Facebook
Twitterhttps://research.csiro.au/dap/licences/csiro-data-licence/https://research.csiro.au/dap/licences/csiro-data-licence/
This dataset is a series of digital map-posters accompanying the AdaptNRM Guide: Helping Biodiversity Adapt: supporting climate adaptation planning using a community-level modelling approach.
These represent supporting materials and information about the community-level biodiversity models applied to climate change. Map posters are organised by four biological groups (vascular plants, mammals, reptiles and amphibians), two climate change scenario (1990-2050 MIROC5 and CanESM2 for RCP8.5), and five measures of change in biodiversity.
The map-posters present the nationally consistent data at locally relevant resolutions in eight parts – representing broad groupings of NRM regions based on the cluster boundaries used for climate adaptation planning (http://www.environment.gov.au/climate-change/adaptation) and also Nationally.
Map-posters are provided in PNG image format at moderate resolution (300dpi) to suit A0 printing. The posters were designed to meet A0 print size and digital viewing resolution of map detail. An additional set in PDF image format has been created for ease of download for initial exploration and printing on A3 paper. Some text elements and map features may be fuzzy at this resolution.
Each map-poster contains four dataset images coloured using standard legends encompassing the potential range of the measure, even if that range is not represented in the dataset itself or across the map extent.
Most map series are provided in two parts: part 1 shows the two climate scenarios for vascular plants and mammals and part 2 shows reptiles and amphibians. Eight cluster maps for each series have a different colour theme and map extent. A national series is also provided. Annotation briefly outlines the topics presented in the Guide so that each poster stands alone for quick reference.
An additional 77 National maps presenting the probability distributions of each of 77 vegetation types – NVIS 4.1 major vegetation subgroups (NVIS subgroups) - are currently in preparation.
Example citations:
Williams KJ, Raisbeck-Brown N, Prober S, Harwood T (2015) Generalised projected distribution of vegetation types – NVIS 4.1 major vegetation subgroups (1990 and 2050), A0 map-poster 8.1 - East Coast NRM regions. CSIRO Land and Water Flagship, Canberra. Available online at www.AdaptNRM.org and https://data.csiro.au/dap/.
Williams KJ, Raisbeck-Brown N, Harwood T, Prober S (2015) Revegetation benefit (cleared natural areas) for vascular plants and mammals (1990-2050), A0 map-poster 9.1 - East Coast NRM regions. CSIRO Land and Water Flagship, Canberra. Available online at www.AdaptNRM.org and https://data.csiro.au/dap/.
This dataset has been delivered incrementally. Please check that you are accessing the latest version of the dataset. Lineage: The map posters show case the scientific data. The data layers have been developed at approximately 250m resolution (9 second) across the Australian continent to incorporate the interaction between climate and topography, and are best viewed using a geographic information system (GIS). Each data layers is 1Gb, and inaccessible to non-GIS users. The map posters provide easy access to the scientific data, enabling the outputs to be viewed at high resolution with geographical context information provided.
Maps were generated using layout and drawing tools in ArcGIS 10.2.2
A check list of map posters and datasets is provided with the collection.
Map Series: 7.(1-77) National probability distribution of vegetation type – NVIS 4.1 major vegetation subgroup pre-1750 #0x
8.1 Generalised projected distribution of vegetation types (NVIS subgroups) (1990 and 2050)
9.1 Revegetation benefit (cleared natural areas) for plants and mammals (1990-2050)
9.2 Revegetation benefit (cleared natural areas) for reptiles and amphibians (1990-2050)
10.1 Need for assisted dispersal for vascular plants and mammals (1990-2050)
10.2 Need for assisted dispersal for reptiles and amphibians (1990-2050)
11.1 Refugial potential for vascular plants and mammals (1990-2050)
11.1 Refugial potential for reptiles and amphibians (1990-2050)
12.1 Climate-driven future revegetation benefit for vascular plants and mammals (1990-2050)
12.2 Climate-driven future revegetation benefit for vascular reptiles and amphibians (1990-2050)
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Related article: Bergroth, C., Järv, O., Tenkanen, H., Manninen, M., Toivonen, T., 2022. A 24-hour population distribution dataset based on mobile phone data from Helsinki Metropolitan Area, Finland. Scientific Data 9, 39.
In this dataset:
We present temporally dynamic population distribution data from the Helsinki Metropolitan Area, Finland, at the level of 250 m by 250 m statistical grid cells. Three hourly population distribution datasets are provided for regular workdays (Mon – Thu), Saturdays and Sundays. The data are based on aggregated mobile phone data collected by the biggest mobile network operator in Finland. Mobile phone data are assigned to statistical grid cells using an advanced dasymetric interpolation method based on ancillary data about land cover, buildings and a time use survey. The data were validated by comparing population register data from Statistics Finland for night-time hours and a daytime workplace registry. The resulting 24-hour population data can be used to reveal the temporal dynamics of the city and examine population variations relevant to for instance spatial accessibility analyses, crisis management and planning.
