities / dimensions, data lifecycle phases
What processes, activities, dimensions and data lifecycle phases (e.g., locate, acquire, download, reuse, transform, etc.) does the public data ecosystem involve or refer to?
Level (if relevant)
What is the level of the public data ecosystem covered in the paper? (e.g., city, municipal, regional, national (=country), supranational, international).
Other elements or relationships (if any)
What other elements or relationships does the public data ecosystem consist of?
Additional comments
Additional comments (e.g., what other topics affected the public data ecosystems and their elements, what is expected to affect the public data ecosystems in the future, what were important topics by which the period was characterised etc.).
New papers
Does the study refer to any other potentially relevant papers?
Additional references to potentially relevant papers that were found in the analysed paper (snowballing).
Format of the file.xls, .csv (for the first spreadsheet only), .docx
Licenses or restrictionsCC-BY
For more info, see README.txt
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IntroductionHealth-facility data serves as a primary source for monitoring service provision and guiding the attainment of health targets. District Health Information Software (DHIS2) is a free open software predominantly used in low and middle-income countries to manage the facility-based data and monitor program wise service delivery. Evidence suggests the lack of quality in the routine maternal and child health information, however there is no robust analysis to evaluate the extent of its inaccuracy. We aim to bridge this gap by accessing the quality of DHIS2 data reported by health facilities to monitor priority maternal, newborn and child health indicators in Lumbini Province, Nepal.MethodsA facility-based descriptive study design involving desk review of Maternal, Neonatal and Child Health (MNCH) data was used. In 2021/22, DHIS2 contained a total of 12873 reports in safe motherhood, 12182 reports in immunization, 12673 reports in nutrition and 12568 reports in IMNCI program in Lumbini Province. Of those, monthly aggregated DHIS2 data were downloaded at one time and included 23 priority maternal and child health related data items. Of these 23 items, nine were chosen to assess consistency over time and identify outliers in reference years. Twelve items were selected to examine consistency between related data, while five items were chosen to assess the external consistency of coverage rates. We reviewed the completeness, timeliness and consistency of these data items and considered the prospects for improvement.ResultsThe overall completeness of facility reporting was found within 98% to 100% while timeliness of facility reporting ranged from 94% to 96% in each Maternal, Newborn and Child Health (MNCH) datasets. DHIS2 reported data for all 9 MNCH data items are consistent over time in 4 of 12 districts as all the selected data items are within ±33% difference from the provincial ratio. Of the eight MNCH data items assessed, four districts reported ≥5% monthly values that were moderate outliers in a reference year with no extreme outliers in any districts. Consistency between six-pairs of data items that are expected to show similar patterns are compared and found that three pairs are within ±10% of each other in all 12 districts. Comparison between the coverage rates of selected tracer indicators fall within ±33% of the DHS survey result.ConclusionGiven the WHO data quality guidance and national benchmark, facilities in the Lumbini province well maintained the completeness and timeliness of MNCH datasets. Nevertheless, there is room for improvement in maintaining consistency over time, plausibility and predicted relationship of reported data. Encouraging the promotion of data review through the data management committee, strengthening the system inbuilt data validation mechanism in DHIS2, and promoting routine data quality assessment systems should be greatly encouraged.
Facebook
TwitterThis data table provides the detailed data quality assessment scores for the Network Development Plan dataset. The quality assessment was carried out on 31st March. At SPEN, we are dedicated to sharing high-quality data with our stakeholders and being transparent about its' quality. This is why we openly share the results of our data quality assessments. We collaborate closely with Data Owners to address any identified issues and enhance our overall data quality; to demonstrate our progress we conduct annual assessments of our data quality in line with the dataset refresh rate. To learn more about our approach to how we assess data quality, visit Data Quality - SP Energy Networks.We welcome feedback and questions from our stakeholders regarding this process. Our Open Data Team is available to answer any enquiries or receive feedback on the assessments. You can contact them via our Open Data mailbox at opendata@spenergynetworks.co.uk.The first phase of our comprehensive data quality assessment measures the quality of our datasets across three dimensions. Please refer to the data table schema for the definitions of these dimensions. We are now in the process of expanding our quality assessments to include additional dimensions to provide a more comprehensive evaluation and will update the data tables with the results when available.DisclaimerThe data quality assessment may not represent the quality of the current dataset that is published on the Open Data Portal. Please check the date of the latest quality assessment and compare to the 'Modified' date of the corresponding dataset. The data quality assessments will be updated on either a quarterly or annual basis, dependent on the update frequency of the dataset. This information can be found in the dataset metadata, within the Information tab. If you require a more up to date quality assessment, please contact the Open Data Team at opendata@spenergynetworks.co.uk and a member of the team will be in contact.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ABSTRACT The use of the Internet to access government data is growing and presents possibilities for citizens to monitor the implementation of public policies. In the context of public policies for the agriculture sector, it is highlighted that these constitute a major factor in social and economic development, especially for small producers, who, in turn, need this informational content to participate and monitor actions. The government, through the Access to Information Law, is responsible for ensuring the wide dissemination of government programs, however, what is often observed is that the data are not made available as they should, mainly having problems related to the quality of the databases and recovery services. Thus, the objective of the research is to identify dimensions of quality involved in accessing government data on the Internet and apply them to the study of the data recovery process of the ProgramaNacional da Agricultura Familiar available on the Banco Central portal. Methodologically, a theoretical review was carried out to identify in the literature articles dealing with the issue of data quality in the government context, and, subsequently, a Content Analysis to identify categories that could represent such dimensions in a specific way for this domain. These dimensions were applied in the study of the data recovery process of a public agricultural policy aimed at the socio-economic development of small producers, and the results obtained to establish a perspective on how the issue of data quality can be observed in the studied scenario, as well as its implications. implications for access and ownership of content.
