100+ datasets found
  1. Population of the U.S. by race 2000-2023

    • statista.com
    Updated Aug 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Population of the U.S. by race 2000-2023 [Dataset]. https://www.statista.com/statistics/183489/population-of-the-us-by-ethnicity-since-2000/
    Explore at:
    Dataset updated
    Aug 20, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jul 2000 - Jul 2023
    Area covered
    United States
    Description

    This graph shows the population of the U.S. by race and ethnic group from 2000 to 2023. In 2023, there were around 21.39 million people of Asian origin living in the United States. A ranking of the most spoken languages across the world can be accessed here. U.S. populationCurrently, the white population makes up the vast majority of the United States’ population, accounting for some 252.07 million people in 2023. This ethnicity group contributes to the highest share of the population in every region, but is especially noticeable in the Midwestern region. The Black or African American resident population totaled 45.76 million people in the same year. The overall population in the United States is expected to increase annually from 2022, with the 320.92 million people in 2015 expected to rise to 341.69 million people by 2027. Thus, population densities have also increased, totaling 36.3 inhabitants per square kilometer as of 2021. Despite being one of the most populous countries in the world, following China and India, the United States is not even among the top 150 most densely populated countries due to its large land mass. Monaco is the most densely populated country in the world and has a population density of 24,621.5 inhabitants per square kilometer as of 2021. As population numbers in the U.S. continues to grow, the Hispanic population has also seen a similar trend from 35.7 million inhabitants in the country in 2000 to some 62.65 million inhabitants in 2021. This growing population group is a significant source of population growth in the country due to both high immigration and birth rates. The United States is one of the most racially diverse countries in the world.

  2. e

    London's diverse population

    • data.europa.eu
    • gimi9.com
    unknown
    Updated Apr 30, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). London's diverse population [Dataset]. https://data.europa.eu/data/datasets/london-s-diverse-population-?locale=mt
    Explore at:
    unknownAvailable download formats
    Dataset updated
    Apr 30, 2021
    Area covered
    London
    Description

    A number of characteristics of individuals are protected under the 2010 Equality Act, in order to limit the discrimination and disadvantage of groups with one or several shared characteristics. This table brings together a range of sources to present estimates of London's population by gender, age, ethnicity, religion, disability status, country of birth and sexual identity. It also shows population breakdowns for subgroups in each of these categories by broad age group and ethnicity.

    The socio-economic position of individuals is not a protected characteristic, but is nonetheless an important factor affecting outcomes. The table therefore also includes social class at the household level.

  3. d

    2020 - 2021 Diversity Report

    • catalog.data.gov
    • data.cityofnewyork.us
    • +1more
    Updated Nov 29, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2024). 2020 - 2021 Diversity Report [Dataset]. https://catalog.data.gov/dataset/2020-2021-diversity-report
    Explore at:
    Dataset updated
    Nov 29, 2024
    Dataset provided by
    data.cityofnewyork.us
    Description