Please cite this dataset as:
Bergroth, C., Järv, O., Tenkanen, H., Manninen, M., Toivonen, T., 2022. A 24-hour population distribution dataset based on mobile phone data from Helsinki Metropolitan Area, Finland. Scientific Data 9, 39. https://doi.org/10.1038/s41597-021-01113-4
Organization of data
The dataset is packaged into a single Zipfile Helsinki_dynpop_matrix.zip which contains following files:
HMA_Dynamic_population_24H_workdays.csv represents the dynamic population for average workday in the study area.
HMA_Dynamic_population_24H_sat.csv represents the dynamic population for average saturday in the study area.
HMA_Dynamic_population_24H_sun.csv represents the dynamic population for average sunday in the study area.
target_zones_grid250m_EPSG3067.geojson represents the statistical grid in ETRS89/ETRS-TM35FIN projection that can be used to visualize the data on a map using e.g. QGIS.
Column names
YKR_ID : a unique identifier for each statistical grid cell (n=13,231). The identifier is compatible with the statistical YKR grid cell data by Statistics Finland and Finnish Environment Institute.
H0, H1 ... H23 : Each field represents the proportional distribution of the total population in the study area between grid cells during a one-hour period. In total, 24 fields are formatted as “Hx”, where x stands for the hour of the day (values ranging from 0-23). For example, H0 stands for the first hour of the day: 00:00 - 00:59. The sum of all cell values for each field equals to 100 (i.e. 100% of total population for each one-hour period)
In order to visualize the data on a map, the result tables can be joined with the target_zones_grid250m_EPSG3067.geojson data. The data can be joined by using the field YKR_ID as a common key between the datasets.
License Creative Commons Attribution 4.0 International.
Related datasets
Järv, Olle; Tenkanen, Henrikki & Toivonen, Tuuli. (2017). Multi-temporal function-based dasymetric interpolation tool for mobile phone data. Zenodo. https://doi.org/10.5281/zenodo.252612
Tenkanen, Henrikki, & Toivonen, Tuuli. (2019). Helsinki Region Travel Time Matrix [Data set]. Zenodo. http://doi.org/10.5281/zenodo.3247564
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Description in English:This dataset is the dataset of distribution maps of single-season rice in China, which contains distribution maps of single-season rice of 21 provincial administrative regions in China from 2017 to 2022. The file format is GeoTIFF and the spatial reference is WGS84 (EPSG:4326). The resolution of the distribution maps is 20-m in Heilongjiang, Jilin, Liaoning, Inner Mongolia, and Ningxia, and 10-m in the other provinces. The distribution maps are produced using the time-weighted dynamic time warping (TWDTW) method based on Sentinel-1 and Sentinel-2 images. The overall accuracy over 21 provincial administrative regions was 85.23 % on average based on 108195 samples, and the average R2 was 0.83 over three years compared with county-level statistical planting areas.classification system:0: non-single-season rice1: single-season riceUpdates:v1.1: Compared with the distribution map of double-season rice from Pan et al.'s dataset (2021) (https://doi.org/10.3390/rs13224609), the two datasets overlapped in provinces where both single- and double-season rice were cultivated, including Anhui, Hubei, Hunan, Jiangxi, Zhejiang, Fujian, and Guangxi. Version 1.1 of this dataset was updated by reclassifying the overlapped pixels to ensure that the two datasets no longer overlap.v1.2: Fix error caused by the caliber of late rice statistics in Fujian Province.2024-02-23: Update distribution maps for the year 2023.2025-04-01: Update distribution maps for the year 2024.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population density per pixel at 100 metre resolution. WorldPop provides estimates of numbers of people residing in each 100x100m grid cell for every low and middle income country. Through ingegrating cencus, survey, satellite and GIS datasets in a flexible machine-learning framework, high resolution maps of population counts and densities for 2000-2020 are produced, along with accompanying metadata. DATASET: Alpha version 2010 and 2015 estimates of numbers of people per grid square, with national totals adjusted to match UN population division estimates (http://esa.un.org/wpp/) and remaining unadjusted. REGION: Africa SPATIAL RESOLUTION: 0.000833333 decimal degrees (approx 100m at the equator) PROJECTION: Geographic, WGS84 UNITS: Estimated persons per grid square MAPPING APPROACH: Land cover based, as described in: Linard, C., Gilbert, M., Snow, R.W., Noor, A.M. and Tatem, A.J., 2012, Population distribution, settlement patterns and accessibility across Africa in 2010, PLoS ONE, 7(2): e31743. FORMAT: Geotiff (zipped using 7-zip (open access tool): www.7-zip.org) FILENAMES: Example - AGO10adjv4.tif = Angola (AGO) population count map for 2010 (10) adjusted to match UN national estimates (adj), version 4 (v4). Population maps are updated to new versions when improved census or other input data become available. Malaysia data available from WorldPop here.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset is a collection of presence and absence points for forest tree species for Europe. Each unique combination of longitude, latitude and year was considered as an independent sample. Presence data was obtained from the harmonized tree species occurrence dataset by Heising and Hengl (2020) and absence data from the LUCAS (in-situ source) dataset.
