53 datasets found
  1. a

    Create Points from a Table

    • hub.arcgis.com
    Updated Jan 17, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Delaware (2019). Create Points from a Table [Dataset]. https://hub.arcgis.com/documents/delaware::create-points-from-a-table/about
    Explore at:
    Dataset updated
    Jan 17, 2019
    Dataset authored and provided by
    State of Delaware
    Description

    If you have geographic information stored as a table, ArcGIS Pro can display it on a map and convert it to spatial data. In this tutorial, you'll create spatial data from a table containing the latitude-longitude coordinates of huts in a New Zealand national park. Huts in New Zealand are equivalent to cabins in the United States—they may or may not have sleeping bunks, kitchen facilities, electricity, and running water. The table of hut locations is stored as a comma-separated values (CSV) file. CSV files are a common, nonproprietary file type for tabular data.Estimated time: 45 minutesSoftware requirements: ArcGIS Pro

  2. d

    Lunar Grid Reference System Rasters and Shapefiles

    • catalog.data.gov
    • data.usgs.gov
    • +2more
    Updated Nov 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Lunar Grid Reference System Rasters and Shapefiles [Dataset]. https://catalog.data.gov/dataset/lunar-grid-reference-system-rasters-and-shapefiles
    Explore at:
    Dataset updated
    Nov 21, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    USGS is assessing the feasibility of map projections and grid systems for lunar surface operations. We propose developing a new Lunar Transverse Mercator (LTM), the Lunar Polar Stereographic (LPS), and the Lunar Grid Reference Systems (LGRS). We have also designed additional grids designed to NASA requirements for astronaut navigation, referred to as LGRS in Artemis Condensed Coordinates (ACC), but this is not released here. LTM, LPS, and LGRS are similar in design and use to the Universal Transverse Mercator (UTM), Universal Polar Stereographic (LPS), and Military Grid Reference System (MGRS), but adhere to NASA requirements. LGRS ACC format is similar in design and structure to historic Army Mapping Service Apollo orthotopophoto charts for navigation. The Lunar Transverse Mercator (LTM) projection system is a globalized set of lunar map projections that divides the Moon into zones to provide a uniform coordinate system for accurate spatial representation. It uses a transverse Mercator projection, which maps the Moon into 45 transverse Mercator strips, each 8°, longitude, wide. These transverse Mercator strips are subdivided at the lunar equator for a total of 90 zones. Forty-five in the northern hemisphere and forty-five in the south. LTM specifies a topocentric, rectangular, coordinate system (easting and northing coordinates) for spatial referencing. This projection is commonly used in GIS and surveying for its ability to represent large areas with high positional accuracy while maintaining consistent scale. The Lunar Polar Stereographic (LPS) projection system contains projection specifications for the Moon’s polar regions. It uses a polar stereographic projection, which maps the polar regions onto an azimuthal plane. The LPS system contains 2 zones, each zone is located at the northern and southern poles and is referred to as the LPS northern or LPS southern zone. LPS, like is equatorial counterpart LTM, specifies a topocentric, rectangular, coordinate system (easting and northing coordinates) for spatial referencing. This projection is commonly used in GIS and surveying for its ability to represent large polar areas with high positional accuracy, while maintaining consistent scale across the map region. LGRS is a globalized grid system for lunar navigation supported by the LTM and LPS projections. LGRS provides an alphanumeric grid coordinate structure for both the LTM and LPS systems. This labeling structure is utilized in a similar manner to MGRS. LGRS defines a global area grid based on latitude and longitude and a 25×25 km grid based on LTM and LPS coordinate values. Two implementations of LGRS are used as polar areas require a LPS projection and equatorial areas a transverse Mercator. We describe the difference in the techniques and methods report associated with this data release. Request McClernan et. al. (in-press) for more information. ACC is a method of simplifying LGRS coordinates and is similar in use to the Army Mapping Service Apollo orthotopophoto charts for navigation. These data will be released at a later date. Two versions of the shape files are provided in this data release, PCRS and Display only. See LTM_LPS_LGRS_Shapefiles.zip file. PCRS are limited to a single zone and are projected in either LTM or LPS with topocentric coordinates formatted in Eastings and Northings. Display only shapefiles are formatted in lunar planetocentric latitude and longitude, a Mercator or Equirectangular projection is best for these grids. A description of each grid is provided below: Equatorial (Display Only) Grids: Lunar Transverse Mercator (LTM) Grids: LTM zone borders for each LTM zone Merged LTM zone borders Lunar Polar Stereographic (LPS) Grids: North LPS zone border South LPS zone border Lunar Grid Reference System (LGRS) Grids: Global Areas for North and South LPS zones Merged Global Areas (8°×8° and 8°×10° extended area) for all LTM zones Merged 25km grid for all LTM zones PCRS Shapefiles:` Lunar Transverse Mercator (LTM) Grids: LTM zone borders for each LTM zone Lunar Polar Stereographic (LPS) Grids: North LPS zone border South LPS zone border Lunar Grid Reference System (LGRS) Grids: Global Areas for North and South LPS zones 25km Gird for North and South LPS zones Global Areas (8°×8° and 8°×10° extended area) for each LTM zone 25km grid for each LTM zone The rasters in this data release detail the linear distortions associated with the LTM and LPS system projections. For these products, we utilize the same definitions of distortion as the U.S. State Plane Coordinate System. Scale Factor, k - The scale factor is a ratio that communicates the difference in distances when measured on a map and the distance reported on the reference surface. Symbolically this is the ratio between the maps grid distance and distance on the lunar reference sphere. This value can be precisely calculated and is provided in their defining publication. See Snyder (1987) for derivation of the LPS scale factor. This scale factor is unitless and typically increases from the central scale factor k_0, a projection-defining parameter. For each LPS projection. Request McClernan et. al., (in-press) for more information. Scale Error, (k-1) - Scale-Error, is simply the scale factor differenced from 1. Is a unitless positive or negative value from 0 that is used to express the scale factor’s impact on position values on a map. Distance on the reference surface are expended when (k-1) is positive and contracted when (k-1) is negative. Height Factor, h_F - The Height Factor is used to correct for the difference in distance caused between the lunar surface curvature expressed at different elevations. It is expressed as a ratio between the radius of the lunar reference sphere and elevations measured from the center of the reference sphere. For this work, we utilized a radial distance of 1,737,400 m as recommended by the IAU working group of Rotational Elements (Archinal et. al., 2008). For this calculation, height factor values were derived from a LOLA DEM 118 m v1, Digital Elevation Model (LOLA Science Team, 2021). Combined Factor, C_F – The combined factor is utilized to “Scale-To-Ground” and is used to adjust the distance expressed on the map surface and convert to the position on the actual ground surface. This value is the product of the map scale factor and the height factor, ensuring the positioning measurements can be correctly placed on a map and on the ground. The combined factor is similar to linear distortion in that it is evaluated at the ground, but, as discussed in the next section, differs numerically. Often C_F is scrutinized for map projection optimization. Linear distortion, δ - In keeping with the design definitions of SPCS2022 (Dennis 2023), we refer to scale error when discussing the lunar reference sphere and linear distortion, δ, when discussing the topographic surface. Linear distortion is calculated using C_F simply by subtracting 1. Distances are expended on the topographic surface when δ is positive and compressed when δ is negative. The relevant files associated with the expressed LTM distortion are as follows. The scale factor for the 90 LTM projections: LUNAR_LTM_GLOBAL_PLOT_HEMISPHERES_distortion_K_grid_scale_factor.tif Height Factor for the LTM portion of the Moon: LUNAR_LTM_GLOBAL_PLOT_HEMISPHERES_distortion_EF_elevation_factor.tif Combined Factor in LTM portion of the Moon LUNAR_LTM_GLOBAL_PLOT_HEMISPHERES_distortion_CF_combined_factor.tif The relevant files associated with the expressed LPS distortion are as follows. Lunar North Pole The scale factor for the northern LPS zone: LUNAR_LGRS_NP_PLOT_LPS_K_grid_scale_factor.tif Height Factor for the north pole of the Moon: LUNAR_LGRS_NP_PLOT_LPS_EF_elevation_factor.tif Combined Factor for northern LPS zone: LUNAR_LGRS_NP_PLOT_LPS_CF_combined_factor.tif Lunar South Pole Scale factor for the northern LPS zone: LUNAR_LGRS_SP_PLOT_LPS_K_grid_scale_factor.tif Height Factor for the south pole of the Moon: LUNAR_LGRS_SP_PLOT_LPS_EF_elevation_factor.tif Combined Factor for northern LPS zone: LUNAR_LGRS_SP_PLOT_LPS_CF_combined_factor.tif For GIS utilization of grid shapefiles projected in Lunar Latitude and Longitude, referred to as “Display Only”, please utilize a registered lunar geographic coordinate system (GCS) such as IAU_2015:30100 or ESRI:104903. LTM, LPS, and LGRS PCRS shapefiles utilize either a custom transverse Mercator or polar Stereographic projection. For PCRS grids the LTM and LPS projections are recommended for all LTM, LPS, and LGRS grid sizes. See McClernan et. al. (in-press) for such projections. Raster data was calculated using planetocentric latitude and longitude. A LTM and LPS projection or a registered lunar GCS may be utilized to display this data. Note: All data, shapefiles and rasters, require a specific projection and datum. The projection is recommended as LTM and LPS or, when needed, IAU_2015:30100 or ESRI:104903. The datum utilized must be the Jet Propulsion Laboratory (JPL) Development Ephemeris (DE) 421 in the Mean Earth (ME) Principal Axis Orientation as recommended by the International Astronomy Union (IAU) (Archinal et. al., 2008).

