18 datasets found
  1. G

    DIV2K High Resolution Images

    • gts.ai
    jpg
    Updated Jul 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GTS (2024). DIV2K High Resolution Images [Dataset]. https://gts.ai/dataset-download/div2k-high-resolution-images/
    Explore at:
    jpgAvailable download formats
    Dataset updated
    Jul 15, 2024
    Dataset provided by
    GLOBOSE TECHNOLOGY SOLUTIONS PRIVATE LIMITED
    Authors
    GTS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Variables measured
    High-resolution images (RGB), Downscaling factors (×2, ×3, ×4), Train/Validation split (800/100 images)
    Description

    The DIV2K dataset is a large-scale benchmark designed for image super-resolution research and development, widely used in NTIRE and PIRM challenges. It contains 1,000 high-resolution RGB images divided into training and validation sets. The training set provides 800 high-quality images along with downsampled versions at scaling factors ×2, ×3, and ×4. The validation set includes 100 images, with both low-resolution and high-resolution versions released at different challenge phases. This dataset is ideal for developing, training, and benchmarking super-resolution and image restoration algorithms.

  2. t

    div2k dataset

    • service.tib.eu
    Updated Dec 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). div2k dataset [Dataset]. https://service.tib.eu/ldmservice/dataset/div2k-dataset
    Explore at:
    Dataset updated
    Dec 16, 2024
    Description

    The div2k dataset contains 1000 2K-resolution images for single-image super-resolution.

  3. h

    DIV2K

    • huggingface.co
    Updated Mar 13, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tao Yang (2024). DIV2K [Dataset]. https://huggingface.co/datasets/yangtao9009/DIV2K
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 13, 2024
    Authors
    Tao Yang
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    yangtao9009/DIV2K dataset hosted on Hugging Face and contributed by the HF Datasets community

  4. R

    Div2k Dataset

    • universe.roboflow.com
    zip
    Updated Sep 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    hongik (2022). Div2k Dataset [Dataset]. https://universe.roboflow.com/hongik/div2k-cwuju/dataset/2
    Explore at:
    zipAvailable download formats
    Dataset updated
    Sep 12, 2022
    Dataset authored and provided by
    hongik
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    DIV2K Bounding Boxes
    Description

    DIV2K

    ## Overview
    
    DIV2K is a dataset for object detection tasks - it contains DIV2K annotations for 800 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  5. t

    DIV2K - Dataset - LDM

    • service.tib.eu
    Updated Dec 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). DIV2K - Dataset - LDM [Dataset]. https://service.tib.eu/ldmservice/dataset/div2k
    Explore at:
    Dataset updated
    Dec 2, 2024
    Description

    Single Image Super-Resolution (SR) aims to generate a High Resolution (HR) image I SR from a low resolution (LR) im-age I LR such that it is similar to original HR image I HR. SR has seen a lot of interest recently because it is: (i) inherently an ill-posed inverse problem; and (ii) an important low level vision problem having many applications.

  6. DIV2K DATASET

    • kaggle.com
    Updated Oct 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mustafa Al-Khafaji95 (2024). DIV2K DATASET [Dataset]. https://www.kaggle.com/datasets/mustafaalkhafaji95/div2k-dataset/versions/1
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 17, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Mustafa Al-Khafaji95
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Dataset

    This dataset was created by Mustafa Al-Khafaji95

    Released under Apache 2.0

    Contents

  7. DF2K Dataset

    • kaggle.com
    Updated Nov 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anvu1204 (2024). DF2K Dataset [Dataset]. https://www.kaggle.com/datasets/anvu1204/df2kdata
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 30, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Anvu1204
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    A Dataset combined of DIV2K and Flickr2K. This dataset contains: - Training set: 3450 pairs - Valid set: 100 pairs - LR images are obtained by using Bicubic and Unknown methods with 3 scales: x2, x3, x4

  8. t

    DIV2K, Flickr2K, and CLIC datasets - Dataset - LDM

    • service.tib.eu
    Updated Dec 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). DIV2K, Flickr2K, and CLIC datasets - Dataset - LDM [Dataset]. https://service.tib.eu/ldmservice/dataset/div2k--flickr2k--and-clic-datasets
    Explore at:
    Dataset updated
    Dec 16, 2024
    Description

    The dataset used in the paper for neural image compression.

  9. t

    CLIC intra coding challenge 2021, TECNICK dataset, DIV2K dataset

    • service.tib.eu
    Updated Dec 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). CLIC intra coding challenge 2021, TECNICK dataset, DIV2K dataset [Dataset]. https://service.tib.eu/ldmservice/dataset/clic-intra-coding-challenge-2021--tecnick-dataset--div2k-dataset
    Explore at:
    Dataset updated
    Dec 16, 2024
    Description

    The dataset used in the paper is a combination of the CLIC intra coding challenge 2021, the TECNICK dataset, and the DIV2K dataset.