A set of 50 different forest tree species was selected from the harmonized tree species dataset and data lacking a temporal observation was overlaid with yearly forest masks derived from land cover maps produced by Parente et al. (2021). We overlaid the points with the probability maps for the classes:
Points were included in the dataset only if the probability value extracted for at least one of the above classes was ≥ 50% for all the years considered. An additional quality flag was added to distinguish points coming from this operation and the points with original year of observation coming from source datasets.
The final dataset contains 4,359,999 observations for and a total of 630 columns.
The first 8 columns of the dataset contain metadata information used to uniquely identify the points:
The remaining columns contain the extracted values of a series of predictor variables (temperature, precipitation, elevation, topographical information, spectral reflectance) useful for species distribution modeling applications. These points were used to model the potential and realized distribution of a series of 16 target species for the period 2000 - 2020. The approach involved training three ML models to predict probability of presence (i.e. Random Forest, XGBoost, GLM), which served as input to train a linear meta-model (i.e. Logistic regression classifier), responsible for predicting the final probability of presence for each species.
The 10 most important variables used by each of the three base models are available in the "variable importance" plots for both potential and realized distribution in a PDF format.
The RDS file is created from a data.table object and suitable for fast reading in the R-programming environment. The CSV.GZ file contains records as a table with easting and northing in Coordinate Reference System ETRS89 / LAEA Europe (= EPSG code 3035) and can be fed in a GIS after being unzipped.
To access the predictions of the meta-model (probabilities and uncertainties) produced for these species access:
If you would like to know more about the creation of this dataset and the modeling, watch the talk at Open Data Science Workshop 2021 (TIB AV-PORTAL)
A publication describing, in detail, all processing steps, accuracy assessment and general analysis of species distribution maps is under preparation. To suggest any improvement/fix use https://gitlab.com/geoharmonizer_inea/spatial-layers/-/issues.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This is my first dataset publication on Kaggle, and I’m very excited to share a small, manageable subset of the CAMELS Multifield (CMD) data to help the ML community practice image classification and astrophysical data analysis! Make sure to upvote, comment, and share if you enjoy or have suggestions for me. This subset is distributed under the MIT License with permission from the original author, Francisco Villaescusa-Navarro, and the CAMELS collaboration.
The CAMELS Multifield Dataset (CMD) is a massive collection of 2D maps and 3D grids derived from cosmological simulations that track the evolution of gas, dark matter, stars, black holes, and (in some suites) magnetic fields. These simulations vary important cosmological and astrophysical parameters, allowing researchers to explore and train machine learning models that could help us understand the universe’s fundamental properties.
Because the original CMD is extremely large, I’m providing a small subset from the IllustrisTNG suite, specifically from the LH (Latin Hypercube) set. This subset focuses on 2D maps at redshift z = 0.00, chosen randomly for demonstration and educational purposes.
Ω_m, σ_8, supernova feedback, black-hole feedback) are systematically varied.Mcdm), though you could encounter other fields if you download more from the official CMD resource..npy files, each containing multiple 2D slices (maps).z = 0.00.Ω_m (matter density fraction),σ_8 (root-mean-square amplitude of matter fluctuations),A_SN1, A_SN2 (supernova feedback parameters),A_AGN1, A_AGN2 (black-hole/AGN feedback parameters).Because these maps are from the IllustrisTNG suite, they have non-zero values for all six parameters. If any user references the corresponding Nbody subset, note that only Ω_m and σ_8 apply there.
The CAMELS data—especially 2D projections—are excellent for:
- Machine Learning & Computer Vision: Classification, segmentation, or anomaly detection tasks.
- Cosmology Research: Investigating how changes in Ω_m, σ_8, or feedback physics affect large-scale structure formation.
- Educational Purposes: Students and newcomers can learn how real cosmological simulation data is structured and experiment with analysis or ML pipelines.
This subset is shared under the MIT License granted by the original author, Francisco Villaescusa-Navarro, and the broader CAMELS collaboration. Please see the “License” section for the full text.
-**CAMELS Project Overview**
-**IllustrisTNG Official Site**
-**[CMD Official Documentation](https://camels-multifield-dataset.read...
Facebook
TwitterXverum’s Point of Interest (POI) Data is a comprehensive dataset containing 230M+ verified locations across 5000 business categories. Our dataset delivers structured geographic data, business attributes, location intelligence, and mapping insights, making it an essential tool for GIS applications, market research, urban planning, and competitive analysis.
With regular updates and continuous POI discovery, Xverum ensures accurate, up-to-date information on businesses, landmarks, retail stores, and more. Delivered in bulk to S3 Bucket and cloud storage, our dataset integrates seamlessly into mapping, geographic information systems, and analytics platforms.
🔥 Key Features:
Extensive POI Coverage: ✅ 230M+ Points of Interest worldwide, covering 5000 business categories. ✅ Includes retail stores, restaurants, corporate offices, landmarks, and service providers.