    Report on Demographic Data in New York City Public Schools, 2020-21Enrollment counts are based on the November 13 Audited Register for 2020. Categories with total enrollment values of zero were omitted. Pre-K data includes students in 3-K. Data on students with disabilities, English language learners, and student poverty status are as of March 19, 2021. Due to missing demographic information in rare cases and suppression rules, demographic categories do not always add up to total enrollment and/or citywide totals. NYC DOE "Eligible for free or reduced-price lunch” counts are based on the number of students with families who have qualified for free or reduced-price lunch or are eligible for Human Resources Administration (HRA) benefits. English Language Arts and Math state assessment results for students in grade 9 are not available for inclusion in this report, as the spring 2020 exams did not take place. Spring 2021 ELA and Math test results are not included in this report for K-8 students in 2020-21. Due to the COVID-19 pandemic’s complete transformation of New York City’s school system during the 2020-21 school year, and in accordance with New York State guidance, the 2021 ELA and Math assessments were optional for students to take. As a result, 21.6% of students in grades 3-8 took the English assessment in 2021 and 20.5% of students in grades 3-8 took the Math assessment. These participation rates are not representative of New York City students and schools and are not comparable to prior years, so results are not included in this report. Dual Language enrollment includes English Language Learners and non-English Language Learners. Dual Language data are based on data from STARS; as a result, school participation and student enrollment in Dual Language programs may differ from the data in this report. STARS course scheduling and grade management software applications provide a dynamic internal data system for school use; while standard course codes exist, data are not always consistent from school to school. This report does not include enrollment at District 75 & 79 programs. Students enrolled at Young Adult Borough Centers are represented in the 9-12 District data but not the 9-12 School data. “Prior Year” data included in Comparison tabs refers to data from 2019-20. “Year-to-Year Change” data included in Comparison tabs indicates whether the demographics of a school or special program have grown more or less similar to its district or attendance zone (or school, for special programs) since 2019-20. Year-to-year changes must have been at least 1 percentage point to qualify as “More Similar” or “Less Similar”; changes less than 1 percentage point are categorized as “No Change”. The admissions method tab contains information on the admissions methods used for elementary, middle, and high school programs during the Fall 2020 admissions process. Fall 2020 selection criteria are included for all programs with academic screens, including middle and high school programs. Selection criteria data is based on school-reported information. Fall 2020 Diversity in Admissions priorities is included for applicable middle and high school programs. Note that the data on each school’s demographics and performance includes all students of the given subgroup who were enrolled in the school on November 13, 2020. Some of these students may not have been admitted under the admissions method(s) shown, as some students may have enrolled in the school outside the centralized admissions process (via waitlist, over-the-counter, or transfer), and schools may have changed admissions methods over the past few years. Admissions methods are only reported for grades K-12. "3K and Pre-Kindergarten data are reported at the site level. See below for definitions of site types included in this report. Additionally, please note that this report excludes all students at District 75 sites, reflecting slightly lower enrollment than our total of 60,265 students

  4. f

    Data_Sheet_1_Leveraging digital tools to enhance diversity and inclusion in...

    • figshare.com
    • frontiersin.figshare.com
    pdf
    Updated Oct 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tosin Tomiwa; Erin Wong; Hailey N. Miller; Oluwabunmi Ogungbe; Samuel Byiringiro; Timothy Plante; Cheryl R. Himmelfarb (2024). Data_Sheet_1_Leveraging digital tools to enhance diversity and inclusion in clinical trial recruitment.PDF [Dataset]. http://doi.org/10.3389/fpubh.2024.1483367.s001
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Oct 28, 2024
    Dataset provided by
    Frontiers
    Authors
    Tosin Tomiwa; Erin Wong; Hailey N. Miller; Oluwabunmi Ogungbe; Samuel Byiringiro; Timothy Plante; Cheryl R. Himmelfarb
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Clinical research is pivotal in assessing the safety and efficacy of new treatments in healthcare. However, the success of such research depends on the inclusion of a diverse and representative participant sample, which is currently lacking. This lack of diversity in biomedical research participants has significant repercussions, limiting the real-world applicability and accessibility of medical interventions, especially for underrepresented groups. Barriers to diverse participation include historical mistrust, logistical challenges, and financial constraints. Recent guidelines by government agencies and funding bodies emphasize the need for diversity in clinical trials, but specific strategies for inclusive recruitment are often lacking. This paper explores the use of digital methods to enhance diversity and inclusion in research recruitment. Digital tools, such as electronic medical records, social media, research registries, and mobile applications, offer promising opportunities for reaching diverse populations. Strategies include culturally tailored messaging, collaborations with community organizations, and the use of SEO to improve visibility and engagement. However, challenges such as privacy concerns, digital literacy gaps, and ethical considerations must be addressed. The promotion of diversity in clinical research recruitment is crucial for advancing health equity. By leveraging digital tools and adopting inclusive strategies, study teams can improve the diversity of study participants, ultimately leading to more applicable and equitable healthcare outcomes.

  5. The most linguistically diverse countries worldwide 2025, by number of...

    • statista.com
    Updated Apr 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). The most linguistically diverse countries worldwide 2025, by number of languages [Dataset]. https://www.statista.com/statistics/1224629/the-most-linguistically-diverse-countries-worldwide-by-number-of-languages/
    Explore at:
    Dataset updated
    Apr 15, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2025
    Area covered
    World
    Description

    Papua New Guinea is the most linguistically diverse country in the world. As of 2025, it was home to 840 different languages. Indonesia ranked second with 709 languages spoken. In the United States, 335 languages were spoken in that same year.

  6. E

    Diversity in Tech Statistics 2024 – By Countries, Companies And Demographic...

