4 datasets found
  1. c

    DC COVID-19 Department of Disability Services

    • s.cnmilf.com
    • opendata.dc.gov
    Updated Feb 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GIS Data Coordinator, D.C. Office of the Chief Technology Officer , GIS Data Coordinator (2025). DC COVID-19 Department of Disability Services [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/dc-covid-19-department-of-disability-services
    Explore at:
    Dataset updated
    Feb 5, 2025
    Dataset provided by
    GIS Data Coordinator, D.C. Office of the Chief Technology Officer , GIS Data Coordinator
    Area covered
    Washington
    Description

    On March 2, 2022 DC Health announced the District’s new COVID-19 Community Level key metrics and reporting. COVID-19 cases are now reported on a weekly basis. More information available at https://coronavirus.dc.gov. District of Columbia Department of Disability Services testing for the number of positive tests, quarantined, returned to work and lives lost. Due to rapidly changing nature of COVID-19, data for March 2020 is limited.General Guidelines for Interpreting Disease Surveillance DataDuring a disease outbreak, the health department will collect, process, and analyze large amounts of information to understand and respond to the health impacts of the disease and its transmission in the community. The sources of disease surveillance information include contact tracing, medical record review, and laboratory information, and are considered protected health information. When interpreting the results of these analyses, it is important to keep in mind that the disease surveillance system may not capture the full picture of the outbreak, and that previously reported data may change over time as it undergoes data quality review or as additional information is added. These analyses, especially within populations with small samples, may be subject to large amounts of variation from day to day. Despite these limitations, data from disease surveillance is a valuable source of information to understand how to stop the spread of COVID19.

  2. Medicaid enrollees who qualify for benefits based on disability

    • catalog.data.gov
    • odgavaprod.ogopendata.com
    • +1more
    Updated Jul 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Medicare & Medicaid Services (2025). Medicaid enrollees who qualify for benefits based on disability [Dataset]. https://catalog.data.gov/dataset/medicaid-enrollees-who-qualify-for-benefits-based-on-disability
    Explore at:
    Dataset updated
    Jul 11, 2025
    Dataset provided by
    Centers for Medicare & Medicaid Services
    Description

    This data set includes annual counts and percentages of Medicaid enrollees who are eligible for benefits based on disability, overall; by reason for qualification of disability benefits; and by four subpopulation topics: age group, dual eligibility status, race and ethnicity, and managed care participation. These results were generated using Transformed Medicaid Statistical Information System (T-MSIS) Analytic Files (TAF) Release 1 data and the Race/Ethnicity Imputation Companion File. This data set includes Medicaid enrollees in all 50 states, the District of Columbia, Puerto Rico, and the U.S. Virgin Islands who were enrolled for at least one day in the calendar year, except where otherwise noted. Enrollees in Guam, American Samoa, and the Northern Mariana Islands are not included. The Children’s Health Insurance Program (CHIP) does not confer eligibility based on disability, so Medicaid expansion CHIP (M-CHIP) and separate CHIP (S-CHIP) enrollees are not included. Results shown for the race and ethnicity subpopulation topic exclude enrollees in the U.S. Virgin Islands. Results shown for the dual eligibility, race and ethnicity, and managed care participation subpopulation topics are restricted to working-age adults (ages 19 to 64) with comprehensive Medicaid benefits. Some rows in the data set have a value of "DS," which indicates that data were suppressed according to the Centers for Medicare & Medicaid Services’ Cell Suppression Policy for values between 1 and 10. This data set is based on the brief: "Medicaid enrollees who qualify for benefits based on disability in 2020." Enrollees are assigned to a disability category based on their latest reported eligibility group code and age in the calendar year. Enrollees are assigned to an age group subpopulation using age as of December 31st of the calendar year. Enrollees are assigned to a dual eligibility status subpopulation based on the dual eligibility code that applies to the majority of their enrolled-months during the year (Dual Eligibility Code). Enrollees are assigned to a race and ethnicity subpopulation using the state-reported race and ethnicity information in TAF when it is available and of good quality; if it is missing or unreliable, race and ethnicity is indirectly estimated using an enhanced version of Bayesian Improved Surname Geocoding (BISG) (Race and ethnicity of the national Medicaid and CHIP population in 2020). Enrollees are assigned to a managed care participation subpopulation based on the managed care plan type code that applies to the majority of their enrolled-months during the year (Enrollment in CMC Plans). Please refer to the full brief for additional context about the methodology and detailed findings. Future updates to this data set will include more recent data years as the TAF data become available.