Geographic & Location Intelligence Data: ✅ Latitude & longitude coordinates for mapping and navigation applications. ✅ Geographic classification, including country, state, city, and postal code. ✅ Business status tracking – Open, temporarily closed, or permanently closed.
Continuous Discovery & Regular Updates: ✅ New POIs continuously added through discovery processes. ✅ Regular updates ensure data accuracy, reflecting new openings and closures.
Rich Business Insights: ✅ Detailed business attributes, including company name, category, and subcategories. ✅ Contact details, including phone number and website (if available). ✅ Consumer review insights, including rating distribution and total number of reviews (additional feature). ✅ Operating hours where available.
Ideal for Mapping & Location Analytics: ✅ Supports geospatial analysis & GIS applications. ✅ Enhances mapping & navigation solutions with structured POI data. ✅ Provides location intelligence for site selection & business expansion strategies.
Bulk Data Delivery (NO API): ✅ Delivered in bulk via S3 Bucket or cloud storage. ✅ Available in structured format (.json) for seamless integration.
🏆Primary Use Cases:
Mapping & Geographic Analysis: 🔹 Power GIS platforms & navigation systems with precise POI data. 🔹 Enhance digital maps with accurate business locations & categories.
Retail Expansion & Market Research: 🔹 Identify key business locations & competitors for market analysis. 🔹 Assess brand presence across different industries & geographies.
Business Intelligence & Competitive Analysis: 🔹 Benchmark competitor locations & regional business density. 🔹 Analyze market trends through POI growth & closure tracking.
Smart City & Urban Planning: 🔹 Support public infrastructure projects with accurate POI data. 🔹 Improve accessibility & zoning decisions for government & businesses.
💡 Why Choose Xverum’s POI Data?
Access Xverum’s 230M+ POI dataset for mapping, geographic analysis, and location intelligence. Request a free sample or contact us to customize your dataset today!
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Hcropland30:A 30-m global cropland map by leveraging global land cover products and Landsat data based on a deep learning model
***Please note this dataset is undergoing peer review***
Version: 1.0
Authors: Qiong Hu a, 1, Zhiwen Cai b, 1, Liangzhi You c, d, Steffen Fritz e, Xinyu Zhang c, He Yin f, Haodong Weic, Jingya Yang g, Zexuan Li a, Qiangyi Yu g, Hao Wu a, Baodong Xu b *, Wenbin Wu g, *
a Key Laboratory for Geographical Process Analysis & Simulation of Hubei Province/College of Urban and Environmental Sciences, Central China Normal University, Wuhan 430079, China
b College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
c Macro Agriculture Research Institute, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
d International Food Policy Research Institute, 1201 I Street, NW, Washington, DC 20005, USA
e Novel Data Ecosystems for sustainability Research Group, International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, Laxenburg A-2361, Austria
f Department of Geography, Kent State University, 325 S. Lincoln Street, Kent, OH 44242, USA
g State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Introduction
We are pleased to introduce a comprehensive global cropland mapping dataset (named Hcropland30) in 2020, meticulously curated to support a wide range of research and analysis applications related to agricultural land and environmental assessment. This dataset encompasses the entire globe, divided into 16,284 grids, each measuring an area of 1°×1°. Hcropland30 was produced by leveraging global land cover products and Landsat data based on a deep learning model. Initially, we established a hierarchal sampling strategy that used the simulated annealing method to identify the representative 1°×1° grids globally and the sparse point-level samples within these selected 1°×1°grids. Subsequently, we employed an ensemble learning technique to expand these sparse point-level samples into the densely pixel-wise labels, creating the area-level 1°×1° cropland labels. These area-level labels were then used to train a U-Net model for predicting global cropland distribution, followed by a comprehensive evaluation of the mapping accuracy.
Dataset
1. Hcropland30: A hybrid 30-m global cropland map in 2020
****Data format: GeoTiff
****Spatial resolution: 30 m
****Projection: EPSG: 4326 (WGS84)
****Values: 1 denotes cropland and 0 denotes non-cropland
The dataset has been uploaded in 16,284 tiles. The extent of each tile can be found in the file of “Grids.shp”. Each file is named according to the grid’s Id number. For example, “000015.tif” corresponds to the cropland mapping result for the 15-th 1°×1° grid. This systematic naming convention ensures easy identification and retrieval of the specific grid data.
2. 1°×1° Grids: This file contains all 16,284 1°×1° grids used in the dataset. The vector file includes 18 attribute fields, providing comprehensive metadata for each grid. These attributes are essential for users who need detailed information about each grid’s characteristics.
****Data format: ESRI shapefile
****Projection: EPSG: 4326 (WGS84)
****Attribute Fields:
Id: The grid’s ID number.
area: The area of the grid.
mode: Indicates the representative sample grid.
climate: The climate type the grid belongs to.
dem: Average DEM value of the grid.
ndvi_s1 to ndvi_s4: Average NDVI values for four seasons within the grid.
esa, esri, fcs30, fromglc, glad, globeland30: Proportion of cropland pixels of different publicly available cropland products.
inconsistent: Proportion of inconsistent pixels within the grid according to different public cropland products.
hcropland30: Proportion of cropland pixels of our Hcropland30 dataset.