    • enterpriseappstoday.com
    Updated Mar 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    EnterpriseAppsToday (2024). Diversity in Tech Statistics 2024 – By Countries, Companies And Demographic (Age, Gender, Race, Education) [Dataset]. https://www.enterpriseappstoday.com/stats/diversity-in-tech-statistics.html
    Explore at:
    Dataset updated
    Mar 1, 2024
    Dataset authored and provided by
    EnterpriseAppsToday
    License

    https://www.enterpriseappstoday.com/privacy-policyhttps://www.enterpriseappstoday.com/privacy-policy

    Time period covered
    2022 - 2032
    Area covered
    Global
    Description

    Diversity in Tech Statistics: In today's tech-driven world, discussions about diversity in the technology sector have gained significant traction. Recent statistics shed light on the disparities and opportunities within this industry. According to data from various sources, including reports from leading tech companies and diversity advocacy groups, the lack of diversity remains a prominent issue. For example, studies reveal that only 25% of computing jobs in the United States are held by women, while Black and Hispanic individuals make up just 9% of the tech workforce combined. Additionally, research indicates that LGBTQ+ individuals are underrepresented in tech, with only 2.3% of tech workers identifying as LGBTQ+. Despite these challenges, there are promising signs of progress. Companies are increasingly recognizing the importance of diversity and inclusion initiatives, with some allocating significant resources to address these issues. For instance, tech giants like Google and Microsoft have committed millions of USD to diversity programs aimed at recruiting and retaining underrepresented talent. As discussions surrounding diversity in tech continue to evolve, understanding the statistical landscape is crucial in fostering meaningful change and creating a more inclusive industry for all. Editor’s Choice In 2021, 7.9% of the US labor force was employed in technology. Women hold only 26.7% of tech employment, while men hold 73.3% of these positions. White Americans hold 62.5% of the positions in the US tech sector. Asian Americans account for 20% of jobs, Latinx Americans 8%, and Black Americans 7%. 83.3% of tech executives in the US are white. Black Americans comprised 14% of the population in 2019 but held only 7% of tech employment. For the same position, at the same business, and with the same experience, women in tech are typically paid 3% less than men. The high-tech sector employs more men (64% against 52%), Asian Americans (14% compared to 5.8%), and white people (68.5% versus 63.5%) compared to other industries. The tech industry is urged to prioritize inclusion when hiring, mentoring, and retaining employees to bridge the digital skills gap. Black professionals only account for 4% of all tech workers despite being 13% of the US workforce. Hispanic professionals hold just 8% of all STEM jobs despite being 17% of the national workforce. Only 22% of workers in tech are ethnic minorities. Gender diversity in tech is low, with just 26% of jobs in computer-related sectors occupied by women. Companies with diverse teams have higher profitability, with those in the top quartile for gender diversity being 25% more likely to have above-average profitability. Every month, the tech industry adds about 9,600 jobs to the U.S. economy. Between May 2009 and May 2015, over 800,000 net STEM jobs were added to the U.S. economy. STEM jobs are expected to grow by another 8.9% between 2015 and 2024. The percentage of black and Hispanic employees at major tech companies is very low, making up just one to three percent of the tech workforce. Tech hiring relies heavily on poaching and incentives, creating an unsustainable ecosystem ripe for disruption. Recruiters have a significant role in disrupting the hiring process to support diversity and inclusion. You May Also Like To Read Outsourcing Statistics Digital Transformation Statistics Internet of Things Statistics Computer Vision Statistics

  7. Distribution of the U.S. population 2023, by generation and race

    • statista.com
    Updated Apr 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Distribution of the U.S. population 2023, by generation and race [Dataset]. https://www.statista.com/statistics/206969/race-and-ethnicity-in-the-us-by-generation/
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, half of Generation Z in the United States were white. In comparison, 48 percent of Gen Alpha were white in that year, making it the first generation that does not have a majority white population in the United States.