  3. 2024 American Community Survey: S1810 | Disability Characteristics (ACS...

    • data.census.gov
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS, 2024 American Community Survey: S1810 | Disability Characteristics (ACS 1-Year Estimates Subject Tables) [Dataset]. https://data.census.gov/table/ACSST1Y2024.S1810?q=District+of+Columbia+Health&g=040XX00US11
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2024
    Description

    Key Table Information.Table Title.Disability Characteristics.Table ID.ACSST1Y2024.S1810.Survey/Program.American Community Survey.Year.2024.Dataset.ACS 1-Year Estimates Subject Tables.Source.U.S. Census Bureau, 2024 American Community Survey, 1-Year Estimates.Dataset Universe.The dataset universe of the American Community Survey (ACS) is the U.S. resident population and housing. For more information about ACS residence rules, see the ACS Design and Methodology Report. Note that each table describes the specific universe of interest for that set of estimates..Methodology.Unit(s) of Observation.American Community Survey (ACS) data are collected from individuals living in housing units and group quarters, and about housing units whether occupied or vacant. For more information about ACS sampling and data collection, see the ACS Design and Methodology Report..Geography Coverage.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year.Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Sampling.The ACS consists of two separate samples: housing unit addresses and group quarters facilities. Independent housing unit address samples are selected for each county or county-equivalent in the U.S. and Puerto Rico, with sampling rates depending on a measure of size for the area. For more information on sampling in the ACS, see the Accuracy of the Data document..Confidentiality.The Census Bureau has modified or suppressed some estimates in ACS data products to protect respondents' confidentiality. Title 13 United States Code, Section 9, prohibits the Census Bureau from publishing results in which an individual's data can be identified. For more information on confidentiality protection in the ACS, see the Accuracy of the Data document..Technical Documentation/Methodology.Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables.Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Weights.ACS estimates are obtained from a raking ratio estimation procedure that results in the assignment of two sets of weights: a weight to each sample person record and a weight to each sample housing unit record. Estimates of person characteristics are based on the person weight. Estimates of family, household, and housing unit characteristics are based on the housing unit weight. For any given geographic area, a characteristic total is estimated by summing the weights assigned to the persons, households, families or housing units possessing the characteristic in the geographic area. For more information on weighting and estimation in the ACS, see the Accuracy of the Data document.Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of hous...

  4. National Health Interview Survey, 1985 - Version 1

    • search.gesis.org
    Updated May 25, 2011
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Department of Health and Human Services. Centers for Disease Control and Prevention. National Center for Health Statistics (2011). National Health Interview Survey, 1985 - Version 1 [Dataset]. http://doi.org/10.3886/ICPSR08668.v1
    Explore at:
    Dataset updated
    May 25, 2011
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    GESIS search
    Authors
    United States Department of Health and Human Services. Centers for Disease Control and Prevention. National Center for Health Statistics
    License

    https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de456959https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de456959