Facebook
TwitterImmunization coverage data points and reporting countries affected by potential data quality issues, by dimension of data quality, 194 WHO Member States, 2000–2019.
Facebook
Twitter
According to the latest research, the global Data Quality as a Service (DQaaS) market size reached USD 2.48 billion in 2024, reflecting a robust interest in data integrity solutions across diverse industries. The market is poised to expand at a compound annual growth rate (CAGR) of 18.7% from 2025 to 2033, with the forecasted market size anticipated to reach USD 12.19 billion by 2033. This remarkable growth is primarily driven by the increasing reliance on data-driven decision-making, regulatory compliance mandates, and the proliferation of cloud-based technologies. Organizations are recognizing the necessity of high-quality data to fuel analytics, artificial intelligence, and operational efficiency, which is accelerating the adoption of DQaaS globally.
The exponential growth of the Data Quality as a Service market is underpinned by several key factors. Primarily, the surge in data volumes generated by digital transformation initiatives and the Internet of Things (IoT) has created an urgent need for robust data quality management platforms. Enterprises are increasingly leveraging DQaaS to ensure the accuracy, completeness, and reliability of their data assets, which are crucial for maintaining a competitive edge. Additionally, the rising adoption of cloud computing has made it more feasible for organizations of all sizes to access advanced data quality tools without the need for significant upfront investment in infrastructure. This democratization of data quality solutions is expected to further fuel market expansion in the coming years.
Another significant driver is the growing emphasis on regulatory compliance and risk mitigation. Industries such as BFSI, healthcare, and government are subject to stringent regulations regarding data privacy, security, and reporting. DQaaS platforms offer automated data validation, cleansing, and monitoring capabilities, enabling organizations to adhere to these regulatory requirements efficiently. The increasing prevalence of data breaches and cyber threats has also highlighted the importance of maintaining high-quality data, as poor data quality can exacerbate vulnerabilities and compliance risks. As a result, organizations are investing in DQaaS not only to enhance operational efficiency but also to safeguard their reputation and avoid costly penalties.
Furthermore, the integration of artificial intelligence (AI) and machine learning (ML) technologies into DQaaS solutions is transforming the market landscape. These advanced technologies enable real-time data profiling, anomaly detection, and predictive analytics, which significantly enhance the effectiveness of data quality management. The ability to automate complex data quality processes and derive actionable insights from vast datasets is particularly appealing to large enterprises and data-centric organizations. As AI and ML continue to evolve, their application within DQaaS platforms is expected to drive innovation and unlock new growth opportunities, further solidifying the marketÂ’s upward trajectory.
Ensuring the reliability of data through Map Data Quality Assurance is becoming increasingly crucial as organizations expand their geographic data usage. This process involves a systematic approach to verify the accuracy and consistency of spatial data, which is essential for applications ranging from logistics to urban planning. By implementing rigorous quality assurance protocols, businesses can enhance the precision of their location-based services, leading to improved decision-making and operational efficiency. As the demand for geographic information systems (GIS) grows, the emphasis on maintaining high standards of map data quality will continue to rise, supporting the overall integrity of data-driven strategies.