  8. U.S. population by sex and age 2023

    • statista.com
    • ai-chatbox.pro
    Updated Aug 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. population by sex and age 2023 [Dataset]. https://www.statista.com/statistics/241488/population-of-the-us-by-sex-and-age/
    Explore at:
    Dataset updated
    Aug 20, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The estimated population of the U.S. was approximately 334.9 million in 2023, and the largest age group was adults aged 30 to 34. There were 11.88 million males in this age category and around 11.64 million females. Which U.S. state has the largest population? The population of the United States continues to increase, and the country is the third most populous in the world behind China and India. The gender distribution has remained consistent for many years, with the number of females narrowly outnumbering males. In terms of where the residents are located, California was the state with the highest population in 2023. The U.S. population by race and ethnicity The United States is well known the world over for having a diverse population. In 2023, the number of Black or African American individuals was estimated to be 45.76 million, which represented an increase of over four million since the 2010 census. The number of Asian residents has increased at a similar rate during the same time period and the Hispanic population in the U.S. has also continued to grow.

  9. a

    Demographics (Diversity Index)

    • opendata.atlantaregional.com
    • gisdata.fultoncountyga.gov
    • +1more
    Updated Dec 8, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Johns Creek, GA (2015). Demographics (Diversity Index) [Dataset]. https://opendata.atlantaregional.com/datasets/JohnsCreekGA::demographics-diversity-index-1
    Explore at:
    Dataset updated
    Dec 8, 2015
    Dataset authored and provided by
    City of Johns Creek, GA
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Diversity index information by neighborhoods in Johns Creek, GA.Neighborhood boundaries are created and maintained by Johns Creek, GA.Demographics data is from Esri GeoEnrichment Services.

  10. N

    Ellington, Connecticut Non-Hispanic Population Breakdown by Race

    • neilsberg.com
    csv, json
    Updated Aug 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Ellington, Connecticut Non-Hispanic Population Breakdown by Race [Dataset]. https://www.neilsberg.com/insights/ellington-ct-population-by-race/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Aug 18, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Ellington, Connecticut
    Variables measured
    Non-Hispanic Asian Population, Non-Hispanic Black Population, Non-Hispanic White Population, Non-Hispanic Some other race Population, Non-Hispanic Two or more races Population, Non-Hispanic American Indian and Alaska Native Population, Non-Hispanic Native Hawaiian and Other Pacific Islander Population, Non-Hispanic Asian Population as Percent of Total Non-Hispanic Population, Non-Hispanic Black Population as Percent of Total Non-Hispanic Population, Non-Hispanic White Population as Percent of Total Non-Hispanic Population, and 4 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the two variables, namely (a) Non-Hispanic population and (b) population as a percentage of the total Non-Hispanic population, we initially analyzed and categorized the data for each of the racial categories idetified by the US Census Bureau. It is ensured that the population estimates used in this dataset pertain exclusively to the identified racial categories, and are part of Non-Hispanic classification. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Non-Hispanic population of Ellington town by race. It includes the distribution of the Non-Hispanic population of Ellington town across various race categories as identified by the Census Bureau. The dataset can be utilized to understand the Non-Hispanic population distribution of Ellington town across relevant racial categories.

    Key observations

    Of the Non-Hispanic population in Ellington town, the largest racial group is White alone with a population of 13,691 (87.45% of the total Non-Hispanic population).

    https://i.neilsberg.com/ch/ellington-ct-population-by-race-and-ethnicity.jpeg" alt="Ellington town Non-Hispanic population by race">

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Racial categories include:

    • White
    • Black or African American
    • American Indian and Alaska Native
    • Asian
    • Native Hawaiian and Other Pacific Islander
    • Some other race
    • Two or more races (multiracial)

    Variables / Data Columns

    • Race: This column displays the racial categories (for Non-Hispanic) for the Ellington town
    • Population: The population of the racial category (for Non-Hispanic) in the Ellington town is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each race as a proportion of Ellington town total Non-Hispanic population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Ellington town Population by Race & Ethnicity. You can refer the same here