3. Samples: The selected representative pixel-level samples, including 32,343 cropland and 67657 non-cropland samples. The category information of each sample was determined based on visual interpretation on Google Earth image and three-year NDVI time series curves from 2019-2021.
****Data format: ESRI shapefile
****Projection: EPSG: 4326 (WGS84)
****Attribute Fields:
type: 1 denotes cropland sample and 0 denotes non-cropland sample.
Citation
If you use this dataset, please cite the following paper:
Hu, Q., Cai, Z., You, L., Fritz, S., Zhang, X., Yin, H., Wei, H., Yang, J., Li, Z., Yu, Q., Wu, H., Xu, B., Wu, W. (2024). Hcropland30: A 30-m global cropland map by leveraging global land cover products and Landsat data based on a deep learning model, Remote Sensing of Environment, submitted.
License
The data is licensed under Creative Commons Attribution 4.0 International (CC BY 4.0).
Disclaimer
This dataset is provided as-is, without any warranty, express or implied. The dataset author is not
responsible for any errors or omissions in the data, or for any consequences arising from the use
of the data.
Contact
If you have any questions or feedback regarding the dataset, please contact the dataset author
Qiong Hu (huqiong@ccnu.edu.cn)
Facebook
TwitterIn 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore of Coal Oil Point map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Offshore Coal Oil Point map area data layers. Data layers are symbolized as shown on the associated map sheets.
Facebook
TwitterGAP species range data are coarse representations of the total areal extent a species occupies, in other words the geographic limits within which a species can be found (Morrison and Hall 2002). These data provide the geographic extent within which the USGS Gap Analysis Project delineates areas of suitable habitat for terrestrial vertebrate species in their species habitat maps. The range maps are created by attributing a vector file derived from the 12-digit Hydrologic Unit Dataset (USDA NRCS 2009). Modifications to that dataset are described here < https://www.sciencebase.gov/catalog/item/56d496eee4b015c306f17a42>. Attribution of the season range for each species was based on the literature and online sources (See Cross Reference section of the metadata). Attribution for each hydrologic unit within the range included values for origin (native, introduced, reintroduced, vagrant), occurrence (extant, possibly present, potentially present, extirpated), reproductive use (breeding, non-breeding, both) and season (year-round, summer, winter, migratory, vagrant). These species range data provide the biological context within which to build our species distribution models. Versioning, Naming Conventions and Codes: A composite version code is employed to allow the user to track the spatial extent, the date of the ground conditions, and the iteration of the data set for that extent/date. For example, CONUS_2001v1 represents the spatial extent of the conterminous US (CONUS), the ground condition year of 2001, and the first iteration (v1) for that extent/date. In many cases, a GAP species code is used in conjunction with the version code to identify specific data sets or files (i.e. Cooper’s Hawk Habitat Map named bCOHAx_CONUS_2001v1_HabMap).
Facebook
TwitterOpenStreetMap (openstreetmap.org) is a global collaborative mapping project, which offers maps and map data released with an open license, encouraging free re-use and re-distribution. The data is created by a large community of volunteers who use a variety of simple on-the-ground surveying techniques, and wiki-syle editing tools to collaborate as they create the maps, in a process which is open to everyone. The project originated in London, and an active community of mappers and developers are based here. Mapping work in London is ongoing (and you can help!) but the coverage is already good enough for many uses. Browse the map of London on OpenStreetMap.org Downloads: The whole of England updated daily: england.osm.bz2 ~185M - .osm formatted raw XML data (compressed) england.shp.zip ~156M - ESRI shapefiles For more details of downloads available from OpenStreetMap, including downloading the whole planet, see 'planet.osm' on the wiki. Data access APIs: Download small areas of the map by bounding-box. For example this URL requests the data around Trafalgar Square: http://api.openstreetmap.org/api/0.6/map?bbox=-0.13062,51.5065,-0.12557,51.50969 Data filtered by "tag". For example this URL returns all elements in London tagged shop=supermarket: http://www.informationfreeway.org/api/0.6/*[shop=supermarket][bbox=-0.48,51.30,0.21,51.70] The .osm format The format of the data is a raw XML represention of all the elements making up the map. OpenStreetMap is composed of interconnected "nodes" and "ways" (and sometimes "relations") each with a set of name=value pairs called "tags". These classify and describe properties of the elements, and ultimately influence how they get drawn on the map. To understand more about tags, and different ways of working with this data format refer to the following pages on the OpenStreetMap wiki.