  3. v

    World Latitude and Longitude Grids, 2010

    • gis.lib.virginia.edu
    Updated May 15, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Environmental Systems Research Institute (Redlands, Calif.) (2018). World Latitude and Longitude Grids, 2010 [Dataset]. https://gis.lib.virginia.edu/catalog/stanford-mm141zm9216
    Explore at:
    Dataset updated
    May 15, 2018
    Dataset authored and provided by
    Environmental Systems Research Institute (Redlands, Calif.)
    Time period covered
    2010
    Area covered
    Earth (Planet), World
    Description

    This line shapefile represents a 1- by 1-degree latitude-longitude grid covering the world with attributes that allow it to display grids at intervals of 1, 5, 10, 15, 20, and 30 degrees. To display a grid with a 1-degree interval, simply display all of the lines. To display a coarser grid (e.g., a 15-degree interval), in the Layer Properties dialog box, add the DEGREE15 attribute value equal to Y. This layer is part of the 2014 ESRI Data and Maps collection for ArcGIS 10.2.World Latitude and Longitude Grids provides latitude and longitude lines for use as an overlay for world-level maps.

  4. a

    10-degree grid

    • hub.arcgis.com
    • oceans-esrioceans.hub.arcgis.com
    • +1more
    Updated Jan 14, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA GeoPlatform (2014). 10-degree grid [Dataset]. https://hub.arcgis.com/datasets/noaa::10-degree-grid-2
    Explore at:
    Dataset updated
    Jan 14, 2014
    Dataset authored and provided by
    NOAA GeoPlatform
    Area covered
    Description

    This is a map service displaying a graticule (latitude/longitude lines) in the Arctic. It can be used as an overlay alongside other layers for general reference.Map projection: WGS84 Arctic Polar Stereographic; standard parallel of 71 degrees; EPSG:3995; outer edge at 50 degrees north.Note: this will not display in the correct projection if you click on the thumbnail or choose "Add to Map". For a combined ArcGIS Online map displaying this service in Arctic projection along with other useful reference layers, please see: https://noaa.maps.arcgis.com/home/item.html?id=94f14eb0995e4bfc9d2439fc868345da

  5. d

    Residential Schools Locations Dataset (Geodatabase)

    • search.dataone.org
    • borealisdata.ca
    Updated Dec 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Orlandini, Rosa (2023). Residential Schools Locations Dataset (Geodatabase) [Dataset]. http://doi.org/10.5683/SP2/JFQ1SZ
    Explore at:
    Dataset updated
    Dec 28, 2023
    Dataset provided by
    Borealis
    Authors
    Orlandini, Rosa
    Time period covered
    Jan 1, 1863 - Jun 30, 1998
    Description