  11. N

    Tolland, Connecticut Non-Hispanic Population Breakdown by Race

    • neilsberg.com
    csv, json
    Updated Aug 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Tolland, Connecticut Non-Hispanic Population Breakdown by Race [Dataset]. https://www.neilsberg.com/insights/tolland-ct-population-by-race/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Aug 18, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Tolland, Connecticut
    Variables measured
    Non-Hispanic Asian Population, Non-Hispanic Black Population, Non-Hispanic White Population, Non-Hispanic Some other race Population, Non-Hispanic Two or more races Population, Non-Hispanic American Indian and Alaska Native Population, Non-Hispanic Native Hawaiian and Other Pacific Islander Population, Non-Hispanic Asian Population as Percent of Total Non-Hispanic Population, Non-Hispanic Black Population as Percent of Total Non-Hispanic Population, Non-Hispanic White Population as Percent of Total Non-Hispanic Population, and 4 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the two variables, namely (a) Non-Hispanic population and (b) population as a percentage of the total Non-Hispanic population, we initially analyzed and categorized the data for each of the racial categories idetified by the US Census Bureau. It is ensured that the population estimates used in this dataset pertain exclusively to the identified racial categories, and are part of Non-Hispanic classification. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Non-Hispanic population of Tolland town by race. It includes the distribution of the Non-Hispanic population of Tolland town across various race categories as identified by the Census Bureau. The dataset can be utilized to understand the Non-Hispanic population distribution of Tolland town across relevant racial categories.

    Key observations

    Of the Non-Hispanic population in Tolland town, the largest racial group is White alone with a population of 12,748 (92.55% of the total Non-Hispanic population).

    https://i.neilsberg.com/ch/tolland-ct-population-by-race-and-ethnicity.jpeg" alt="Tolland town Non-Hispanic population by race">

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Racial categories include:

    • White
    • Black or African American
    • American Indian and Alaska Native
    • Asian
    • Native Hawaiian and Other Pacific Islander
    • Some other race
    • Two or more races (multiracial)

    Variables / Data Columns

    • Race: This column displays the racial categories (for Non-Hispanic) for the Tolland town
    • Population: The population of the racial category (for Non-Hispanic) in the Tolland town is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each race as a proportion of Tolland town total Non-Hispanic population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Tolland town Population by Race & Ethnicity. You can refer the same here

  12. d

    Data from: Initial genetic diversity enhances population establishment and...

    • datadryad.org
    zip
    Updated Apr 28, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Christopher J. Holmes; Jelena H. Pantel; Kimberly L. Schulz; Carla E. Cáceres (2016). Initial genetic diversity enhances population establishment and alters genetic structuring of a newly established Daphnia metapopulation [Dataset]. http://doi.org/10.5061/dryad.0644t
    Explore at:
    zipAvailable download formats
    Dataset updated
    Apr 28, 2016
    Dataset provided by
    Dryad
    Authors
    Christopher J. Holmes; Jelena H. Pantel; Kimberly L. Schulz; Carla E. Cáceres
    Time period covered
    2016
    Description

    Microsatellite Data from Experimental PoolsIncluded in this file is the Microsatellite data for all individuals genotyped from the experimental pools for all three years of the field experiment.Holmesetal_MicrosatelliteData.xlsx

  13. N

    Richmond, VA annual income distribution by work experience and gender...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Richmond, VA annual income distribution by work experience and gender dataset: Number of individuals ages 15+ with income, 2023 // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/bac1c35f-f4ce-11ef-8577-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Richmond, Virginia
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time, Number of males working full time for a given income bracket, Number of males working part time for a given income bracket, Number of females working full time for a given income bracket, Number of females working part time for a given income bracket
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To portray the number of individuals for both the genders (Male and Female), within each income bracket we conducted an initial analysis and categorization of the American Community Survey data. Households are categorized, and median incomes are reported based on the self-identified gender of the head of the household. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within Richmond. The dataset can be utilized to gain insights into gender-based income distribution within the Richmond population, aiding in data analysis and decision-making..

    Key observations

    • Employment patterns: Within Richmond, among individuals aged 15 years and older with income, there were 81,753 men and 92,419 women in the workforce. Among them, 45,800 men were engaged in full-time, year-round employment, while 42,755 women were in full-time, year-round roles.
    • Annual income under $24,999: Of the male population working full-time, 8.95% fell within the income range of under $24,999, while 11.37% of the female population working full-time was represented in the same income bracket.
    • Annual income above $100,000: 25.98% of men in full-time roles earned incomes exceeding $100,000, while 16.83% of women in full-time positions earned within this income bracket.
    • Refer to the research insights for more key observations on more income brackets ( Annual income under $24,999, Annual income between $25,000 and $49,999, Annual income between $50,000 and $74,999, Annual income between $75,000 and $99,999 and Annual income above $100,000) and employment types (full-time year-round and part-time)
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income brackets:

    • $1 to $2,499 or loss
    • $2,500 to $4,999
    • $5,000 to $7,499
    • $7,500 to $9,999
    • $10,000 to $12,499
    • $12,500 to $14,999
    • $15,000 to $17,499
    • $17,500 to $19,999
    • $20,000 to $22,499
    • $22,500 to $24,999
    • $25,000 to $29,999
    • $30,000 to $34,999
    • $35,000 to $39,999
    • $40,000 to $44,999
    • $45,000 to $49,999
    • $50,000 to $54,999
    • $55,000 to $64,999
    • $65,000 to $74,999
    • $75,000 to $99,999
    • $100,000 or more

    Variables / Data Columns

    • Income Bracket: This column showcases 20 income brackets ranging from $1 to $100,000+..
    • Full-Time Males: The count of males employed full-time year-round and earning within a specified income bracket
    • Part-Time Males: The count of males employed part-time and earning within a specified income bracket
    • Full-Time Females: The count of females employed full-time year-round and earning within a specified income bracket
    • Part-Time Females: The count of females employed part-time and earning within a specified income bracket

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Richmond median household income by race. You can refer the same here

  14. a

    Key Problem of Global Change: Population Change

    • hub.arcgis.com
    Updated Aug 3, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stanford University (2015). Key Problem of Global Change: Population Change [Dataset]. https://hub.arcgis.com/maps/eb0f9c3f3e674b05adddfe3d3516ebe7
    Explore at:
    Dataset updated
    Aug 3, 2015
    Dataset authored and provided by
    Stanford University
    Area covered
    Description

    This map is part of an interactive Story Map series about global change in the US.With the global human population expected to exceed 8 billion people by 2030, our species is already irreversibly changing the future of our planet. The US itself is expected to grow by 16.5% to over 360 million people, making it the third largest country in the world, behind India and China. This population increase isn’t distributed evenly - 81% of people will live in cities, urban, and suburban areas, which will continue to shape how resources are produced, transported, and consumed. The percent of foreign-born and second-generation immigrants in the US is also expected to rise in the future, contributing to an increasingly diverse population. Across the globe, immigration will likely account for significant population changes in the near future, as climate change fuels drought, crop failures, and political instability, creating climate refugees particularly among countries who do not have the infrastructure to mitigate or adapt to global change. Numbers aren’t the only thing that matter: people of different socioeconomic backgrounds use resources differently, both within and between countries.If the rest of the world used energy as intensely as the United States does, the world population would need more than 4 entire Earths to provide us with the resources to feed this rate consumption. This unfortunately means that even regions of the US that contribute less towards the problems of global change will still feel their impacts. To ensure a high quality of life for all citizens, we must address not only population growth, but also excess consumption of and reliance on resources across different regions. Geographic, population, and economic differences among regions can provide opportunities for success in the face of global change. Renewable energy sources have created entrepreneurial economic ventures, and communities have found environmental solutions through forming sustainable local food systems. Environmental justice movements are working now to ensure that all citizens have access to nature, recreational areas, and a healthy future for all.

  15. N

    Morristown, NJ annual income distribution by work experience and gender...

    • neilsberg.com
    csv, json
    Updated Jan 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Morristown, NJ annual income distribution by work experience and gender dataset (Number of individuals ages 15+ with income, 2021) [Dataset]. https://www.neilsberg.com/research/datasets/23fa9f1f-981b-11ee-99cf-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jan 9, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Morristown, New Jersey
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time, Number of males working full time for a given income bracket, Number of males working part time for a given income bracket, Number of females working full time for a given income bracket, Number of females working part time for a given income bracket
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To portray the number of individuals for both the genders (Male and Female), within each income bracket we conducted an initial analysis and categorization of the American Community Survey data. Households are categorized, and median incomes are reported based on the self-identified gender of the head of the household. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within Morristown. The dataset can be utilized to gain insights into gender-based income distribution within the Morristown population, aiding in data analysis and decision-making..