From a regional perspective, North America currently dominates the Data Quality as a Service market, accounting for the largest share in 2024. This leadership is attributed to the early adoption of cloud technologies, a mature IT infrastructure, and a strong focus on data governance among enterprises in the region. Europe follows closely, with significant growth driven by strict data protection regulations such as GDPR. Meanwhile, the Asia Pacific region is witnessing the fastest growth, propelled by rapid digitalization, increasing investments in cloud
Facebook
TwitterThis data table provides the detailed data quality assessment scores for the Flexibility Dispatch dataset. The quality assessment was carried out on the 20th of October 2025. At SPEN, we are dedicated to sharing high-quality data with our stakeholders and being transparent about its' quality. This is why we openly share the results of our data quality assessments. We collaborate closely with Data Owners to address any identified issues and enhance our overall data quality. To demonstrate our progress we conduct, at a minimum, bi-annual assessments of our data quality - for datasets that are refreshed more frequently than this, please note that the quality assessment may be based on an earlier version of the dataset. To learn more about our approach to how we assess data quality, visit Data Quality - SP Energy Networks.We welcome feedback and questions from our stakeholders regarding this process. Our Open Data Team is available to answer any enquiries or receive feedback on the assessments. You can contact them via our Open Data mailbox at opendata@spenergynetworks.co.uk.The first phase of our comprehensive data quality assessment measures the quality of our datasets across three dimensions. Please refer to the data table schema for the definitions of these dimensions. We are now in the process of expanding our quality assessments to include additional dimensions to provide a more comprehensive evaluation and will update the data tables with the results when available.DisclaimerThe data quality assessment may not represent the quality of the current dataset that is published on the Open Data Portal. Please check the date of the latest quality assessment and compare to the 'Modified' date of the corresponding dataset. The data quality assessments will be updated on either a quarterly or annual basis, dependent on the update frequency of the dataset. This information can be found in the dataset metadata, within the Information tab. If you require a more up to date quality assessment, please contact the Open Data Team at opendata@spenergynetworks.co.uk and a member of the team will be in contact.
Facebook
TwitterThis data table provides the detailed data quality assessment scores for the SPD DG Connections Network Info dataset. The quality assessment was carried out on the 31st of March. At SPEN, we are dedicated to sharing high-quality data with our stakeholders and being transparent about its' quality. This is why we openly share the results of our data quality assessments. We collaborate closely with Data Owners to address any identified issues and enhance our overall data quality. To demonstrate our progress we conduct, at a minimum, bi-annual assessments of our data quality - for datasets that are refresehed more frequently than this, please note that the quality assessment may be based on an earlier version of the dataset. To learn more about our approach to how we assess data quality, visit Data Quality - SP Energy Networks. We welcome feedback and questions from our stakeholders regarding this process. Our Open Data Team is available to answer any enquiries or receive feedback on the assessments. You can contact them via our Open Data mailbox at opendata@spenergynetworks.co.uk.The first phase of our comprehensive data quality assessment measures the quality of our datasets across three dimensions. Please refer to the data table schema for the definitions of these dimensions. We are now in the process of expanding our quality assessments to include additional dimensions to provide a more comprehensive evaluation and will update the data tables with the results when available.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
It represents the data quality dimensions concerning different types of data.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Numerous studies make extensive use of healthcare data, including human materials and clinical information, and acknowledge its significance. However, limitations in data collection methods can impact the quality of healthcare data obtained from multiple institutions. In order to secure high-quality data related to human materials, research focused on data quality is necessary. This study validated the quality of data collected in 2020 from 16 institutions constituting the Korea Biobank Network using 104 validation rules. The validation rules were developed based on the DQ4HEALTH model and were divided into four dimensions: completeness, validity, accuracy, and uniqueness. Korea Biobank Network collects and manages human materials and clinical information from multiple biobanks, and is in the process of developing a common data model for data integration. The results of the data quality verification revealed an error rate of 0.74%. Furthermore, an analysis of the data from each institution was performed to examine the relationship between the institution’s characteristics and error count. The results from a chi-square test indicated that there was an independent correlation between each institution and its error count. To confirm this correlation between error counts and the characteristics of each institution, a correlation analysis was conducted. The results, shown in a graph, revealed the relationship between factors that had high correlation coefficients and the error count. The findings suggest that the data quality was impacted by biases in the evaluation system, including the institution’s IT environment, infrastructure, and the number of collected samples. These results highlight the need to consider the scalability of research quality when evaluating clinical epidemiological information linked to human materials in future validation studies of data quality.
Facebook
TwitterThe Gridded Population of the World, Version 4 (GPWv4): Data Quality Indicators, Revision 11 consists of three data layers created to provide context for the population count and density rasters, and explicit information on the spatial precision of the input boundary data. The Data Context raster explains pixels with a "0" population estimate in the population count and density rasters based on information included in the census documents, such as areas that are part of a national park, areas that have no households, etc. The Water Mask raster distinguishes between pixels that are completely water and/or ice (Total Water Pixels), pixels that contain water and land (Partial Water Pixels), pixels that are completely land (Total Land Pixels), and pixels that are completely ocean water (Ocean Pixels). The Mean Administrative Unit Area raster represents the mean input unit size in square kilometers and provides a quantitative surface that indicates the size of the input unit(s) from which population count and density rasters are created. The data files were produced as global rasters at 30 arc-second (~1 km at the equator) resolution. To enable faster global processing, and in support of research communities, the 30 arc-second data were aggregated to 2.5 arc-minute, 15 arc-minute, 30 arc-minute and 1 degree resolutions. To provide context for the population count and density rasters, and explicit information on the spatial precision of the input boundary data.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Reflecting the essence of high-quality development., this paper constructs a dual-dimensional measurement index system for High-Quality Industrial Development Level (HQIDL) in the Yangtze River Delta (YRD) urban agglomeration, grounded in the five development concepts and three development dimensions.
Facebook
TwitterDimensions of data quality.