This layer reflects the district boundaries adopted by the Seattle Redistricting Commission in November 2022.
This data layer describes the boundaries of the director districts within the Seattle Public School District.
Washington Legislative Districts 2024, also known as Remedial Map 3B, created in CASE NO. 3:22-cv-05035-RSL at the United States District Court for the Western District of Washinton at Seattle, presided over by judge Robert. S Lasnik.https://www.documentcloud.org/documents/24483664-redistricting-orderThese districts replace the 2022 Legislative districts and will be used in the 2024 elections pending US Supreme Court action.Please note that there are four split Census Blocks due to annexations in Yakima County. Portions of blocks 530770018013012, 530770018012077, 530770020042004, and 530770018011075 transferred from LD 15 to LD 14. This feature layer contains 49 features representing each of Washington State's 49 legislative districts and is projected to NAD 1983 HARN Washington State Plane South US Feet.For questions, please contact Nicholas Pharris at the Secretary of State. nicholas.pharris@sos.wa.gov
Neighborhood Map Atlas neighborhoods are derived from the Seattle City Clerk's Office Geographic Indexing Atlas. These are the smallest neighborhood areas and have been supplemented with alternate names from other sources in 2020. They roll up to the district areas. The sub-neighborhood field contains the most common name and the alternate name field is a comma delimited list of all the alternate names.The original atlas is designed for subject indexing of legislation, photographs, and other documents and is an unofficial delineation of neighborhood boundaries used by the City Clerks Office. Sources for this atlas and the neighborhood names used in it include a 1980 neighborhood map produced by the Department of Community Development, Seattle Public Library indexes, a 1984-1986 Neighborhood Profiles feature series in the Seattle Post-Intelligencer, numerous parks, land use and transportation planning studies, and records in the Seattle Municipal Archives. Many of the neighborhood names are traditional names whose meaning has changed over the years, and others derive from subdivision names or elementary school attendance areas.Disclaimer: The Seattle City Clerk's Office Geographic Indexing Atlas is designed for subject indexing of legislation, photographs, and other records in the City Clerk's Office and Seattle Municipal Archives according to geographic area. Neighborhoods are named and delineated in this collection of maps in order to provide consistency in the way geographic names are used in describing records of the Archives and City Clerk, thus allowing precise retrieval of records. The neighborhood names and boundaries are not intended to represent any "official" City of Seattle neighborhood map. The Office of the City Clerk makes no claims as to the completeness, accuracy, or content of any data contained in the Geographic Indexing Atlas; nor does it make any representation of any kind, including, but not limited to, warranty of the accuracy or fitness for a particular use; nor are any such warranties to be implied or inferred with respect to the representations furnished herein. The maps are subject to change for administrative purposes of the Office of the City Clerk. Information contained in the site, if used for any purpose other than as an indexing and search aid for the databases of the Office of the City Clerk, is being used at one's own risk.
These boundaries reflect those used from 2013 - 2022. New boundaries were drawn in 2022 and will be used in 2023 elections. Symbolizes data from the featureclass CITYPLAN.CITYPLAN.council_districts_shc_2013 based on the the attribute "C_DISTRICT". Labels are based on the attribute Display Name.Be aware these are not the most current council district boundaries, to access the current data set, please use: Seattle City Council Districts
City of Seattle neighborhood boundaries with American Community Survey (ACS) 5-year series data of frequently requested topics. Data is pulled from block group tables for the most recent ACS vintage and summarized to the neighborhoods based on block group assignment. Seattle neighborhood geography of Council Districts, Comprehensive Plan Growth Areas are included.The census block groups have been assigned to a neighborhood based on the distribution of the total population from the 2020 decennial census for the component census blocks. If the majority of the population in the block group were inside the boundaries of the neighborhood, the block group was assigned wholly to that neighborhood.Feature layer created for and used in the Neighborhood Profiles application.The attribute data associated with this map is updated annually to contain the most currently released American Community Survey (ACS) 5-year data and contains estimates and margins of error. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. <div style='font-family:"Avenir Next W01", "Avenir Next W00", "Avenir Next&qu
PLEASE NOTE, this layer represents the seven districts for which Seattle City Councilmembers will be elected to represent in November 2023, to be sworn in January 2024. These were adopted by Seattle Redistricting Commission in November 2022. City of Seattle Council Districts with selected Census Bureau 2000, 2010 and 2020 P.L. 94-171 redistricting data.Click here for a printed report.For more information about the P.L. 94-171 redistricting data, please visit the U.S. Census Bureau. For a detailed description of the data included please see the 2020 Census State Redistricting Data Summary File.