    Key observations

    • Employment patterns: Within Morristown, among individuals aged 15 years and older with income, there were 8,256 men and 7,772 women in the workforce. Among them, 5,230 men were engaged in full-time, year-round employment, while 4,118 women were in full-time, year-round roles.
    • Annual income under $24,999: Of the male population working full-time, 10.59% fell within the income range of under $24,999, while 5.54% of the female population working full-time was represented in the same income bracket.
    • Annual income above $100,000: 42.93% of men in full-time roles earned incomes exceeding $100,000, while 28.97% of women in full-time positions earned within this income bracket.
    • Refer to the research insights for more key observations on more income brackets ( Annual income under $24,999, Annual income between $25,000 and $49,999, Annual income between $50,000 and $74,999, Annual income between $75,000 and $99,999 and Annual income above $100,000) and employment types (full-time year-round and part-time)

    https://i.neilsberg.com/ch/morristown-nj-income-distribution-by-gender-and-employment-type.jpeg" alt="Morristown, NJ gender and employment-based income distribution analysis (Ages 15+)">

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Income brackets:

    • $1 to $2,499 or loss
    • $2,500 to $4,999
    • $5,000 to $7,499
    • $7,500 to $9,999
    • $10,000 to $12,499
    • $12,500 to $14,999
    • $15,000 to $17,499
    • $17,500 to $19,999
    • $20,000 to $22,499
    • $22,500 to $24,999
    • $25,000 to $29,999
    • $30,000 to $34,999
    • $35,000 to $39,999
    • $40,000 to $44,999
    • $45,000 to $49,999
    • $50,000 to $54,999
    • $55,000 to $64,999
    • $65,000 to $74,999
    • $75,000 to $99,999
    • $100,000 or more

    Variables / Data Columns

    • Income Bracket: This column showcases 20 income brackets ranging from $1 to $100,000+..
    • Full-Time Males: The count of males employed full-time year-round and earning within a specified income bracket
    • Part-Time Males: The count of males employed part-time and earning within a specified income bracket
    • Full-Time Females: The count of females employed full-time year-round and earning within a specified income bracket
    • Part-Time Females: The count of females employed part-time and earning within a specified income bracket

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Morristown median household income by gender. You can refer the same here

  16. f

    MOESM5 of PGG.SNV: understanding the evolutionary and medical implications...

    • springernature.figshare.com
    • figshare.com
    xlsx
    Updated Feb 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chao Zhang; Yang Gao; Zhilin Ning; Yan Lu; Xiaoxi Zhang; Jiaojiao Liu; Bo Xie; Zhe Xue; Xiaoji Wang; Kai Yuan; Xueling Ge; Yuwen Pan; Chang Liu; Lei Tian; Yuchen Wang; Dongsheng Lu; Boon-Peng Hoh; Shuhua Xu (2024). MOESM5 of PGG.SNV: understanding the evolutionary and medical implications of human single nucleotide variations in diverse populations [Dataset]. http://doi.org/10.6084/m9.figshare.10027922.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Feb 7, 2024
    Dataset provided by
    figshare
    Authors
    Chao Zhang; Yang Gao; Zhilin Ning; Yan Lu; Xiaoxi Zhang; Jiaojiao Liu; Bo Xie; Zhe Xue; Xiaoji Wang; Kai Yuan; Xueling Ge; Yuwen Pan; Chang Liu; Lei Tian; Yuchen Wang; Dongsheng Lu; Boon-Peng Hoh; Shuhua Xu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Additional file 5: Table S4. The list of Mendelian-inherited disease variants showing large differentiation between ancestries (DiffAnces > 0.1).

  17. N

    2015-2016 Demographic Data - Diversity Efforts

    • data.cityofnewyork.us
    • datasets.ai
    • +2more
    application/rdfxml +5
    Updated Aug 10, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Education (DOE) (2017). 2015-2016 Demographic Data - Diversity Efforts [Dataset]. https://data.cityofnewyork.us/dataset/2015-2016-Demographic-Data-Diversity-Efforts/tncb-agv4
    Explore at:
    application/rdfxml, json, csv, tsv, application/rssxml, xmlAvailable download formats
    Dataset updated
    Aug 10, 2017
    Dataset authored and provided by
    Department of Education (DOE)
    Description

    Demographic Data - Diversity Efforts

  18. d

    Data from: Tracking restoration of population diversity via the portfolio...