    The Residential Schools Locations Dataset in Geodatabase format (IRS_Locations.gbd) contains a feature layer "IRS_Locations" that contains the locations (latitude and longitude) of Residential Schools and student hostels operated by the federal government in Canada. All the residential schools and hostels that are listed in the Residential Schools Settlement Agreement are included in this dataset, as well as several Industrial schools and residential schools that were not part of the IRRSA. This version of the dataset doesn’t include the five schools under the Newfoundland and Labrador Residential Schools Settlement Agreement. The original school location data was created by the Truth and Reconciliation Commission, and was provided to the researcher (Rosa Orlandini) by the National Centre for Truth and Reconciliation in April 2017. The dataset was created by Rosa Orlandini, and builds upon and enhances the previous work of the Truth and Reconcilation Commission, Morgan Hite (creator of the Atlas of Indian Residential Schools in Canada that was produced for the Tk'emlups First Nation and Justice for Day Scholar's Initiative, and Stephanie Pyne (project lead for the Residential Schools Interactive Map). Each individual school location in this dataset is attributed either to RSIM, Morgan Hite, NCTR or Rosa Orlandini. Many schools/hostels had several locations throughout the history of the institution. If the school/hostel moved from its’ original location to another property, then the school is considered to have two unique locations in this dataset,the original location and the new location. For example, Lejac Indian Residential School had two locations while it was operating, Stuart Lake and Fraser Lake. If a new school building was constructed on the same property as the original school building, it isn't considered to be a new location, as is the case of Girouard Indian Residential School.When the precise location is known, the coordinates of the main building are provided, and when the precise location of the building isn’t known, an approximate location is provided. For each residential school institution location, the following information is provided: official names, alternative name, dates of operation, religious affiliation, latitude and longitude coordinates, community location, Indigenous community name, contributor (of the location coordinates), school/institution photo (when available), location point precision, type of school (hostel or residential school) and list of references used to determine the location of the main buildings or sites. Access Instructions: there are 47 files in this data package. Please download the entire data package by selecting all the 47 files and click on download. Two files will be downloaded, IRS_Locations.gbd.zip and IRS_LocFields.csv. Uncompress the IRS_Locations.gbd.zip. Use QGIS, ArcGIS Pro, and ArcMap to open the feature layer IRS_Locations that is contained within the IRS_Locations.gbd data package. The feature layer is in WGS 1984 coordinate system. There is also detailed file level metadata included in this feature layer file. The IRS_locations.csv provides the full description of the fields and codes used in this dataset.

  6. Global Address Database (24M Streets) | Postal, Lat/Long, Localities &...

    • datarade.ai
    .csv
    Updated May 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPostcodes (2024). Global Address Database (24M Streets) | Postal, Lat/Long, Localities & Regions | Weekly Updates [Dataset]. https://datarade.ai/data-products/geopostcodes-address-data-global-coverage-24-m-streets-geopostcodes
    Explore at:
    .csvAvailable download formats
    Dataset updated
    May 13, 2024
    Dataset authored and provided by
    GeoPostcodes
    Area covered
    Guam, Holy See, Sint Maarten (Dutch part), Gibraltar, Malaysia, Åland Islands, Kazakhstan, Ireland, Tanzania, Guernsey
    Description

    A comprehensive self-hosted geospatial database of street names, coordinates, and address data ranges for Enterprise use. The address data are georeferenced with industry-standard WGS84 coordinates (geocoding).

    All geospatial data are provided in the official local languages. Names and other data in non-Roman languages are also made available in English through translations and transliterations.

    Use cases for the Global Address Database (Geospatial data)

    • Address capture and validation

    • Parcel delivery

    • Master Data Management

    • Logistics and Shipping

    • Sales and Marketing

    Additional features

    • Fully and accurately geocoded

    • Multi-language support

    • Address ranges for streets covered by several zip codes

    • Comprehensive city definitions across countries

    • Administrative areas with a level range of 0-4

    • International Address Formats

    For additional insights, you can combine the map data with:

    • UNLOCODE and IATA codes (geocoded)

    • Time zones and Daylight Saving Time (DST)

    • Population data: Past and future trends

    Data export methodology

    Our location data packages are offered in CSV format. All geospatial data are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.

    Why companies choose our location databases

    • Enterprise-grade service

    • Reduce integration time and cost by 30%

    • Frequent, consistent updates for the highest quality

    Note: Custom geospatial data packages are available. Please submit a request via the above contact button for more details.

  7. World Latitude and Longitude Grids

    • geo2.scholarsportal.info
    • geo1.scholarsportal.info
    Updated Jul 9, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ESRI (2013). World Latitude and Longitude Grids [Dataset]. http://geo2.scholarsportal.info/proxy.html?http:_giseditor.scholarsportal.info/details/view.html?uri=/NAP/ESRI_v9_3_Data_World_LatLongGrids.xml
    Explore at:
    Dataset updated
    Jul 9, 2013
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    ESRI
    Time period covered
    Sep 24, 2002 - Apr 1, 2008
    Area covered
    World,
    Description

    World Latitude and Longitude Grids represents a 5 by 5 degree latitude/longitude grid covering the world with attributes that allow you to display grids at intervals of 5, 10, 15, 20, and 30 degrees. To display a grid with a 5-degree interval, simply display all of the lines. To display a coarser grid, for example, a 15-degree interval, define the theme properties as lines with the Degree15 attribute equal to Y.

    This layer has polylines that extend to 90 degrees Latitude North but are only shown to a maximum of 85 degrees Latitude North. Please download entire dataset if the whole dataset is required.

  8. Historical Hurricane Tracks Tool

    • disasters-usnsdi.opendata.arcgis.com
    • data.amerigeoss.org
    • +2more
    Updated Nov 27, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA GeoPlatform (2013). Historical Hurricane Tracks Tool [Dataset]. https://disasters-usnsdi.opendata.arcgis.com/datasets/noaa::historical-hurricane-tracks-tool
    Explore at:
    Dataset updated
    Nov 27, 2013
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Authors
    NOAA GeoPlatform
    Description

    This interactive mapping application easily searches and displays global tropical cyclone data. Users are able to query storms by the storm name, geographic region, or latitude/longitude coordinates. Custom queries can track storms of interest and allow for data extraction and download.Searches and displays tropical cyclone track data by ZIP Code, latitude and longitude coordinates, city, state, or geographic region and then displays the selected tracks on a mapDisplays coastal population data and hurricane strike data for coastal counties from Maine to TexasProvides access to storm reports written by hurricane specialists at the National Hurricane Center. Reports are available for the Atlantic and East-Central Pacific BasinsBuilds custom Uniform Resource Locator (URL) strings that users can follow from personal websites to the on-line mapping application with specific storm tracksThese data were derived from National Hurricane Center HURDAT data (http://www.nhc.noaa.gov/pastall.shtml) and International Best Track Archive for Climate Stewardship (IBTrACS) data (http://www.ncdc.noaa.gov/oa/ibtracs/). Metadata for each dataset can be found on their respective websites.