Seattle Parks and Recreation ARCGIS park feature map layer web services are hosted on Seattle Public Utilities' ARCGIS server. This web services URL provides a live read only data connection to the Seattle Parks and Recreations Play Area dataset.
Incorporated in February 1990, the City of SeaTac is located in the Pacific Northwest, approximately midway between the cities of Seattle and Tacoma in the State of Washington. SeaTac is a vibrant community, economically strong, environmentally sensitive, and people-oriented. The City boundaries surround the Seattle-Tacoma International Airport, (approximately 3 square miles in area) which is owned and operated by the Port of Seattle. For additional information regarding the City of SeaTac, its people, or services, please visit https://www.seatacwa.gov. For additional information regarding City GIS data or maps, please visit https://www.seatacwa.gov/our-city/maps-and-gis.
This data layer references data from a high-resolution tree canopy change-detection layer for Seattle, Washington. Tree canopy change was mapped by using remotely sensed data from two time periods (2016 and 2021). Tree canopy was assigned to three classes: 1) no change, 2) gain, and 3) loss. No change represents tree canopy that remained the same from one time period to the next. Gain represents tree canopy that increased or was newly added, from one time period to the next. Loss represents the tree canopy that was removed from one time period to the next. Mapping was carried out using an approach that integrated automated feature extraction with manual edits. Care was taken to ensure that changes to the tree canopy were due to actual change in the land cover as opposed to differences in the remotely sensed data stemming from lighting conditions or image parallax. Direct comparison was possible because land-cover maps from both time periods were created using object-based image analysis (OBIA) and included similar source datasets (LiDAR-derived surface models, multispectral imagery, and thematic GIS inputs). OBIA systems work by grouping pixels into meaningful objects based on their spectral and spatial properties, while taking into account boundaries imposed by existing vector datasets. Within the OBIA environment a rule-based expert system was designed to effectively mimic the process of manual image analysis by incorporating the elements of image interpretation (color/tone, texture, pattern, location, size, and shape) into the classification process. A series of morphological procedures were employed to ensure that the end product is both accurate and cartographically pleasing. No accuracy assessment was conducted, but the dataset was subjected to manual review and correction.University of Vermont Spatial Analysis LaboratoryThis dataset consists of City of Seattle Council District areas as they existed in the first comparison year (2016) which cover the following tree canopy categories:Existing tree canopy percentPossible tree canopy - vegetation percentRelative percent changeAbsolute percent changeFor more information, please see the 2021 Tree Canopy Assessment.
Note: This map is not an official zoning map. For precise zoning information, please call or visit the Seattle Municipal Tower, Seattle Department of Construction and InspectionsCity of Seattle's land use zoning historic district and special review district overlays.
