Since 2008, HIV/AIDS remains the most fatal infectious disease in China. In 2021, almost 14 out of one million people in China died from AIDS. Tuberculosis stood at the second place, while rabies ranked the fourth.
Who are the high risk groups?
The HIV/AIDS epidemic has become a growing concern for the major population in China. A majority of new infections were the result from sexual transmission. Although the prevalence rate has been relatively low, the trend of new diagnoses in people aged from 15 to 24 years has been alarming, with gay men disproportionately represented.
Children under the age of 14 are the most vulnerable group to contract common infectious diseases like influenza and HFMD. The Chinese government has thus introduced healthcare initiatives dedicated to vaccinating children up to the age of 14 under the Extended Program for Immunization (EPI). The efforts have been fruitful with significant improvement in the healthcare status of children under the age of five in the country.
How is disease controlled in China?
The world’s most populous nation has made considerable efforts in tracking and preventing the spread of infectious diseases. Alongside geographical and demographic challenges, the mortality rate of infectious diseases has seen a slight increase over the recent years. Seasonal diseases, especially Influenza and mumps, are easily widespread and have pressed the demand for efficient disease prevention and control. In response, the Chinese government has ramped up the supply of influenza vaccines and HPV vaccines.
Peru is the country with the highest mortality rate due to the coronavirus disease (COVID-19) in Latin America. As of November 13, 2023, the country registered over 672 deaths per 100,000 inhabitants. It was followed by Brazil, with around 331.5 fatal cases per 100,000 population. In total, over 1.76 million people have died due to COVID-19 in Latin America and the Caribbean.
Are these figures accurate? Although countries like Brazil already rank among the countries most affected by the coronavirus disease (COVID-19), there is still room to believe that the number of cases and deaths in Latin American countries are underreported. The main reason is the relatively low number of tests performed in the region. For example, Brazil, one of the most impacted countries in the world, has performed approximately 63.7 million tests as of December 22, 2022. This compared with over one billion tests performed in the United States, approximately 909 million tests completed in India, or around 522 million tests carried out in the United Kingdom.
Capacity to deal with the outbreak With the spread of the Omicron variant, the COVID-19 pandemic is putting health systems around the world under serious pressure. The lack of equipment to treat acute cases, for instance, is one of the problems affecting Latin American countries. In 2019, the number of ventilators in hospitals in the most affected countries ranged from 25.23 per 100,000 inhabitants in Brazil to 5.12 per 100,000 people in Peru.
For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.
Number of deaths and age-specific mortality rates for selected grouped causes, by age group and sex, 2000 to most recent year.
Rank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.
This statistic shows the overall mortality rate from infectious diseases in China from 2015 to 2021. In 2021, approximately 1.57 out of 100,000 people in China died due to communicable diseases, an increase from the year prior mainly due to the high mortality rate of the coronavirus infection.
Every year the CDC releases the country’s most detailed report on death in the United States under the National Vital Statistics Systems. This mortality dataset is a record of every death in the country for 2005 through 2015, including detailed information about causes of death and the demographic background of the deceased.
It's been said that "statistics are human beings with the tears wiped off." This is especially true with this dataset. Each death record represents somebody's loved one, often connected with a lifetime of memories and sometimes tragically too short.
Putting the sensitive nature of the topic aside, analyzing mortality data is essential to understanding the complex circumstances of death across the country. The US Government uses this data to determine life expectancy and understand how death in the U.S. differs from the rest of the world. Whether you’re looking for macro trends or analyzing unique circumstances, we challenge you to use this dataset to find your own answers to one of life’s great mysteries.
This dataset is a collection of CSV files each containing one year's worth of data and paired JSON files containing the code mappings, plus an ICD 10 code set. The CSVs were reformatted from their original fixed-width file formats using information extracted from the CDC's PDF manuals using this script. Please note that this process may have introduced errors as the text extracted from the pdf is not a perfect match. If you have any questions or find errors in the preparation process, please leave a note in the forums. We hope to publish additional years of data using this method soon.
A more detailed overview of the data can be found here. You'll find that the fields are consistent within this time window, but some of data codes change every few years. For example, the 113_cause_recode entry 069 only covers ICD codes (I10,I12) in 2005, but by 2015 it covers (I10,I12,I15). When I post data from years prior to 2005, expect some of the fields themselves to change as well.