    Description

    Abstract (en): The basic purpose of the National Health Interview Survey is to obtain information about the amount and distribution of illness, its effects in terms of disability and chronic impairments, and the kinds of health services people receive. There are five types of records in the core survey, each in a separate data file. The variables in the Household File (Part 1) include type of living quarters, size of family, number of families in household, and geographic region. The variables in the Person File (Part 2) include sex, age, race, marital status, veteran status, education, income, industry and occupation codes, and limits on activity. These variables are found in the Condition, Doctor Visit, and Hospital Episode Files as well. The Person File also supplies data on height, weight, bed days, doctor visits, hospital stays, years at residence, and region variables. The Condition (Part 3), Doctor Visit (Part 4), and the Hospital Episode (Part 5) Files contain information on each reported condition, two-week doctor visit, or hospitalization (twelve-month recall), respectively. A sixth, seventh, and eighth file have been added along with the five core files. The Health Promotions and Disease Prevention Supplement is separated into three categories as follows: Child Safety/Infant Feeding (Part 6), Sample Person (Part 7), and Smoking (Part 8). These data files include questions on health and fitness awareness, general health habits, injury control, child safety and health, high blood pressure, stress, exercise, smoking, alcohol use, dental care, and occupational safety and health. Detailed information regarding the use of weights is located within the documentation. ICPSR data undergo a confidentiality review and are altered when necessary to limit the risk of disclosure. ICPSR also routinely creates ready-to-go data files along with setups in the major statistical software formats as well as standard codebooks to accompany the data. In addition to these procedures, ICPSR performed the following processing steps for this data collection: Created online analysis version with question text.. Civilian, non-institutionalized population of the United States and the District of Columbia from 1,900 geographically defined Primary Sampling Units (PSU). Starting in 1985, the NHIS multi-stage probability sampling design incorporates several major changes which facilitate linkages with other National Center for Health Statistics surveys, improve precision of estimates, and reduce costs. Starting with an all-area frame, a reduced number of 198 Primary Sampling Units (PSU) were selected, including two from each non-self representing stratum. Black persons were oversampled. Four independent representative samples were drawn which may be used in any combination. 2011-05-25 SAS, SPSS, and Stata setup files have been added. Some corresponding documentation has been updated and pre-existing data files have been replaced. The Health Promotion and Disease Prevention Supplement has been broken into three separate data files.2006-01-18 File CB8668.ALL.PDF was removed from any previous datasets and flagged as a study-level file, so that it will accompany all downloads. face-to-face interviewThe data contain amp (&), dash (-), and blank codes. In conjunction with the changes made to the core of NHIS in 1982, all 5 types of files have revised tape layouts. In general, identification items are at the beginning of each record followed by household and person information in the same location on each tape. Limitation of activity, acute conditions, disability days, and doctor visits should not be compared to data gathered before 1982. For the Health Promotions and Disease Prevention Supplement, one person was selected from each family interviewed and this sample person was a self-respondent to the supplement's questions.

  5. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
GIS Data Coordinator, D.C. Office of the Chief Technology Officer , GIS Data Coordinator (2025). DC COVID-19 Department of Disability Services [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/dc-covid-19-department-of-disability-services

DC COVID-19 Department of Disability Services

Explore at:
Dataset updated
Feb 5, 2025
Dataset provided by
GIS Data Coordinator, D.C. Office of the Chief Technology Officer , GIS Data Coordinator
Area covered
Washington
Description

On March 2, 2022 DC Health announced the District’s new COVID-19 Community Level key metrics and reporting. COVID-19 cases are now reported on a weekly basis. More information available at https://coronavirus.dc.gov. District of Columbia Department of Disability Services testing for the number of positive tests, quarantined, returned to work and lives lost. Due to rapidly changing nature of COVID-19, data for March 2020 is limited.General Guidelines for Interpreting Disease Surveillance DataDuring a disease outbreak, the health department will collect, process, and analyze large amounts of information to understand and respond to the health impacts of the disease and its transmission in the community. The sources of disease surveillance information include contact tracing, medical record review, and laboratory information, and are considered protected health information. When interpreting the results of these analyses, it is important to keep in mind that the disease surveillance system may not capture the full picture of the outbreak, and that previously reported data may change over time as it undergoes data quality review or as additional information is added. These analyses, especially within populations with small samples, may be subject to large amounts of variation from day to day. Despite these limitations, data from disease surveillance is a valuable source of information to understand how to stop the spread of COVID19.

Search
Clear search
Close search
Google apps
Main menu