  9. d

    Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot...

    • search.dataone.org
    • knb.ecoinformatics.org
    • +1more
    Updated Jul 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers (2021). Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot Ridge, Colorado, USA [Dataset]. http://doi.org/10.15485/1804896
    Explore at:
    Dataset updated
    Jul 7, 2021
    Dataset provided by
    ESS-DIVE
    Authors
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers
    Time period covered
    Jan 1, 2008 - Jan 1, 2012
    Area covered
    Description

    This is a collection of all GPS- and computer-generated geospatial data specific to the Alpine Treeline Warming Experiment (ATWE), located on Niwot Ridge, Colorado, USA. The experiment ran between 2008 and 2016, and consisted of three sites spread across an elevation gradient. Geospatial data for all three experimental sites and cone/seed collection locations are included in this package. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Geospatial files include cone collection, experimental site, seed trap, and other GPS location/terrain data. File types include ESRI shapefiles, ESRI grid files or Arc/Info binary grids, TIFFs (.tif), and keyhole markup language (.kml) files. Trimble-imported data include plain text files (.txt), Trimble COR (CorelDRAW) files, and Trimble SSF (Standard Storage Format) files. Microsoft Excel (.xlsx) and comma-separated values (.csv) files corresponding to the attribute tables of many files within this package are also included. A complete list of files can be found in this document in the “Data File Organization” section in the included Data User's Guide. Maps are also included in this data package for reference and use. These maps are separated into two categories, 2021 maps and legacy maps, which were made in 2010. Each 2021 map has one copy in portable network graphics (.png) format, and the other in .pdf format. All legacy maps are in .pdf format. .png image files can be opened with any compatible programs, such as Preview (Mac OS) and Photos (Windows). All GIS files were imported into geopackages (.gpkg) using QGIS, and double-checked for compatibility and data/attribute integrity using ESRI ArcGIS Pro. Note that files packaged within geopackages will open in ArcGIS Pro with “main.” preceding each file name, and an extra column named “geom” defining geometry type in the attribute table. The contents of each geospatial file remain intact, unless otherwise stated in “niwot_geospatial_data_list_07012021.pdf/.xlsx”. This list of files can be found as an .xlsx and a .pdf in this archive. As an open-source file format, files within gpkgs (TIFF, shapefiles, ESRI grid or “Arc/Info Binary”) can be read using both QGIS and ArcGIS Pro, and any other geospatial softwares. Text and .csv files can be read using TextEdit/Notepad/any simple text-editing software; .csv’s can also be opened using Microsoft Excel and R. .kml files can be opened using Google Maps or Google Earth, and Trimble files are most compatible with Trimble’s GPS Pathfinder Office software. .xlsx files can be opened using Microsoft Excel. PDFs can be opened using Adobe Acrobat Reader, and any other compatible programs. A selection of original shapefiles within this archive were generated using ArcMap with associated FGDC-standardized metadata (xml file format). We are including these original files because they contain metadata only accessible using ESRI programs at this time, and so that the relationship between shapefiles and xml files is maintained. Individual xml files can be opened (without a GIS-specific program) using TextEdit or Notepad. Since ESRI’s compatibility with FGDC metadata has changed since the generation of these files, many shapefiles will require upgrading to be compatible with ESRI’s latest versions of geospatial software. These details are also noted in the “niwot_geospatial_data_list_07012021” file.

  10. l

    GPEC447 Beyond the Siren: Mapping Risk and Response in LA

    • visionzero.geohub.lacity.org
    Updated Jun 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of California San Diego (2025). GPEC447 Beyond the Siren: Mapping Risk and Response in LA [Dataset]. https://visionzero.geohub.lacity.org/content/5d38a57defc545389e42508173b176e4
    Explore at:
    Dataset updated
    Jun 10, 2025
    Dataset authored and provided by
    University of California San Diego
    Area covered
    Description

    This project aims to identify areas in Los Angeles that are at high risk of crime in the future and to propose optimal locations for new police stations in those areas. By applying machine learning to post-COVID-19 crime data and various socioeconomic indicators, we predict crime risk at the ZIP Code level. Using a location-allocation model, we then determine suitable locations for new police stations to improve coverage of high-risk zones. The results of our analysis can support the efficient allocation of public safety resources in response to growing demand and budget constraints, helping city officials optimize law enforcement services. The content of the archive- Jupyter Notebook- Data (GeoJSON, CSV)- Summary report PDF FileThe platform on which the notebook should be run.This notebook is designed to run on Datahub.Project materials - Project Material we created on AGOL 1 Los Angeles Crime Hotspothttps://ucsdonline.maps.arcgis.com/home/item.html?id=4bddbae65c164f2d9b0285e09cb2820e 2 Choropleth Map of Predicted Crime Levels by ZIP Codehttps://ucsdonline.maps.arcgis.com/home/item.html?id=e47abb448f0a411ab77c6ac754ba0c34 3. Optimizing LA Police Station: A Location Allocation Analysishttps://ucsdonline.maps.arcgis.com/home/item.html?id=2409da85c3fe410e9578a0eaaed8471e - ArcGIS StoryMaphttps://ucsdonline.maps.arcgis.com/home/item.html?id=cfbd4fc27a3b400296e4e31555951d27 Software dependencies - pandas: Used for loading, formatting, and performing matrix operations on tabular data.- geopandas: Used for loading and processing spatial data, including spatial joins and coordinate transformations.- shapely.geometry.Point: Used to create spatial point objects from latitude and longitude coordinates.- arcgis.gis, arcgis.features, arcgis.geometry, arcgis.geoenrichment: Used to retrieve and manipulate geographic data from ArcGIS Online and to extract population statistics using the GeoEnrichment module.- numpy: Used for feature matrix formatting and numerical computations prior to model training.- IPython.display (display, Markdown, Image): Used to format and display Markdown text, data tables, and images within Jupyter Notebooks.- scikit-learn: Used for building and evaluating machine learning models. Specifically, it was used for data preprocessing (StandardScaler), splitting data (train_test_split), model selection and tuning (GridSearchCV, cross_val_score), training various regressors (e.g.,LinearRegression, RandomForestRegressor, KNeighborsRegressor), and assessing performance using metrics such as R², RMSE, and MAE.Other Components we used - ArcGIS Online: Used to create and host interactive web maps for spatial visualization and public presentation purposes.- Flourish: Used to create interactive graphs and charts for visualizing trends and supporting the analysis.