All data comes from the CDC’s National Vital Statistics Systems, with the exception of the Icd10Code, which are sourced from the World Health Organization.
MMWR Surveillance Summary 66 (No. SS-1):1-8 found that nonmetropolitan areas have significant numbers of potentially excess deaths from the five leading causes of death. These figures accompany this report by presenting information on potentially excess deaths in nonmetropolitan and metropolitan areas at the state level. They also add additional years of data and options for selecting different age ranges and benchmarks. Potentially excess deaths are defined in MMWR Surveillance Summary 66(No. SS-1):1-8 as deaths that exceed the numbers that would be expected if the death rates of states with the lowest rates (benchmarks) occurred across all states. They are calculated by subtracting expected deaths for specific benchmarks from observed deaths. Not all potentially excess deaths can be prevented; some areas might have characteristics that predispose them to higher rates of death. However, many potentially excess deaths might represent deaths that could be prevented through improved public health programs that support healthier behaviors and neighborhoods or better access to health care services. Mortality data for U.S. residents come from the National Vital Statistics System. Estimates based on fewer than 10 observed deaths are not shown and shaded yellow on the map. Underlying cause of death is based on the International Classification of Diseases, 10th Revision (ICD-10) Heart disease (I00-I09, I11, I13, and I20–I51) Cancer (C00–C97) Unintentional injury (V01–X59 and Y85–Y86) Chronic lower respiratory disease (J40–J47) Stroke (I60–I69) Locality (nonmetropolitan vs. metropolitan) is based on the Office of Management and Budget’s 2013 county-based classification scheme. Benchmarks are based on the three states with the lowest age and cause-specific mortality rates. Potentially excess deaths for each state are calculated by subtracting deaths at the benchmark rates (expected deaths) from observed deaths. Users can explore three benchmarks: “2010 Fixed” is a fixed benchmark based on the best performing States in 2010. “2005 Fixed” is a fixed benchmark based on the best performing States in 2005. “Floating” is based on the best performing States in each year so change from year to year. SOURCES CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES Moy E, Garcia MC, Bastian B, Rossen LM, Ingram DD, Faul M, Massetti GM, Thomas CC, Hong Y, Yoon PW, Iademarco MF. Leading Causes of Death in Nonmetropolitan and Metropolitan Areas – United States, 1999-2014. MMWR Surveillance Summary 2017; 66(No. SS-1):1-8. Garcia MC, Faul M, Massetti G, Thomas CC, Hong Y, Bauer UE, Iademarco MF. Reducing Potentially Excess Deaths from the Five Leading Causes of Death in the Rural United States. MMWR Surveillance Summary 2017; 66(No. SS-2):1–7.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
US: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Female data was reported at 11.800 NA in 2016. This records an increase from the previous number of 11.600 NA for 2015. US: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Female data is updated yearly, averaging 11.800 NA from Dec 2000 (Median) to 2016, with 5 observations. The data reached an all-time high of 14.600 NA in 2000 and a record low of 11.600 NA in 2015. US: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Female data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Health Statistics. Mortality from CVD, cancer, diabetes or CRD is the percent of 30-year-old-people who would die before their 70th birthday from any of cardiovascular disease, cancer, diabetes, or chronic respiratory disease, assuming that s/he would experience current mortality rates at every age and s/he would not die from any other cause of death (e.g., injuries or HIV/AIDS).; ; World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).; Weighted average;
Death rate has been age-adjusted by the 2000 U.S. standard populaton. All-cause mortality is an important measure of community health. All-cause mortality is heavily driven by the social determinants of health, with significant inequities observed by race and ethnicity and socioeconomic status. Black residents have consistently experienced the highest all-cause mortality rate compared to other racial and ethnic groups. During the COVID-19 pandemic, Latino residents also experienced a sharp increase in their all-cause mortality rate compared to White residents, demonstrating a reversal in the previously observed mortality advantage, in which Latino individuals historically had higher life expectancy and lower mortality than White individuals despite having lower socioeconomic status on average. The disproportionately high all-cause mortality rates observed among Black and Latino residents, especially since the onset of the COVID-19 pandemic, are due to differences in social and economic conditions and opportunities that unfairly place these groups at higher risk of developing and dying from a wide range of health conditions, including COVID-19.For more information about the Community Health Profiles Data Initiative, please see the initiative homepage.