    • datadryad.org
    • zenodo.org
    zip
    Updated Jun 20, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lauren Yamane; Louis W. Botsford; David P. Kilduff (2018). Tracking restoration of population diversity via the portfolio effect [Dataset]. http://doi.org/10.5061/dryad.kt136
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 20, 2018
    Dataset provided by
    Dryad
    Authors
    Lauren Yamane; Louis W. Botsford; David P. Kilduff
    Time period covered
    2018
    Area covered
    California Central Valley
    Description

    Sacramento River Fall-run ProductionThis data set contains yearly production values (estimated escapement abundances plus in-river and ocean harvests) of Sacramento River Fall-run Chinook salmon for 1952-2010. The Sacramento River Fall-run Chinook is an aggregate stock consisting of five populations associated with different tributaries of the Sacramento River: Battle Creek, the Sacramento River mainstem, Feather River, Yuba River, and American River. Data were previously available as part of the Central Valley ChinookProd data set, maintained by the US Fish and Wildlife Service Anadromous Fish Restoration Program (https://www.fws.gov/lodi/anadromous_fish_restoration/afrp_index.htm). These specific data are no longer available online, but are presented here in the format used for analyses in the manuscript. Note that analyzed data includes years 1957-2010.Sacramento_Fall_Production_1952_2010.csv

  19. m

    State Employee Diversity Dashboard

    • mass.gov
    Updated Jul 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of Diversity and Equal Opportunity (2022). State Employee Diversity Dashboard [Dataset]. https://www.mass.gov/info-details/state-employee-diversity-dashboard
    Explore at:
    Dataset updated
    Jul 14, 2022
    Dataset provided by
    Office of Diversity and Equal Opportunity
    Human Resources
    Area covered
    Massachusetts
    Description

    Explore demographic data on the Massachusetts executive branch workforce. Track our progress toward our goals to reflect the diversity of the people we serve, and to stand out as an employer of choice.

  20. d

    Population Structure and Genetic Diversity of Eastern North American Moose

    • catalog.data.gov
    Updated Jul 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Population Structure and Genetic Diversity of Eastern North American Moose [Dataset]. https://catalog.data.gov/dataset/population-structure-and-genetic-diversity-of-eastern-north-american-moose
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    Hair samples were collected in discrete areas during radio-collar studies in Vermont under the auspices of University of Vermont IACUC protocol #17-035 (n=106), New Hampshire (n=34), and Maine (n=57). Hair and tissue samples were opportunistically collected from animals that were harvested, died in vehicle collisions, or translocated throughout Vermont (n = 105), Quebec (n = 198), Massachusetts (n = 5), and New York (n = 24). Of the 317 previously identified autosomal moose SNPs, 136 loci were utilized to develop a MALDI-TOF MS genotyping assay. After filtering problematic loci and individuals, genotypes from 112 of 136 SNPs (82%) were obtained for 507 individuals and all loci met Hardy-Weinberg expectations in the nine geographic regions samples.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2024). Population of the U.S. by race 2000-2023 [Dataset]. https://www.statista.com/statistics/183489/population-of-the-us-by-ethnicity-since-2000/
Organization logo

Population of the U.S. by race 2000-2023

Explore at:
32 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Aug 20, 2024
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
Jul 2000 - Jul 2023
Area covered
United States
Description

This graph shows the population of the U.S. by race and ethnic group from 2000 to 2023. In 2023, there were around 21.39 million people of Asian origin living in the United States. A ranking of the most spoken languages across the world can be accessed here. U.S. populationCurrently, the white population makes up the vast majority of the United States’ population, accounting for some 252.07 million people in 2023. This ethnicity group contributes to the highest share of the population in every region, but is especially noticeable in the Midwestern region. The Black or African American resident population totaled 45.76 million people in the same year. The overall population in the United States is expected to increase annually from 2022, with the 320.92 million people in 2015 expected to rise to 341.69 million people by 2027. Thus, population densities have also increased, totaling 36.3 inhabitants per square kilometer as of 2021. Despite being one of the most populous countries in the world, following China and India, the United States is not even among the top 150 most densely populated countries due to its large land mass. Monaco is the most densely populated country in the world and has a population density of 24,621.5 inhabitants per square kilometer as of 2021. As population numbers in the U.S. continues to grow, the Hispanic population has also seen a similar trend from 35.7 million inhabitants in the country in 2000 to some 62.65 million inhabitants in 2021. This growing population group is a significant source of population growth in the country due to both high immigration and birth rates. The United States is one of the most racially diverse countries in the world.

Search
Clear search
Close search
Google apps
Main menu