The Denver Intensity of Spontaneous Facial Action (DISFA) dataset consists of 27 videos of 4844 frames each, with 130,788 images in total. Action unit annotations are on different levels of intensity, which are ignored in the following experiments and action units are either set or unset. DISFA was selected from a wider range of databases popular in the field of facial expression recognition because of the high number of smiles, i.e. action unit 12. In detail, 30,792 have this action unit set, 82,176 images have some action unit(s) set and 48,612 images have no action unit(s) set at all.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Neuropsychological research aims to unravel how diverse individuals’ brains exhibit similar functionality when exposed to the same stimuli. The evocation of consistent responses when different subjects watch the same emotionally evocative stimulus has been observed through modalities like fMRI, EEG, physiological signals and facial expressions. We refer to the quantification of these shared consistent signals across subjects at each time instant across the temporal dimension as Consistent Response Measurement (CRM). CRM is widely explored through fMRI, occasionally with EEG, physiological signals and facial expressions using metrics like Inter-Subject Correlation (ISC). However, fMRI tools are expensive and constrained, while EEG and physiological signals are prone to facial artifacts and environmental conditions (such as temperature, humidity, and health condition of subjects). In this research, facial expression videos are used as a cost-effective and flexible alternative for CRM, minimally affected by external conditions. By employing computer vision-based automated facial keypoint tracking, a new metric similar to ISC, called the Average t-statistic, is introduced. Unlike existing facial expression-based methodologies that measure CRM of secondary indicators like inferred emotions, keypoint, and ICA-based features, the Average t-statistic is closely associated with the direct measurement of consistent facial muscle movement using the Facial Action Coding System (FACS). This is evidenced in DISFA dataset where the time-series of Average t-statistic has a high correlation (R2 = 0.78) with a metric called AU consistency, which directly measures facial muscle movement through FACS coding of video frames. The simplicity of recording facial expressions with the automated Average t-statistic expands the applications of CRM such as measuring engagement in online learning, customer interactions, etc., and diagnosing outliers in healthcare conditions like stroke, autism, depression, etc. To promote further research, we have made the code repository publicly available.
FEAFA+ is a dataset for Facial expression analysis and 3D Facial animation. It includes 150 video sequences from FEAFA and DISFA, with a total of 230,184 frames being manually annotated on floating-point intensity value of 24 redefined AUs using the Expression Quantitative Tool.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
KL-divergence (row-wise averaged) between κAU distribution table and each of the five keypoint-based metrics ().
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Distribution of the four consistency classes present in different emotion segments.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Distribution of the CRM metrics in the four consistency classes per emotion. Each entry contains values in the order ().
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Start and end frame number of different target emotion segments.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Neuropsychological research aims to unravel how diverse individuals’ brains exhibit similar functionality when exposed to the same stimuli. The evocation of consistent responses when different subjects watch the same emotionally evocative stimulus has been observed through modalities like fMRI, EEG, physiological signals and facial expressions. We refer to the quantification of these shared consistent signals across subjects at each time instant across the temporal dimension as Consistent Response Measurement (CRM). CRM is widely explored through fMRI, occasionally with EEG, physiological signals and facial expressions using metrics like Inter-Subject Correlation (ISC). However, fMRI tools are expensive and constrained, while EEG and physiological signals are prone to facial artifacts and environmental conditions (such as temperature, humidity, and health condition of subjects). In this research, facial expression videos are used as a cost-effective and flexible alternative for CRM, minimally affected by external conditions. By employing computer vision-based automated facial keypoint tracking, a new metric similar to ISC, called the Average t-statistic, is introduced. Unlike existing facial expression-based methodologies that measure CRM of secondary indicators like inferred emotions, keypoint, and ICA-based features, the Average t-statistic is closely associated with the direct measurement of consistent facial muscle movement using the Facial Action Coding System (FACS). This is evidenced in DISFA dataset where the time-series of Average t-statistic has a high correlation (R2 = 0.78) with a metric called AU consistency, which directly measures facial muscle movement through FACS coding of video frames. The simplicity of recording facial expressions with the automated Average t-statistic expands the applications of CRM such as measuring engagement in online learning, customer interactions, etc., and diagnosing outliers in healthcare conditions like stroke, autism, depression, etc. To promote further research, we have made the code repository publicly available.
The BP4D-Spontaneous dataset is a 3D video database of spontaneous facial expressions in a diverse group of young adults. Well-validated emotion inductions were used to elicit expressions of emotion and paralinguistic communication. Frame-level ground-truth for facial actions was obtained using the Facial Action Coding System. Facial features were tracked in both 2D and 3D domains using both person-specific and generic approaches. The database includes forty-one participants (23 women, 18 men). They were 18 – 29 years of age; 11 were Asian, 6 were African-American, 4 were Hispanic, and 20 were Euro-American. An emotion elicitation protocol was designed to elicit emotions of participants effectively. Eight tasks were covered with an interview process and a series of activities to elicit eight emotions. The database is structured by participants. Each participant is associated with 8 tasks. For each task, there are both 3D and 2D videos. As well, the Metadata include manually annotated action units (FACS AU), automatically tracked head pose, and 2D/3D facial landmarks. The database is in the size of about 2.6TB (without compression).
Not seeing a result you expected?
Learn how you can add new datasets to our index.
The Denver Intensity of Spontaneous Facial Action (DISFA) dataset consists of 27 videos of 4844 frames each, with 130,788 images in total. Action unit annotations are on different levels of intensity, which are ignored in the following experiments and action units are either set or unset. DISFA was selected from a wider range of databases popular in the field of facial expression recognition because of the high number of smiles, i.e. action unit 12. In detail, 30,792 have this action unit set, 82,176 images have some action unit(s) set and 48,612 images have no action unit(s) set at all.