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BR: Mortality Rate: Under-5: per 1000 Live Births data was reported at 14.400 Ratio in 2023. This records a decrease from the previous number of 14.600 Ratio for 2022. BR: Mortality Rate: Under-5: per 1000 Live Births data is updated yearly, averaging 58.700 Ratio from Dec 1960 (Median) to 2023, with 64 observations. The data reached an all-time high of 169.400 Ratio in 1960 and a record low of 14.400 Ratio in 2023. BR: Mortality Rate: Under-5: per 1000 Live Births data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Brazil – Table BR.World Bank.WDI: Social: Health Statistics. Under-five mortality rate is the probability per 1,000 that a newborn baby will die before reaching age five, if subject to age-specific mortality rates of the specified year.;Estimates developed by the UN Inter-agency Group for Child Mortality Estimation (UNICEF, WHO, World Bank, UN DESA Population Division) at www.childmortality.org.;Weighted average;Given that data on the incidence and prevalence of diseases are frequently unavailable, mortality rates are often used to identify vulnerable populations. Moreover, they are among the indicators most frequently used to compare socioeconomic development across countries. Under-five mortality rates are higher for boys than for girls in countries in which parental gender preferences are insignificant. Under-five mortality captures the effect of gender discrimination better than infant mortality does, as malnutrition and medical interventions have more significant impacts to this age group. Where female under-five mortality is higher, girls are likely to have less access to resources than boys. Aggregate data for LIC, UMC, LMC, HIC are computed based on the groupings for the World Bank fiscal year in which the data was released by the UN Inter-agency Group for Child Mortality Estimation. This is the Sustainable Development Goal indicator 3.2.1[https://unstats.un.org/sdgs/metadata/].
By Oklahoma [source]
This dataset contains an overview of historical heart disease death rates in Oklahoma from 2000 to 2018. The dataset consists of yearly figures and target figures for the numbers of deaths due to heart diseases, allowing a comparison between the expected rate and the actual rate over time. This data is important as it can be used to analyze trends in heart disease death rates, helping inform public health initiatives and policy decisions
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset includes the number of death due to heart disease in Oklahoma. It provides a single, comprehensive data set that captures detailed information on the historical prevalence of heart disease death rates in the state. This dataset can be used for various research or analytical purposes such as epidemiological studies or health services planning.
To use this dataset, one must first understand that it contains three main pieces: the year of reported deaths, the actual number of deaths related to heart disease during each year and a target total for expected deaths from heart disease per year, which are used as reference points when analyzing other years. The years column includes all relevant dates while historical data column provides more specifics such as exact numbers and percentages related to those who perished due to heart-related conditions.
By utilizing this data set users can easily find out how many persons died due to cardiac-related diseases along with what risks were most prevalent at certain times over that period by comparing provided figures with reference targets at any given time slice in question (time point). Additionally, one can observe trends carefully within different groups such as males versus females or rural versus urban locations thus allowing them more robust insight into factors associated with mortality from cardiac conditions across different demographics
- Identifying which geographic areas in Oklahoma are at highest risk for heart disease and creating targeted public health initiatives to reduce its incidence.
- Determining correlations between changes in vital health indicators (e.g., increase of physical activity) with changes in heart disease death rates to better inform policy and research direction.
- Analyzing overall mortality rates compared to other counties or states with comparable demographics to assess the effectiveness of existing public health interventions over time
If you use this dataset in your research, please credit the original authors. Data Source
Unknown License - Please check the dataset description for more information.
File: res_heart_disease_deaths_kdjx-hayj.csv | Column name | Description | |:--------------------|:-----------------------------------------------------------------------------------------------------------------------------------------| | Years | The year associated with the data. (Integer) | | Historical Data | The number of deaths due to heart disease in Oklahoma in that particular year from 2000-2018. (Integer) | | Target | A value generated based on Historical Data indicating what should be targeted as a baseline performance measure going forward. (Integer) |
File: res_heart_disease_deaths_-_column_chart_3a28-gndr.csv | Column name | Description | |:--------------------|:-----------------------------------------------------------------------------------------------------------------------------------------| | Years | The year associated with the data. (Integer) | | Historical Data | The number of deaths due to heart disease in Oklahoma in that particular year from 2000-2018. (Integer) | | Target | A value generated based on Historical Data indicating what should be targeted as a baseline performance measure going forward. (Integer) |
...