  11. m

    Maryland MyCoast Reports

    • data.imap.maryland.gov
    • hub.arcgis.com
    • +1more
    Updated Feb 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Online for Maryland (2023). Maryland MyCoast Reports [Dataset]. https://data.imap.maryland.gov/maps/maryland-mycoast-reports
    Explore at:
    Dataset updated
    Feb 16, 2023
    Dataset authored and provided by
    ArcGIS Online for Maryland
    Area covered
    Description

    Esri ArcGIS Online Hosted, View Feature Layer which provides access to the Maryland MyCoast Report Locations data product.Maryland MyCoast Reports data consists of point geometric features which represent the geographic locations of MyCoast reports that have been documented throughout the State of Maryland. MyCoast Reports are created to document on-the-ground impacts of flooding & damage during storm events. MyCoast: Maryland is in collaboration with, and directly supported by, the Maryland Department of Natural Resources (DNR). Maryland MyCoast Reports data has been downloaded & spatially enabled by the MDOT SHA OIT Enterprise Information Services - GIS Team by using the 'Download Reports' functionality of the MyCoast website. The resulting data is spatially enabled via Lat/Long values and is now available as a Hosted View Feature Layer on ArcGIS Online (AGOL) for Maryland. This data product is updated on a monthly routine basis to include new reports from the previous month.Maryland MyCoast Report data is owned by the Maryland Department of Natural Resources (DNR).For more information, contact MDOT SHA OIT Enterprise Information Services:Email: GIS@mdot.maryland.gov

  12. a

    10-degree grid

    • hub.arcgis.com
    • noaa.hub.arcgis.com
    • +1more
    Updated Jan 14, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA GeoPlatform (2014). 10-degree grid [Dataset]. https://hub.arcgis.com/maps/noaa::10-degree-grid-1
    Explore at:
    Dataset updated
    Jan 14, 2014
    Dataset authored and provided by
    NOAA GeoPlatform
    Area covered
    Description

    This is a map service displaying a graticule (latitude/longitude grid) in the Antarctic. It can be used as an overlay alongside other layers for general reference.Map projection: WGS84 Antarctic Polar Stereographic; standard parallel of 71 degrees; EPSG:3031; outer edge at 50 degrees south.Note: this will not display in the correct projection if you click on the thumbnail or choose "Add to Map". For a combined ArcGIS Online map displaying this service in Antarctic projection along with other useful reference layers, please see: https://noaa.maps.arcgis.com/home/item.html?id=d13b9d10219e4429974e48368b64e41f

  13. w

    GIS analysis of HYDMEAS - Hydstra Groundwater Measurement Update: NSW Office...

    • data.wu.ac.at
    • researchdata.edu.au
    • +1more
    zip
    Updated Jun 21, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bioregional Assessment Programme (2018). GIS analysis of HYDMEAS - Hydstra Groundwater Measurement Update: NSW Office of Water - Nov2013 [Dataset]. https://data.wu.ac.at/odso/data_gov_au/YWJjNzYyYWUtOWRkYi00MDJkLTgyZmUtNmY3ZDYwM2E5OGEw
    Explore at:
    zip(113597112.0)Available download formats
    Dataset updated
    Jun 21, 2018
    Dataset provided by
    Bioregional Assessment Programme
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    New South Wales
    Description

    Abstract

    The dataset was derived by the Bioregional Assessment Programme from Hydstra Groundwater Measurement Update - NSW Office of Water, Nov2013. The source dataset ia identified in the Lineage field in this metadata statement. The processes undertaken to produce this derived dataset are described in the History field in this metadata statement.

    Displays the original Hydstra measurement (HYDMEAS) tabular data records (as stored in the Hydstra software platform) in a GIS format for interpretation and analysis.

    Analysis completed on this dataset includes extracts to determine location and status of current monitoring bores:

    HYDMEAS - original tabular database file (dbf) showing groundwater levels

    HYDMEAS_XY_all - displays all original tabular data in GIS shapefile format

    HYDMEAS_unique_bores - shows one record for each unique bore station ID

    HYDMEAS_2008 - All HYDMEAS data from 2008 or later

    HYDMEAS_2008to2013_mulitple_reading - All HYDMEAS data from 2008 or later which has been monitored twice or more (in that period), produced to estimate groundwater level monitoring bores

    National Groundwater Information System (NGIS) data supplied as a comparison of HYDMEAS monitoring estimates.

    Hydstra is a water resources time series data management system developed by KISTERS Pty Ltd.

    Purpose

    Provide spatial distribution of groundwater level monitoring status and reading for New South Wales.

    Dataset History

    HYDMEAS - original tabular data

    HYDMEAS_XY_all - displays all original tabular data in GIS format - Displayed as XY in ArcGIS based on Lat and Long attributes and exported as a point shapefile

    HYDMEAS_unique_bores - shows one record for each unique bore ID - Dissolved HYDMEAS_XY_all based on STATION field

    HYDMEAS_2008 - All HYDMEAS data from 2008 or later - Selected based on DATE field

    HYDMEAS_2008to2013_mulitple_reading - All HYDMEAS data from 2008 or later which has been monitored twice or more (in that period), produced to estimate groundwater level monitoring bores - HYDMEAS_2008 dataset dissolved based on STATION and a count field added. Only bores with count of 2 or more were retained

    Dataset Citation

    Bioregional Assessment Programme (2014) GIS analysis of HYDMEAS - Hydstra Groundwater Measurement Update: NSW Office of Water - Nov2013. Bioregional Assessment Derived Dataset. Viewed 22 June 2018, http://data.bioregionalassessments.gov.au/dataset/d414c703-aabd-43af-81e0-30aab4d9dfb1.