  10. H

    Replication Data for: Super-resolution reconstruction using deep learning:...

    • dataverse.harvard.edu
    Updated Mar 18, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Daniel Kostrzewa; Szymon Piechaczek; Krzysztof Hrynczenko; Pawel Benecki; Jakub Nalepa; Michal Kawulok (2019). Replication Data for: Super-resolution reconstruction using deep learning: should we go deeper? [Dataset]. http://doi.org/10.7910/DVN/DKSPJF
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 18, 2019
    Dataset provided by
    Harvard Dataverse
    Authors
    Daniel Kostrzewa; Szymon Piechaczek; Krzysztof Hrynczenko; Pawel Benecki; Jakub Nalepa; Michal Kawulok
    License

    https://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.7910/DVN/DKSPJFhttps://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.7910/DVN/DKSPJF

    Description

    This dataset contains image patches used to train deep networks for super-resolution reconstruction, used for the experiments reported in our paper: D. Kostrzewa, S. Piechaczek, K. Hrynczenko, P. Benecki, J. Nalepa, and M. Kawulok: "Super-resolution reconstruction using deep learning: should we go deeper?," in Proc. BDAS 2019, Communications in Computer and Information Science, Springer, 2019. The data are split into training and validation sets, containing 12,800 and 1600 patches, respectively. Every patch is of size 224x224 pixels (high resolution), coupled with a low resolution patch (112x112 pixels). The patches were extracted from the publicly available DIV2K dataset (https://data.vision.ee.ethz.ch/cvl/DIV2K).

  11. div2k train jpeg [401-800]

    • kaggle.com
    Updated Nov 22, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    yyyang (2022). div2k train jpeg [401-800] [Dataset]. https://www.kaggle.com/mingyuouyang/div2k-jpeg-401800/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 22, 2022
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    yyyang
    Description

    Dataset

    This dataset was created by yyyang

    Contents

  12. div2k_valid_lr_bicubic_x2

    • kaggle.com
    Updated Jan 17, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yash Bansal (2020). div2k_valid_lr_bicubic_x2 [Dataset]. https://www.kaggle.com/datasets/bansalyash/div2k-valid-lr-bicubic-x2
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 17, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Yash Bansal
    Description

    Dataset

    This dataset was created by Yash Bansal

    Contents

  13. IFeaLiD Example Datasets

    • zenodo.org
    zip
    Updated Jul 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Martin Zurowietz; Martin Zurowietz (2024). IFeaLiD Example Datasets [Dataset]. http://doi.org/10.5281/zenodo.3741485
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 22, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Martin Zurowietz; Martin Zurowietz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Example datasets of the Interactive Feature Localization in Deep neural networks (IFeaLiD) tool.

    Cityscapes

    These datasets are based on the image bielefeld_000000_007186_leftImg8bit.png of the Cityscapes dataset. The datasets can be explored online in IFeaLiD:

    COCO

    These datasets are based on the image 000000015746.jpg of the COCO dataset. The datasets can be explored online in IFeaLiD:

    DIV2K

    These datasets are based on the image 0804.png of the DIV2K dataset. The datasets can be explored online in IFeaLiD:

    DOTA

    These datasets are based on the image P0034.png of the DOTA dataset. The datasets can be explored online in IFeaLiD:

  14. H

    Replication Data for: On training deep networks for satellite image...

    • dataverse.harvard.edu
    Updated May 19, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Michal Kawulok; Szymon Piechaczek; Krzysztof Hrynczenko; Pawel Benecki; Daniel Kostrzewa; Jakub Nalepa (2019). Replication Data for: On training deep networks for satellite image super-resolution [Dataset]. http://doi.org/10.7910/DVN/Z4OMPX
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 19, 2019
    Dataset provided by
    Harvard Dataverse
    Authors
    Michal Kawulok; Szymon Piechaczek; Krzysztof Hrynczenko; Pawel Benecki; Daniel Kostrzewa; Jakub Nalepa
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This dataset contains image patches used to train deep networks for super-resolution reconstruction, used for the experiments reported in our IGARSS 2019 paper: M. Kawulok, S. Piechaczek, K. Hrynczenko, P. Benecki, D. Kostrzewa, J. Nalepa: "On training deep networks for satellite image super-resolution," in Proc. IGARSS 2019. The data are split into training and validation sets as described in Table 1 in our paper. Low-resolution patches have been obtained from high-resolution ones following 8 different scenarios - all of them are included in the dataset. The dataset is split into three files due to technical reasons: (i) DIV2K high-resolution patches, (ii) DIV2K low-resolution patches (8 versions), and (iii) Sentinel-2 patches (low- and high-resolution).