Tuberculosis is one of the deadliest communicable diseases worldwide, causing around 1.4 million deaths per year. Communicable diseases, also known as infectious diseases, are spread from person to person either directly or indirectly, such as through an insect bite or ingesting contaminated food or water. Some of the deadliest communicable diseases include HIV/AIDS, malaria, hepatitis C, cholera, and measles. Tuberculosis Tuberculosis is an infectious disease that affects the lungs. Tuberculosis disproportionately impacts the poorer, less developed countries of the world, such as in Africa and Southeast Asia. India reports the highest number of deaths from tuberculosis worldwide. HIV/AIDS Although deaths from HIV/AIDS have decreased over the last few decades, there were still around 630,000 AIDS-related deaths in 2023. Like many other communicable diseases, HIV/AIDS impacts developing regions more than the developed world. By far, the highest number of AIDS deaths come from Africa and Asia Pacific. Advancements in HIV treatment now allow those infected to live long and relatively normal lives, but access to treatment varies greatly.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This table presents a wide variety of historical data in the field of health, lifestyle and health care. Figures on births and mortality, causes of death and the occurrence of certain infectious diseases are available from 1900, other series from later dates. In addition to self-perceived health, the table contains figures on infectious diseases, hospitalisations per diagnosis, life expectancy, lifestyle factors such as smoking, alcohol consumption and obesity, and causes of death. The table also gives information on several aspects of health care, such as the number of practising professionals, the number of available hospital beds, nursing day averages and the expenditures on care. Many subjects are also covered in more detail by data in other tables, although sometimes with a shorter history. Data on notifiable infectious diseases and HIV/AIDS are not included in other tables. Data available from: 1900 Status of the figures: 2024: The available figures are definite. 2023: Most available figures are definite. Figures are provisional for: - occurrence of infectious diseases; - expenditures on health and welfare; - perinatal and infant mortality. 2022: Most available figures are definite. Figures are provisional for: - occurrence of infectious diseases; - diagnoses at hospital admissions; - number of hospital discharges and length of stay; - number of hospital beds; - health professions; - expenditures on health and welfare. 2021: Most available figures are definite. Figures are provisional for: - occurrence of infectious diseases; - expenditures on health and welfare. 2020 and earlier: Most available figures are definite. Due to 'dynamic' registrations, figures for notifiable infectious diseases, HIV, AIDS remain provisional. Changes as of 18 december 2024: - Due to a revision of the statistics Health and welfare expenditure 2021, figures for expenditure on health and welfare have been replaced from 2021 onwards. - Revised figures on the volume index of healthcare costs are not yet available, these figures have been deleted from 2021 onwards. The most recent available figures have been added for: - live born children, deaths; - occurrence of infectious diseases; - number of hospital beds; - expenditures on health and welfare; - perinatal and infant mortality; - healthy life expectancy; - causes of death. When will new figures be published? July 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BR: Mortality Rate: Under-5: Male: per 1000 Live Births data was reported at 16.000 Ratio in 2023. This records a decrease from the previous number of 16.200 Ratio for 2022. BR: Mortality Rate: Under-5: Male: per 1000 Live Births data is updated yearly, averaging 64.300 Ratio from Dec 1960 (Median) to 2023, with 64 observations. The data reached an all-time high of 182.300 Ratio in 1960 and a record low of 16.000 Ratio in 2023. BR: Mortality Rate: Under-5: Male: per 1000 Live Births data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Brazil – Table BR.World Bank.WDI: Social: Health Statistics. Under-five mortality rate, male is the probability per 1,000 that a newborn male baby will die before reaching age five, if subject to male age-specific mortality rates of the specified year.;Estimates developed by the UN Inter-agency Group for Child Mortality Estimation (UNICEF, WHO, World Bank, UN DESA Population Division) at www.childmortality.org.;Weighted average;Given that data on the incidence and prevalence of diseases are frequently unavailable, mortality rates are often used to identify vulnerable populations. Moreover, they are among the indicators most frequently used to compare socioeconomic development across countries. Under-five mortality rates are higher for boys than for girls in countries in which parental gender preferences are insignificant. Under-five mortality captures the effect of gender discrimination better than infant mortality does, as malnutrition and medical interventions have more significant impacts to this age group. Where female under-five mortality is higher, girls are likely to have less access to resources than boys. Aggregate data for LIC, UMC, LMC, HIC are computed based on the groupings for the World Bank fiscal year in which the data was released by the UN Inter-agency Group for Child Mortality Estimation. This is a sex-disaggregated indicator for Sustainable Development Goal 3.2.1 [https://unstats.un.org/sdgs/metadata/].