    Dataset Ancestors

  14. c

    Boundary

    • geohub.cityoftacoma.org
    Updated Jul 1, 1990
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tacoma GIS (1990). Boundary [Dataset]. https://geohub.cityoftacoma.org/datasets/tacoma::boundary-12/about
    Explore at:
    Dataset updated
    Jul 1, 1990
    Dataset authored and provided by
    City of Tacoma GIS
    License

    https://geohub.cityoftacoma.org/pages/disclaimerhttps://geohub.cityoftacoma.org/pages/disclaimer

    Area covered
    Description

    Tacoma 1990 - USGS 1 meter Aerials for ArcGIS Online/Bing Maps/Google Maps, etc. This layer includes UP, Fircrest, Fife, and some of Federal Way.Contact Info: Name: GIS Team Email: GISteam@cityoftacoma.orgCompany: U.S. Geological SurveyFlight Time: July, 1990Metadata (Internal use only)Earth Explorer Full Display of Record 1 (Internal use only)Original ArcGIS coordinate system: Type: Projected Geographic coordinate reference: GCS_North_American_1983_HARN Projection: NAD_1983_HARN_StatePlane_Washington_South_FIPS_4602_Feet Well-known identifier: 2927Geographic extent - Bounding rectangle: West longitude: -122.632392 East longitude: -122.304303 North latitude: 47.380453 South latitude: 47.118196Extent in the item's coordinate system: West longitude: 1112120.835383 East longitude: 1191291.333557 South latitude: 658000.509741 North latitude: 751710.870268

  15. g

    BSEE Data Center - Geographic Mapping Data in Digital Format | gimi9.com

    • gimi9.com
    Updated Sep 13, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). BSEE Data Center - Geographic Mapping Data in Digital Format | gimi9.com [Dataset]. https://gimi9.com/dataset/data-gov_bsee-data-center-geographic-mapping-data-in-digital-format/
    Explore at:
    Dataset updated
    Sep 13, 2025
    Description

    The geographic data are built from the Technical Information Management System (TIMS). TIMS consists of two separate databases: an attribute database and a spatial database. The attribute information for offshore activities is stored in the TIMS database. The spatial database is a combination of the ARC/INFO and FINDER databases and contains all the coordinates and topology information for geographic features. The attribute and spatial databases are interconnected through the use of common data elements in both databases, thereby creating the spatial datasets. The data in the mapping files are made up of straight-line segments. If an arc existed in the original data, it has been replaced with a series of straight lines that approximate the arc. The Gulf of America OCS Region stores all its mapping data in longitude and latitude format. All coordinates are in NAD 27. Data can be obtained in three types of digital formats: INTERACTIVE MAP: The ArcGIS web maps are an interactive display of geographic information, containing a basemap, a set of data layers (many of which include interactive pop-up windows with information about the data), an extent, navigation tools to pan and zoom, and additional tools for geospatial analysis. SHP: A Shapefile is a digital vector (non-topological) storage format for storing geometric location and associated attribute information. Shapefiles can support point, line, and area features with attributes held in a dBASE format file. GEODATABASE: An ArcGIS geodatabase is a collection of geographic datasets of various types held in a common file system folder, a Microsoft Access database, or a multiuser relational DBMS (such as Oracle, Microsoft SQL Server, PostgreSQL, Informix, or IBM DB2). The geodatabase is the native data structure for ArcGIS and is the primary data format used for editing and data management.

  16. H

    ERCZO -- GIS/Map Data -- Research and Watershed GIS Boundaries -- Eel River...

    • hydroshare.org
    • beta.hydroshare.org
    • +1more
    zip
    Updated Nov 21, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Collin Bode; USGS (2019). ERCZO -- GIS/Map Data -- Research and Watershed GIS Boundaries -- Eel River to Rivendell -- (2004-2015) [Dataset]. https://www.hydroshare.org/resource/295745bf0b854c6bbddc05452a09c602
    Explore at:
    zip(319.0 KB)Available download formats
    Dataset updated
    Nov 21, 2019
    Dataset provided by
    HydroShare
    Authors
    Collin Bode; USGS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Oct 10, 2004 - Oct 10, 2015
    Area covered
    Description

    The Eel River CZO operates on several spatial scales from a zero order hillslope to the entire Eel River on the north coast of California. Rivendell, Angelo, Sagehorn, South Fork, and Eel River GIS boundaries. GIS polygon shapefiles. All files are in geographic projection (Lat/Long) with a datum of WGS84.

    The watershed boundaries are from USGS Watershed Boundary Dataset (WBD) http://nhd.usgs.gov/wbd.html. Rivendell and Angelo boundaries are created from LiDAR by the CZO. Sagehorn Ranch is a privately held, active commercial ranch with no public access. Please contact the CZO if you are interested in data from Sagehorn Ranch.

    Shapefiles

    Eel River Watershed (drainage area 9534 km^2): Entire eel river. Greatest extent of CZO research.

    South Fork Eel Watershed (drainage area 1784 km^2).

    Angelo Reserve Boundary (30.0 km^2): Angelo Coast Range Reserve is a University of California Natural Reserve System protected land. It is the central focus of CZO research. http://angelo.berkeley.edu

    Sagehorn Ranch Boundary (21.1 km^2): Sagehorn Ranch is a private ranch with active cattle raising. The owners have allowed the CZO to place instrumentation on their lands. Access is only by explicit agreement by owners.