  15. c

    Research data supporting "Information capacity of phase-only...

    • repository.cam.ac.uk
    csv
    Updated Apr 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sha, Jinze; Kadis, Andrew; Wetherfield, Benjamin; Meng, Roubing; Huang, Zhongling; Singh, Dilawer; Wojcik, Antoni; Wilkinson, Timothy (2024). Research data supporting "Information capacity of phase-only computer-generated holograms for holographic displays" [Dataset]. http://doi.org/10.17863/CAM.106778
    Explore at:
    csv(2842699 bytes), csv(362525 bytes)Available download formats
    Dataset updated
    Apr 22, 2024
    Dataset provided by
    University of Cambridge
    Apollo
    Authors
    Sha, Jinze; Kadis, Andrew; Wetherfield, Benjamin; Meng, Roubing; Huang, Zhongling; Singh, Dilawer; Wojcik, Antoni; Wilkinson, Timothy
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The research aims to investigate the information capacity of phase-only computer-generated holograms (CGH) quantized to certain bit depth level. Therefore, research data has been generated from the quantized CGH process for 800 target images sourced from the DIV2K Dataset (https://data.vision.ee.ethz.ch/cvl/DIV2K/). The research data contains target images' entropy and delentropy, computer-generated holograms' bit depth and entropy, and the normalised mean squared error (NMSE) between the reconstruction and target image. There are two files in total, where one contains the results for target images set at far field (Fraunhofer region) and the other contains the results for target images set at near field (Fresnel region). Each row in the csv file is corresponded to the result of one instance of a CGH algorithm run.

  16. DIV2K_bicubic_2x

    • kaggle.com
    zip
    Updated Jun 1, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    颀周 (2021). DIV2K_bicubic_2x [Dataset]. https://www.kaggle.com/chenqizhou/div2k-bicubic-2x
    Explore at:
    zip(925846552 bytes)Available download formats
    Dataset updated
    Jun 1, 2021
    Authors
    颀周
    Description

    Dataset

    This dataset was created by 颀周

    Contents

    It contains the following files:

  17. h

    DF2K-OST

    • huggingface.co
    Updated Feb 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    JIANYI WANG (2024). DF2K-OST [Dataset]. https://huggingface.co/datasets/Iceclear/DF2K-OST
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 25, 2024
    Authors
    JIANYI WANG
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    A collection of raw images from DIV2K, Flicker2K and OST datasets. Please refer here for details.

      Citation
    

    @inproceedings{agustsson2017ntire, title={Ntire 2017 challenge on single image super-resolution: Dataset and study}, author={Agustsson, Eirikur and Timofte, Radu}, booktitle={CVPRW}, year={2017} }

    @InProceedings{Lim_2017_CVPR_Workshops, author = {Lim, Bee and Son, Sanghyun and Kim, Heewon and Nah, Seungjun and Lee, Kyoung Mu}, title = {Enhanced Deep Residual… See the full description on the dataset page: https://huggingface.co/datasets/Iceclear/DF2K-OST.

  18. DIV2k_BSDS500

    • kaggle.com
    Updated Nov 17, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    yyyang (2022). DIV2k_BSDS500 [Dataset]. https://www.kaggle.com/datasets/mingyuouyang/div2k-bsds500
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 17, 2022
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    yyyang
    Description

    Dataset

    This dataset was created by yyyang

    Contents

  19. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
GTS (2024). DIV2K High Resolution Images [Dataset]. https://gts.ai/dataset-download/div2k-high-resolution-images/

DIV2K High Resolution Images

Explore at:
4 scholarly articles cite this dataset (View in Google Scholar)
jpgAvailable download formats
Dataset updated
Jul 15, 2024
Dataset provided by
GLOBOSE TECHNOLOGY SOLUTIONS PRIVATE LIMITED
Authors
GTS
License

CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically

Variables measured
High-resolution images (RGB), Downscaling factors (×2, ×3, ×4), Train/Validation split (800/100 images)
Description

The DIV2K dataset is a large-scale benchmark designed for image super-resolution research and development, widely used in NTIRE and PIRM challenges. It contains 1,000 high-resolution RGB images divided into training and validation sets. The training set provides 800 high-quality images along with downsampled versions at scaling factors ×2, ×3, and ×4. The validation set includes 100 images, with both low-resolution and high-resolution versions released at different challenge phases. This dataset is ideal for developing, training, and benchmarking super-resolution and image restoration algorithms.

Search
Clear search
Close search
Google apps
Main menu