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This table contains 26010 series, with data for years 1996 - 1996 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (170 items: Canada; Newfoundland and Labrador; Health and Community Services St. John's Region; Newfoundland and Labrador; Health and Community Services Eastern Region; Newfoundland and Labrador ...), Sex (3 items: Both sexes; Females; Males ...), Selected causes of death (ICD-9) (17 items: Total; all causes of death; Colorectal cancer; Lung cancer; All malignant neoplasms (cancers) ...), Characteristics (3 items: Mortality; Low 95% confidence interval; mortality; High 95% confidence interval; mortality ...).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract The aim of this study is to analyze the trend of the main causes of death of women of reproductive age (WRA) in Brazil by age group from 2006 to 2019. Data used are from the Mortality Information System (SIM) and the Brazilian Institute of Geography and Statistics (IBGE) of Brazil. The main causes of death of WRA (10 to 49 years) were divided by chapters as per the International Statistical Classification of Diseases and Related Health Problems (ICD-10). Subsequently, a temporal trend analysis was performed using polynomial regression models for the main causes of death in WRA. In Brazil, the highest mortality rates by cause by 100,000 WRA occurred due to: neoplasms (25.34), diseases of the circulatory system (20.15), external causes (18.69), infectious and parasitic diseases (8.79) and respiratory system diseases (6.37). For the analyzed period, after standardization, the mortality rate due to diseases of the circulatory and respiratory systems, and infectious and parasitic conditions showed a decreasing trend, with a significant drop of 26.6% for diseases of the circulatory system; while external causes and neoplasms showed an increasing trend from 2006 to 2012 and decreasing from 2013 onwards. Identifying the main causes of death of WRA in each age group is required to guide the planning of actions to optimize resources and obtain better results in women’s health.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundIn a given population the age pattern of mortality is an important determinant of total number of deaths, age structure, and through effects on age structure, the number of births and thereby growth. Good mortality models exist for most populations except those experiencing generalized HIV epidemics and some developing country populations. The large number of deaths concentrated at very young and adult ages in HIV-affected populations produce a unique ‘humped’ age pattern of mortality that is not reproduced by any existing mortality models. Both burden of disease reporting and population projection methods require age-specific mortality rates to estimate numbers of deaths and produce plausible age structures. For countries with generalized HIV epidemics these estimates should take into account the future trajectory of HIV prevalence and its effects on age-specific mortality. In this paper we present a parsimonious model of age-specific mortality for countries with generalized HIV/AIDS epidemics.Methods and FindingsThe model represents a vector of age-specific mortality rates as the weighted sum of three independent age-varying components. We derive the age-varying components from a Singular Value Decomposition of the matrix of age-specific mortality rate schedules. The weights are modeled as a function of HIV prevalence and one of three possible sets of inputs: life expectancy at birth, a measure of child mortality, or child mortality with a measure of adult mortality. We calibrate the model with 320 five-year life tables for each sex from the World Population Prospects 2010 revision that come from the 40 countries of the world that have and are experiencing a generalized HIV epidemic. Cross validation shows that the model is able to outperform several existing model life table systems.ConclusionsWe present a flexible, parsimonious model of age-specific mortality for countries with generalized HIV epidemics. Combined with the outputs of existing epidemiological and demographic models, this model makes it possible to project future age-specific mortality profiles and number of deaths for countries with generalized HIV epidemics.
This cumulative dataset contains statistics on mortality and causes of death in South Africa covering the period 1997-2017. The mortality and causes of death dataset is part of a regular series published by Stats SA, based on data collected through the civil registration system. This dataset is the most recent cumulative round in the series which began with the separately available dataset Recorded Deaths 1996.