Facebook
TwitterThis ArcGIS Map Package contains information on brook trout occupancy in the southern portion of the brook trout range (PA and south). Fish sample data from a number of state and federal agencies/organizations were used to define patches for brook trout as groups of occupied contiguous catchment polygons from the National Hydrography Dataset Plus Version 1 (NHDPlusV1) catchment GIS layer. After defining patches, NHDPlusV1 catchments were assigned occupancy codes. Then state and federal agencies reviewed patches and codes to verify data accuracy. A similar effort is currently being conducted by the Eastern Brook Trout Joint Venture to develop occupancy data for the remainder of the brook trout range including states of New York, Maine, New Hampshire, Connecticut, Vermont, Massachusetts, Rhode Island, and Ohio. This ArcGIS Map Package contains data for the entire southern portion of the brook trout range with preset symbology that displays brook trout occupancy. The Map Package also includes the same information clipped into seperate layers for each state. State information is provided for the convenience of users that are interested in data for only a particular state. Additional layers displaying state boundaries, quadrangle maps, and the brook trout range are also included as spatial references.
Facebook
TwitterThe National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses. For more information on the NHDPlus dataset see the NHDPlus v2 User Guide.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territories not including Alaska.Geographic Extent: The United States not including Alaska, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: EPA and USGSUpdate Frequency: There is new new data since this 2019 version, so no updates planned in the futurePublication Date: March 13, 2019Prior to publication, the NHDPlus network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the NHDPlus Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, On or Off Network (flowlines only), Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original NHDPlus dataset. No data values -9999 and -9998 were converted to Null values for many of the flowline fields.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute. Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map. Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset is a long-term, high-resolution maize distribution map for China (China Crop Dataset–Maize, CCD-Maize), which contains the distribution maps of maize in 22 provinces and municipalities of China from 2001 to 2020. The file format is GeoTIFF and the spatial reference is WGS84 (EPSG:4326). The resolution of the distribution maps is 30-m. The distribution maps are produced using the time-weighted dynamic time warping (TWDTW) method based on a high spatiotemporal resolution fused dataset. The overall accuracy over 22 provincial administrative regions was 79.38 % on average based on 18,557 samples, and at the county level, the correlation coefficient (R2) between the identified area and the statistical area from 2001 to 2020 ranged from 0.657 to 0.903.classification system:0: non-maize1: maize
Facebook
TwitterThis built area can also be described as an “urban task” or an urban envelope and is defined as the area delimiting a set of parcels built on a given date. This envelope is only a spatial reference for locating a boundary of construction according to different design criteria. However, that envelope does not in any way constitute the currently urbanised part defined by virtue of the application of land law, which is much more restricted, which is determined on the basis of factual elements of the ground and on the basis of jurisprudential criteria. This built sector serves only as a reference point to contribute to the assessment of the consumption of space in urban planning documents. Some specific features of the spatial distribution of built-up areas are observed in more detail. These differences can be attributed to the land structure of agricultural areas (cultural typology, parcel geometry, cultural methods of setting up farms, etc.), to land-based urbanisation patterns depending on the territory or, on the contrary, to more intensified forms of this residential development (e.g. regulatory aspect of urban planning documents). In the department, these different forms of urban envelopes are identifiable. For example, in the Deux-Sèvres, the periphery of Parthenay is composed of a scattered set of habitat represented by an urban envelope in cloud of dots. Whereas in contrast, Niort’s periphery is marked by larger but more concentrated envelopes. This data specifies the number of parcels that make up each urban envelope. This allows, by simple processing, to select only the corresponding urban envelopes, those consisting of at least four units.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This evaluation of the RoxAnn system as a tool for mapping the distribution of kelp biotopes has been undertaken as part of the BioMar Project which is funded by the European Community through the LIFE Programme. The central aim of the present project was to evaluate of the RoxAnn system as a tool for mapping the distribution of kelp on the north west coast of the Isle of Lewis. If the RoxAnn system could map the distribution of kelp biotopes, it could prove to be a valuable tool for gathering resource data to assist management decisions - for instance assessing kelp harvesting proposals. The BioMar team carried out the field work for this study from August 27 to September 2, 1994. Five areas were studied on the NW coast of Lewis, Western Isles: four areas within East Loch Roag and the open coast from East Loch Roag to Bragar. Biological data were collected for 59 remote video samples, and the change in kelp density with depth measured at ten sites using SCUBA diving. Additional information source: Davies, J., Sotheran, I., 1995. An evaluation of the RoxAnn system as a tool for mapping the distribution of kelp biotopes.
Facebook
TwitterMAXENT is now a common species distribution modeling (SDM) tool used by conservation practitioners for predicting the distribution of a species from a set of records and environmental predictors. However, datasets of species occurrence used to train the model are often biased in the geographical space because of unequal sampling effort across the study area. This bias may be a source of strong inaccuracy in the resulting model and could lead to incorrect predictions. Although a number of sampling bias correction methods have been proposed, there is no consensual guideline to account for it. We compared here the performance of five methods of bias correction on three datasets of species occurrence: one “virtual” derived from a land cover map, and two actual datasets for a turtle (Chrysemys picta) and a salamander (Plethodon cylindraceus). We subjected these datasets to four types of sampling biases corresponding to potential types of empirical biases. We applied five correction methods to the biased samples and compared the outputs of distribution models to unbiased datasets to assess the overall correction performance of each method. The results revealed that the ability of methods to correct the initial sampling bias varied greatly depending on bias type, bias intensity and species. However, the simple systematic sampling of records consistently ranked among the best performing across the range of conditions tested, whereas other methods performed more poorly in most cases. The strong effect of initial conditions on correction performance highlights the need for further research to develop a step-by-step guideline to account for sampling bias. However, this method seems to be the most efficient in correcting sampling bias and should be advised in most cases.