    Rivendell Cachement (0.0076 km^2): Rivendell is a small, heavily instrumented hillslope within the Angelo Reserve. It has roughly 700 instruments deployed as of 2016. Data is online at http://sensor.berkeley.edu

  17. c

    Solar Footprints in California

    • gis.data.ca.gov
    • data.ca.gov
    • +6more
    Updated Jan 6, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Energy Commission (2023). Solar Footprints in California [Dataset]. https://gis.data.ca.gov/maps/CAEnergy::solar-footprints-in-california
    Explore at:
    Dataset updated
    Jan 6, 2023
    Dataset authored and provided by
    California Energy Commission
    License

    https://www.energy.ca.gov/conditions-of-usehttps://www.energy.ca.gov/conditions-of-use

    Area covered
    Description

    Solar Footprints in CaliforniaThis GIS dataset consists of polygons that represent the footprints of solar powered electric generation facilities and related infrastructure in California called Solar Footprints. The location of solar footprints was identified using other existing solar footprint datasets from various sources along with imagery interpretation. CEC staff reviewed footprints identified with imagery and digitized polygons to match the visual extent of each facility. Previous datasets of existing solar footprints used to locate solar facilities include: GIS Layers: (1) California Solar Footprints, (2) UC Berkeley Solar Points, (3) Kruitwagen et al. 2021, (4) BLM Renewable Project Facilities, (5) Quarterly Fuel and Energy Report (QFER)Imagery Datasets: Esri World Imagery, USGS National Agriculture Imagery Program (NAIP), 2020 SENTINEL 2 Satellite Imagery, 2023Solar facilities with large footprints such as parking lot solar, large rooftop solar, and ground solar were included in the solar footprint dataset. Small scale solar (approximately less than 0.5 acre) and residential footprints were not included. No other data was used in the production of these shapes. Definitions for the solar facilities identified via imagery are subjective and described as follows: Rooftop Solar: Solar arrays located on rooftops of large buildings. Parking lot Solar: Solar panels on parking lots roughly larger than 1 acre, or clusters of solar panels in adjacent parking lots. Ground Solar: Solar panels located on ground roughly larger than 1 acre, or large clusters of smaller scale footprints. Once all footprints identified by the above criteria were digitized for all California counties, the features were visually classified into ground, parking and rooftop categories. The features were also classified into rural and urban types using the 42 U.S. Code § 1490 definition for rural. In addition, the distance to the closest substation and the percentile category of this distance (e.g. 0-25th percentile, 25th-50th percentile) was also calculated. The coverage provided by this data set should not be assumed to be a complete accounting of solar footprints in California. Rather, this dataset represents an attempt to improve upon existing solar feature datasets and to update the inventory of "large" solar footprints via imagery, especially in recent years since previous datasets were published. This procedure produced a total solar project footprint of 150,250 acres. Attempts to classify these footprints and isolate the large utility-scale projects from the smaller rooftop solar projects identified in the data set is difficult. The data was gathered based on imagery, and project information that could link multiple adjacent solar footprints under one larger project is not known. However, partitioning all solar footprints that are at least partly outside of the techno-economic exclusions and greater than 7 acres yields a total footprint size of 133,493 acres. These can be approximated as utility-scale footprints. Metadata: (1) CBI Solar FootprintsAbstract: Conservation Biology Institute (CBI) created this dataset of solar footprints in California after it was found that no such dataset was publicly available at the time (Dec 2015-Jan 2016). This dataset is used to help identify where current ground based, mostly utility scale, solar facilities are being constructed and will be used in a larger landscape intactness model to help guide future development of renewable energy projects. The process of digitizing these footprints first began by utilizing an excel file from the California Energy Commission with lat/long coordinates of some of the older and bigger locations. After projecting those points and locating the facilities utilizing NAIP 2014 imagery, the developed area around each facility was digitized. While interpreting imagery, there were some instances where a fenced perimeter was clearly seen and was slightly larger than the actual footprint. For those cases the footprint followed the fenced perimeter since it limits wildlife movement through the area. In other instances, it was clear that the top soil had been scraped of any vegetation, even outside of the primary facility footprint. These footprints included the areas that were scraped within the fencing since, especially in desert systems, it has been near permanently altered. Other sources that guided the search for solar facilities included the Energy Justice Map, developed by the Energy Justice Network which can be found here:https://www.energyjustice.net/map/searchobject.php?gsMapsize=large&giCurrentpageiFacilityid;=1&gsTable;=facility&gsSearchtype;=advancedThe Solar Energy Industries Association’s “Project Location Map” which can be found here: https://www.seia.org/map/majorprojectsmap.phpalso assisted in locating newer facilities along with the "Power Plants" shapefile, updated in December 16th, 2015, downloaded from the U.S. Energy Information Administration located here:https://www.eia.gov/maps/layer_info-m.cfmThere were some facilities that were stumbled upon while searching for others, most of these are smaller scale sites located near farm infrastructure. Other sites were located by contacting counties that had solar developments within the county. Still, others were located by sleuthing around for proposals and company websites that had images of the completed facility. These helped to locate the most recently developed sites and these sites were digitized based on landmarks such as ditches, trees, roads and other permanent structures.Metadata: (2) UC Berkeley Solar PointsUC Berkeley report containing point location for energy facilities across the United States.2022_utility-scale_solar_data_update.xlsm (live.com)Metadata: (3) Kruitwagen et al. 2021Abstract: Photovoltaic (PV) solar energy generating capacity has grown by 41 per cent per year since 2009. Energy system projections that mitigate climate change and aid universal energy access show a nearly ten-fold increase in PV solar energy generating capacity by 2040. Geospatial data describing the energy system are required to manage generation intermittency, mitigate climate change risks, and identify trade-offs with biodiversity, conservation and land protection priorities caused by the land-use and land-cover change necessary for PV deployment. Currently available inventories of solar generating capacity cannot fully address these needs. Here we provide a global inventory of commercial-, industrial- and utility-scale PV installations (that is, PV generating stations in excess of 10 kilowatts nameplate capacity) by using a longitudinal corpus of remote sensing imagery, machine learning and a large cloud computation infrastructure. We locate and verify 68,661 facilities, an increase of 432 per cent (in number of facilities) on previously available asset-level data. With the help of a hand-labelled test set, we estimate global installed generating capacity to be 423 gigawatts (−75/+77 gigawatts) at the end of 2018. Enrichment of our dataset with estimates of facility installation date, historic land-cover classification and proximity to vulnerable areas allows us to show that most of the PV solar energy facilities are sited on cropland, followed by arid lands and grassland. Our inventory could aid PV delivery aligned with the Sustainable Development GoalsEnergy Resource Land Use Planning - Kruitwagen_etal_Nature.pdf - All Documents (sharepoint.com)Metadata: (4) BLM Renewable ProjectTo identify renewable energy approved and pending lease areas on BLM administered lands. To provide information about solar and wind energy applications and completed projects within the State of California for analysis and display internally and externally. This feature class denotes "verified" renewable energy projects at the California State BLM Office, displayed in GIS. The term "Verified" refers to the GIS data being constructed at the California State Office, using the actual application/maps with legal descriptions obtained from the renewable energy company. https://www.blm.gov/wo/st/en/prog/energy/renewable_energy https://www.blm.gov/style/medialib/blm/wo/MINERALS_REALTY_AND_RESOURCE_PROTECTION_/energy/solar_and_wind.Par.70101.File.dat/Public%20Webinar%20Dec%203%202014%20-%20Solar%20and%20Wind%20Regulations.pdfBLM CA Renewable Energy Projects | BLM GBP Hub (arcgis.com)Metadata: (5) Quarterly Fuel and Energy Report (QFER) California Power Plants - Overview (arcgis.com)