The main objective of this dataset is to outline emerging trends and differentials in mortality by selected socio-demographic and geographic characteristics for deaths that occurred in the registered year and over time. Reliable mortality statistics, are the cornerstone of national health information systems, and are necessary for population health assessment, health policy and service planning; and programme evaluation. They are essential for studying the occurrence and distribution of health-related events, their determinants and management of related health problems. These data are particularly critical for monitoring the Sustainable Development Goals (SDGs) and Agenda 2063 which share the same goal for a high standard of living and quality of life, sound health and well-being for all and at all ages. Mortality statistics are also required for assessing the impact of non-communicable diseases (NCD's), emerging infectious diseases, injuries and natural disasters.
National coverage
Individuals
This dataset is based on information on mortality and causes of death from the South African civil registration system. It covers all death notification forms from the Department of Home Affairs for deaths that occurred in 1997-2017, that reached Stats SA during the 2018/2019 processing phase.
Administrative records data [adm]
Other [oth]
The registration of deaths is captured using two instruments: form BI-1663 and form DHA-1663 (Notification/Register of death/stillbirth).
This cumulative dataset is part of a regular series published by Stats SA and includes all previous rounds in the series (excluding Recorded Deaths 1996). Stats SA only includes one variable to classify the occupation group of the deceased (OccupationGrp) in the current round (1997-2017). Prior to 2016, Stats SA included both occupation group (OccupationGrp) and industry classification (Industry) in all previous rounds. Therefore, DataFirst has made the 1997-2015 cumulative round available as a separately downloadable dataset which includes both occupation group and industry classification of the deceased spanning the years 1997-2015.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Excess Death excl COVID: Predicted: Total Estimate: New Hampshire data was reported at 1,205.000 Number in 16 Sep 2023. This stayed constant from the previous number of 1,205.000 Number for 09 Sep 2023. Excess Death excl COVID: Predicted: Total Estimate: New Hampshire data is updated weekly, averaging 1,205.000 Number from Jan 2017 (Median) to 16 Sep 2023, with 350 observations. The data reached an all-time high of 1,205.000 Number in 16 Sep 2023 and a record low of 1,205.000 Number in 16 Sep 2023. Excess Death excl COVID: Predicted: Total Estimate: New Hampshire data remains active status in CEIC and is reported by Centers for Disease Control and Prevention. The data is categorized under Global Database’s United States – Table US.G012: Number of Excess Deaths: by States: All Causes excluding COVID-19: Predicted (Discontinued).
This table contains 33048 series, with data for years 2000/2002 - 2010/2012 (not all combinations necessarily have data for all years), and was last released on 2016-03-16. This table contains data described by the following dimensions (Not all combinations are available): Geography (36 items: Total, census metropolitan areas; St. John's, Newfoundland and Labrador; Halifax, Nova Scotia;Moncton, New Brunswick; ...), Sex (3 items: Both sexes; Males; Females), Indicators (2 items: Mortality; Potential years of life lost), Selected causes of death (ICD-10) (17 items: Total, all causes of death; All malignant neoplasms (cancers); Colorectal cancer; Lung cancer; ...), Characteristics (9 items: Number; Low 95% confidence interval, number; High 95% confidence interval, number; Rate; ...).
Since 2008, HIV/AIDS remains the most fatal infectious disease in China. In 2021, almost 14 out of one million people in China died from AIDS. Tuberculosis stood at the second place, while rabies ranked the fourth.
Who are the high risk groups?
The HIV/AIDS epidemic has become a growing concern for the major population in China. A majority of new infections were the result from sexual transmission. Although the prevalence rate has been relatively low, the trend of new diagnoses in people aged from 15 to 24 years has been alarming, with gay men disproportionately represented.
Children under the age of 14 are the most vulnerable group to contract common infectious diseases like influenza and HFMD. The Chinese government has thus introduced healthcare initiatives dedicated to vaccinating children up to the age of 14 under the Extended Program for Immunization (EPI). The efforts have been fruitful with significant improvement in the healthcare status of children under the age of five in the country.
How is disease controlled in China?
The world’s most populous nation has made considerable efforts in tracking and preventing the spread of infectious diseases. Alongside geographical and demographic challenges, the mortality rate of infectious diseases has seen a slight increase over the recent years. Seasonal diseases, especially Influenza and mumps, are easily widespread and have pressed the demand for efficient disease prevention and control. In response, the Chinese government has ramped up the supply of influenza vaccines and HPV vaccines.