Facebook
TwitterWater distribution areas are areas comprising basins, sub-basins, fractions of sub-watersheds (superficial ERAs) or aquifer systems (Underground ERAs), characterised by a lack of resources, other than exceptional, in relation to needs.
Procedure: These areas are defined by Decree No 94-354 of 29 April 1994, as amended by Decree No 2003-869 of 11 September 2003. Classified by decree, these areas are translated into a list of municipalities by the prefects of the departments (ZRE Communes). In these areas, the thresholds for authorisation and reporting of samples from surface water and groundwater are lowered. These provisions are intended to enable better control of the demand for water, in order to ensure the best preservation of aquatic ecosystems and the reconciliation of economic uses of water. In these areas, water withdrawals of more than 8 m³/s are subject to authorisation and all others are subject to reporting.
Reference texts: — Decree No 94-354 of 29 April 1994 — Decree No 2003-869 of 11 September 2003.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset originally held 5 647 442 total records, where 34% of the records corresponded to germplasm accessions and 66% to herbarium samples. A total of 3 231 286 records had cross-checked coordinates (see Figure 2). 322 735 records were newly georeferenced using The Google Geocoding API and 15 713 new records were obtained after digitizing the information contained in herbaria specimens. Data was gathered from more than 100 data providers, including GBIF (a comprehensive list of institutions and individuals is available here: http://www.cwrdiversity.org/data-sources/ ).
The geographic coverage of the dataset includes 96% of the world countries and also includes records of cultivated plants (1/3 of the dataset). Records of the crop wild relatives of 80 crop gene pools can be queried and visualized in this interactive map: http://www.cwrdiversity.org/distribution-map/
This dataset was assembled as part of the project ‘Adapting Agriculture to Climate Change: Collecting, Protecting and Preparing Crop Wild Relatives’, which is supported by the Government of Norway. The project is managed by the Global Crop Diversity Trust and the Millennium Seed Bank of the Royal Botanic Gardens, Kew, and implemented in partnership with national and international genebanks and plant breeding institutes around the world. For further information, please refer to the project website: http://www.cwrdiversity.org/
For publication to GBIF, all records originally gathered from GBIF have been removed to avoid data duplication.
Citation: Crop Wild Relatives Occurrence data consortia ([year]). A global database for the distributions of crop wild relatives. Centro Internacional de Agricultura Tropical (CIAT). Occurrence dataset https://doi.org/10.15468/jyrthk accessed via GBIF.org on [date].
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Two vector (.shp) files are provided. The first, (macro assemblages.shp) shows the modelled (random forest) macrofaunal assemblage type based on a clustering of abundance data from the OneBenthic database (see https://sway.office.com/HM5VkWvBoZ86atYP?ref=Link). The second file, (macro assemblages confidence.shp) shows associated confidence in the modelled output, with darker shades (high values) indicating higher confidence and lighter shades (lower values) indicating lower confidence. Both layers can be viewed in the OneBenthic Layers tool (https://rconnect.cefas.co.uk/onebenthic_layers/), together with further details of the methodology used to produce them.
The modelled layer for macrofaunal assemblage is based on a random forest modelling of point sample data from the OneBenthic (OB, https://rconnect.cefas.co.uk/onebenthic dashboard/) dataset, largely following the methodology in Cooper et al. (2019), but with an expanded dataset covering the Greater North Sea and including data from the EurOBIS (https://www.eurobis.org/) data repository. Of the 44,407 samples within OB, we selected a subset of 31,845 for which data were considered comparable (i.e. sample acquired using a 0.1 m2 grab or core, processed using a 1 mm sieve and not taken from a known impacted site). Colonial taxa were included and given a value of one. To take account of potential differences in taxonomic resolution between surveys, macrofaunal data were aggregated to family level using the taxonomic hierarchy provided by the World Register of Marine Species (https://www.marinespecies.org/). This reduced the number of taxa from 3,659 to 750. To address spatial autocorrelation in the data, and in keeping with the previous approach, samples closer than 50 m were removed from the dataset, reducing the overall number to 18,348. A fourth-root transformation was then applied to the data to down weight the influence of highly abundant taxa. Data were then subjected to clustering using k-means. A species distribution modelling approach, based on random forest, was then used to model cluster group (i.e. macrofaunal assemblage or biotope) identity across the study area (Greater North Sea). Cross-validation via repeated sub-sampling was done to evaluate the robustness of the model estimate and predictions to data sub-setting and to extract additional information from the model outputs to produce maps of confidence in the predicted distribution, following the approach described in Mitchell et al. (2018). The cross-validation was done on 10 split sample data sets with 75% used to train and 25% to test models, randomly sampled within the levels of the response variable to maintain the class balance. The final model output was plotted as the cluster class with the majority vote of all 10 model runs. An associated confidence map was produced by multiplying map layers for 1) the frequency of the most common class and ii) the average probability of the most common class. Model outputs are used in the OneBenthic Layers Tool (https://rconnect.cefas.co.uk/onebenthic_layers/).