description: Seattle Parks and Recreation GIS Map Layer Shapefile - Play Area Shapefile - This Seattle Parks and Recreation ARCGIS park feature map layer was exported from SPU ARCGIS and converted to a shapefile then manually uploaded to data.seattle.gov via Socrata. OR Web Services - Live "read only" data connection ESRI web services URL: http://gisrevprxy.seattle.gov/arcgis/rest/services/DPR_EXT/ParksExternalWebsite/MapServer/33; abstract: Seattle Parks and Recreation GIS Map Layer Shapefile - Play Area Shapefile - This Seattle Parks and Recreation ARCGIS park feature map layer was exported from SPU ARCGIS and converted to a shapefile then manually uploaded to data.seattle.gov via Socrata. OR Web Services - Live "read only" data connection ESRI web services URL: http://gisrevprxy.seattle.gov/arcgis/rest/services/DPR_EXT/ParksExternalWebsite/MapServer/33
This data layer references data from a high-resolution tree canopy change-detection layer for Seattle, Washington. Tree canopy change was mapped by using remotely sensed data from two time periods (2016 and 2021). Tree canopy was assigned to three classes: 1) no change, 2) gain, and 3) loss. No change represents tree canopy that remained the same from one time period to the next. Gain represents tree canopy that increased or was newly added, from one time period to the next. Loss represents the tree canopy that was removed from one time period to the next. Mapping was carried out using an approach that integrated automated feature extraction with manual edits. Care was taken to ensure that changes to the tree canopy were due to actual change in the land cover as opposed to differences in the remotely sensed data stemming from lighting conditions or image parallax. Direct comparison was possible because land-cover maps from both time periods were created using object-based image analysis (OBIA) and included similar source datasets (LiDAR-derived surface models, multispectral imagery, and thematic GIS inputs). OBIA systems work by grouping pixels into meaningful objects based on their spectral and spatial properties, while taking into account boundaries imposed by existing vector datasets. Within the OBIA environment a rule-based expert system was designed to effectively mimic the process of manual image analysis by incorporating the elements of image interpretation (color/tone, texture, pattern, location, size, and shape) into the classification process. A series of morphological procedures were employed to ensure that the end product is both accurate and cartographically pleasing. No accuracy assessment was conducted, but the dataset was subjected to manual review and correction.University of Vermont Spatial Analysis LaboratoryThis dataset consists of City of Seattle Council District areas as they existed in the first comparison year (2016) which cover the following tree canopy categories:
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘A Council Districts Profile ACS 5-year 2013-2017’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/f041fcfa-c22a-41ef-887c-08661c181447 on 27 January 2022.
--- Dataset description provided by original source is as follows ---
Data from: American Community Survey, 5-year Series 2013-2017
--- Original source retains full ownership of the source dataset ---
Table from the American Community Survey (ACS) 5-year series on education enrollment and attainment related topics for City of Seattle Council Districts, Comprehensive Plan Growth Areas and Community Reporting Areas. Table includes B14007/B14002 School Enrollment, B15003 Educational Attainment. Data is pulled from block group tables for the most recent ACS vintage and summarized to the neighborhoods based on block group assignment.
Displays the polygons and attributes of SDOT Street Use Districts throughout the City.Refresh Cycle: Daily RefreshFeature Class: SDOT.SU_Districts
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Council Districts Profile ACS 5-year 2009-2013’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/d7ab67ea-2d87-4b52-b6d6-559559f15c05 on 27 January 2022.
--- Dataset description provided by original source is as follows ---
Data from: American Community Survey, 5-year Series 2009-2013
--- Original source retains full ownership of the source dataset ---
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
Data from: American Community Survey, 5-year Series 2009-2013
This data layer references data from a high-resolution tree canopy change-detection layer for Seattle, Washington. Tree canopy change was mapped by using remotely sensed data from two time periods (2016 and 2021). Tree canopy was assigned to three classes: 1) no change, 2) gain, and 3) loss. No change represents tree canopy that remained the same from one time period to the next. Gain represents tree canopy that increased or was newly added, from one time period to the next. Loss represents the tree canopy that was removed from one time period to the next. Mapping was carried out using an approach that integrated automated feature extraction with manual edits. Care was taken to ensure that changes to the tree canopy were due to actual change in the land cover as opposed to differences in the remotely sensed data stemming from lighting conditions or image parallax. Direct comparison was possible because land-cover maps from both time periods were created using object-based image analysis (OBIA) and included similar source datasets (LiDAR-derived surface models, multispectral imagery, and thematic GIS inputs). OBIA systems work by grouping pixels into meaningful objects based on their spectral and spatial properties, while taking into account boundaries imposed by existing vector datasets. Within the OBIA environment a rule-based expert system was designed to effectively mimic the process of manual image analysis by incorporating the elements of image interpretation (color/tone, texture, pattern, location, size, and shape) into the classification process. A series of morphological procedures were employed to ensure that the end product is both accurate and cartographically pleasing. No accuracy assessment was conducted, but the dataset was subjected to manual review and correction.University of Vermont Spatial Analysis LaboratoryThis dataset consists of City of Seattle Council District areas as they existed in the first comparison year (2016) which cover the following tree canopy categories:Existing tree canopy percentPossible tree canopy - vegetation percentRelative percent changeAbsolute percent changeFor more information, please see the 2021 Tree Canopy Assessment.
This layer reflects the district boundaries adopted by the Seattle Redistricting Commission in November 2022.