  18. f

    SI 17: GIS coordinates of percussion marks for each bone series reccorded...

    • figshare.com
    xlsx
    Updated Jun 7, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Delphine Vettese; Trajanka Stavrova (2023). SI 17: GIS coordinates of percussion marks for each bone series reccorded during zooarchaeological analyses on the remains of long bones after the experiment and cleaning. Skeletal element, individual number, bone number, remain number, percussion marks number, coordinates XY.Supporting Information 17: Vettese, Delphine; Stavrova, Trajanka (2020): SI 17: GIS coordinates of percussion marks for each bone series recorded during zooarchaeological analyses on the remains of long bones after the experiment and cleaning. Skeletal element, individual number, bone number, remain number, percussion marks number, coordinates XY.SI 17: GIS coordinates of percussion marks for each bone series recorded during zooarchaeological analyses on the remains of long bones after the experiment and cleaning. Skeletal element, individual number, bone number, remain number, percussion marks number, coordinates XY [Dataset]. http://doi.org/10.6084/m9.figshare.12896648.v2
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 7, 2023
    Dataset provided by
    figshare
    Authors
    Delphine Vettese; Trajanka Stavrova
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The coordinates are used with the coordinate system as WGS 1984 using the following coordinates in the file: "bone coordinates.txt"Trajanka Stavrova. GIS analysis of percussion marks using ArcMap 10.4 . protocols.io https://protocols.io/view/gis-analysis-of-percussion-marks-using-arcmap-10-4-zipf4dn

  19. GeoForm (Deprecated)

    • cityofdentongishub-dentontxgis.hub.arcgis.com
    • data-salemva.opendata.arcgis.com
    Updated Jul 3, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    esri_en (2014). GeoForm (Deprecated) [Dataset]. https://cityofdentongishub-dentontxgis.hub.arcgis.com/items/931653256fd24301a84fc77955914a82
    Explore at:
    Dataset updated
    Jul 3, 2014
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    esri_en
    Description

    Geoform is a configurable app template for form based data editing of a Feature Service. This application allows users to enter data through a form instead of a map's pop-up while leveraging the power of the Web Map and editable Feature Services. This app geo-enables data and workflows by lowering the barrier of entry for completing simple tasks. Use CasesProvides a form-based experience for entering data through a form instead of a map pop-up. This is a good choice for users who find forms a more intuitive format than pop-ups for entering data.Useful to collect new point data from a large audience of non technical staff or members of the community.Configurable OptionsGeoform has an interactive builder used to configure the app in a step-by-step process. Use Geoform to collect new point data and configure it using the following options:Choose a web map and the editable layer(s) to be used for collection.Provide a title, logo image, and form instructions/details.Control and choose what attribute fields will be present in the form. Customize how they appear in the form, the order they appear in, and add hint text.Select from over 15 different layout themes.Choose the display field that will be used for sorting when viewing submitted entries.Enable offline support, social media sharing, default map extent, locate on load, and a basemap toggle button.Choose which locate methods are available in the form, including: current location, search, latitude and longitude, USNG coordinates, MGRS coordinates, and UTM coordinates.Supported DevicesThis application is responsively designed to support use in browsers on desktops, mobile phones, and tablets.Data RequirementsThis web app includes the capability to edit a hosted feature service or an ArcGIS Server feature service. Creating hosted feature services requires an ArcGIS Online organizational subscription or an ArcGIS Developer account. Get Started This application can be created in the following ways:Click the Create a Web App button on this pageShare a map and choose to Create a Web AppOn the Content page, click Create - App - From Template Click the Download button to access the source code. Do this if you want to host the app on your own server and optionally customize it to add features or change styling.

  20. Superfund National Priorities List (NPL) Sites with Status Information

    • geodata.colorado.gov
    • hub.marinecadastre.gov
    • +3more
    Updated Dec 13, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA (2017). Superfund National Priorities List (NPL) Sites with Status Information [Dataset]. https://geodata.colorado.gov/datasets/EPA::superfund-national-priorities-list-npl-sites-with-status-information
    Explore at:
    Dataset updated
    Dec 13, 2017
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Authors
    U.S. EPA
    Area covered
    Description

    National Priorities List (NPL) Sites with Status Information CSV file for the EPA's Where You Live page under the Superfund web area.SourceHazard Ranking System (HRS) documentation record/NPL listing documentation. The latitude and longitude coordinates for the sites displayed in the map are also derived from HRS documentation records.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
State of Delaware (2019). Create Points from a Table [Dataset]. https://hub.arcgis.com/documents/delaware::create-points-from-a-table/about

Create Points from a Table

Explore at:
Dataset updated
Jan 17, 2019
Dataset authored and provided by
State of Delaware
Description

If you have geographic information stored as a table, ArcGIS Pro can display it on a map and convert it to spatial data. In this tutorial, you'll create spatial data from a table containing the latitude-longitude coordinates of huts in a New Zealand national park. Huts in New Zealand are equivalent to cabins in the United States—they may or may not have sleeping bunks, kitchen facilities, electricity, and running water. The table of hut locations is stored as a comma-separated values (CSV) file. CSV files are a common, nonproprietary file type for tabular data.Estimated time: 45 minutesSoftware requirements: ArcGIS Pro

Search
Clear search
Close search
Google apps
Main menu