Cooper, K.M.; Bolam, S.G.; Downie, A.-L.; Barry, J. 2019. Biological-based habitat classification approaches promote cost-efficient monitoring: An example using seabed assemblages. J. Appl. Ecol. 56:1085–1098. https://doi.org/10.1111/1365-2664.13381
Mitchell, P.J., Downie, A.-L., Diesing, M. How good is my map? 2018. A tool for semi-automated thematic mapping and spatially explicit confidence assessment. Env. Model. Softw. 108, 111–122. https://doi.org/10.1016/j.envsoft.2018.07.014
Facebook
Twitterhttps://research.csiro.au/dap/licences/csiro-data-licence/https://research.csiro.au/dap/licences/csiro-data-licence/
This dataset is a series of digital map-posters accompanying the AdaptNRM Guide: Helping Biodiversity Adapt: supporting climate adaptation planning using a community-level modelling approach.
These represent supporting materials and information about the community-level biodiversity models applied to climate change. Map posters are organised by four biological groups (vascular plants, mammals, reptiles and amphibians), two climate change scenario (1990-2050 MIROC5 and CanESM2 for RCP8.5), and five measures of change in biodiversity.
The map-posters present the nationally consistent data at locally relevant resolutions in eight parts – representing broad groupings of NRM regions based on the cluster boundaries used for climate adaptation planning (http://www.environment.gov.au/climate-change/adaptation) and also Nationally.
Map-posters are provided in PNG image format at moderate resolution (300dpi) to suit A0 printing. The posters were designed to meet A0 print size and digital viewing resolution of map detail. An additional set in PDF image format has been created for ease of download for initial exploration and printing on A3 paper. Some text elements and map features may be fuzzy at this resolution.
Each map-poster contains four dataset images coloured using standard legends encompassing the potential range of the measure, even if that range is not represented in the dataset itself or across the map extent.
Most map series are provided in two parts: part 1 shows the two climate scenarios for vascular plants and mammals and part 2 shows reptiles and amphibians. Eight cluster maps for each series have a different colour theme and map extent. A national series is also provided. Annotation briefly outlines the topics presented in the Guide so that each poster stands alone for quick reference.
An additional 77 National maps presenting the probability distributions of each of 77 vegetation types – NVIS 4.1 major vegetation subgroups (NVIS subgroups) - are currently in preparation.
Example citations:
Williams KJ, Raisbeck-Brown N, Prober S, Harwood T (2015) Generalised projected distribution of vegetation types – NVIS 4.1 major vegetation subgroups (1990 and 2050), A0 map-poster 8.1 - East Coast NRM regions. CSIRO Land and Water Flagship, Canberra. Available online at www.AdaptNRM.org and https://data.csiro.au/dap/.
Williams KJ, Raisbeck-Brown N, Harwood T, Prober S (2015) Revegetation benefit (cleared natural areas) for vascular plants and mammals (1990-2050), A0 map-poster 9.1 - East Coast NRM regions. CSIRO Land and Water Flagship, Canberra. Available online at www.AdaptNRM.org and https://data.csiro.au/dap/.
This dataset has been delivered incrementally. Please check that you are accessing the latest version of the dataset. Lineage: The map posters show case the scientific data. The data layers have been developed at approximately 250m resolution (9 second) across the Australian continent to incorporate the interaction between climate and topography, and are best viewed using a geographic information system (GIS). Each data layers is 1Gb, and inaccessible to non-GIS users. The map posters provide easy access to the scientific data, enabling the outputs to be viewed at high resolution with geographical context information provided.
Maps were generated using layout and drawing tools in ArcGIS 10.2.2
A check list of map posters and datasets is provided with the collection.
Map Series: 7.(1-77) National probability distribution of vegetation type – NVIS 4.1 major vegetation subgroup pre-1750 #0x
8.1 Generalised projected distribution of vegetation types (NVIS subgroups) (1990 and 2050)
9.1 Revegetation benefit (cleared natural areas) for plants and mammals (1990-2050)
9.2 Revegetation benefit (cleared natural areas) for reptiles and amphibians (1990-2050)
10.1 Need for assisted dispersal for vascular plants and mammals (1990-2050)
10.2 Need for assisted dispersal for reptiles and amphibians (1990-2050)
11.1 Refugial potential for vascular plants and mammals (1990-2050)
11.1 Refugial potential for reptiles and amphibians (1990-2050)
12.1 Climate-driven future revegetation benefit for vascular plants and mammals (1990-2050)
12.2 Climate-driven future revegetation benefit for vascular reptiles and amphibians (1990-2050)