100+ datasets found
  1. F

    Dow Jones Industrial Average

    • fred.stlouisfed.org
    json
    Updated Aug 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Dow Jones Industrial Average [Dataset]. https://fred.stlouisfed.org/series/DJIA
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Aug 29, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval

    Description

    Graph and download economic data for Dow Jones Industrial Average (DJIA) from 2015-08-31 to 2025-08-29 about stock market, average, industry, and USA.

  2. The data about the 30 DJIA companies.

    • plos.figshare.com
    xls
    Updated Jun 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Peter Gabrovšek; Darko Aleksovski; Igor Mozetič; Miha Grčar (2023). The data about the 30 DJIA companies. [Dataset]. http://doi.org/10.1371/journal.pone.0173151.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 8, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Peter Gabrovšek; Darko Aleksovski; Igor Mozetič; Miha Grčar
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The collected tweets and Earnings Announcements (EA) cover the period of three years, from June 1, 2013 to June 3, 2016. Companies are ordered by the total number of tweets collected. For each company, there is the sentiment distribution, market capitalization, and the prevailing timing of EAs with respect to the NYSE trading hours. Each company issues four EAs per year, therefore there is a total of 360 EAs (30 companies, three years, four EAs per year)1.

  3. 34-year Daily Stock Data (1990-2024)

    • kaggle.com
    Updated Dec 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shivesh Prakash (2024). 34-year Daily Stock Data (1990-2024) [Dataset]. https://www.kaggle.com/datasets/shiveshprakash/34-year-daily-stock-data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 10, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Shivesh Prakash
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Dataset Description: 34-year Daily Stock Data (1990-2024)

    Context and Inspiration

    This dataset captures historical financial market data and macroeconomic indicators spanning over three decades, from 1990 onwards. It is designed for financial analysis, time series forecasting, and exploring relationships between market volatility, stock indices, and macroeconomic factors. This dataset is particularly relevant for researchers, data scientists, and enthusiasts interested in studying: - Volatility forecasting (VIX) - Stock market trends (S&P 500, DJIA, HSI) - Macroeconomic influences on markets (joblessness, interest rates, etc.) - The effect of geopolitical and economic uncertainty (EPU, GPRD)

    Sources

    The data has been aggregated from a mix of historical financial records and publicly available macroeconomic datasets: - VIX (Volatility Index): Chicago Board Options Exchange (CBOE). - Stock Indices (S&P 500, DJIA, HSI): Yahoo Finance and historical financial databases. - Volume Data: Extracted from official exchange reports. - Macroeconomic Indicators: Bureau of Economic Analysis (BEA), Federal Reserve, and other public records. - Uncertainty Metrics (EPU, GPRD): Economic Policy Uncertainty Index and Global Policy Uncertainty Database.

    Columns

    1. dt: Date of observation in YYYY-MM-DD format.
    2. vix: VIX (Volatility Index), a measure of expected market volatility.
    3. sp500: S&P 500 index value, a benchmark of the U.S. stock market.
    4. sp500_volume: Daily trading volume for the S&P 500.
    5. djia: Dow Jones Industrial Average (DJIA), another key U.S. market index.
    6. djia_volume: Daily trading volume for the DJIA.
    7. hsi: Hang Seng Index, representing the Hong Kong stock market.
    8. ads: Aruoba-Diebold-Scotti (ADS) Business Conditions Index, reflecting U.S. economic activity.
    9. us3m: U.S. Treasury 3-month bond yield, a short-term interest rate proxy.
    10. joblessness: U.S. unemployment rate, reported as quartiles (1 represents lowest quartile and so on).
    11. epu: Economic Policy Uncertainty Index, quantifying policy-related economic uncertainty.
    12. GPRD: Geopolitical Risk Index (Daily), measuring geopolitical risk levels.
    13. prev_day: Previous day’s S&P 500 closing value, added for lag-based time series analysis.

    Key Features

    • Cross-Market Analysis: Compare U.S. markets (S&P 500, DJIA) with international benchmarks like HSI.
    • Macroeconomic Insights: Assess how external factors like joblessness, interest rates, and economic uncertainty affect markets.
    • Temporal Scope: Longitudinal data facilitates trend analysis and machine learning model training.

    Potential Use Cases

    • Forecasting market indices using machine learning or statistical models.
    • Building volatility trading strategies with VIX Futures.
    • Economic research on relationships between policy uncertainty and market behavior.
    • Educational material for financial data visualization and analysis tutorials.

    Feel free to use this dataset for academic, research, or personal projects.

  4. Weekly development Dow Jones Industrial Average Index 2020-2025

    • statista.com
    Updated Jun 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Weekly development Dow Jones Industrial Average Index 2020-2025 [Dataset]. https://www.statista.com/statistics/1104278/weekly-performance-of-djia-index/
    Explore at:
    Dataset updated
    Jun 26, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 1, 2020 - Mar 2, 2025
    Area covered
    United States
    Description

    The Dow Jones Industrial Average (DJIA) index dropped around ***** points in the four weeks from February 12 to March 11, 2020, but has since recovered and peaked at ********* points as of November 24, 2024. In February 2020 - just prior to the global coronavirus (COVID-19) pandemic, the DJIA index stood at a little over ****** points. U.S. markets suffer as virus spreads The COVID-19 pandemic triggered a turbulent period for stock markets – the S&P 500 and Nasdaq Composite also recorded dramatic drops. At the start of February, some analysts remained optimistic that the outbreak would ease. However, the increased spread of the virus started to hit investor confidence, prompting a record plunge in the stock markets. The Dow dropped by more than ***** points in the week from February 21 to February 28, which was a fall of **** percent – its worst percentage loss in a week since October 2008. Stock markets offer valuable economic insights The Dow Jones Industrial Average is a stock market index that monitors the share prices of the 30 largest companies in the United States. By studying the performance of the listed companies, analysts can gauge the strength of the domestic economy. If investors are confident in a company’s future, they will buy its stocks. The uncertainty of the coronavirus sparked fears of an economic crisis, and many traders decided that investment during the pandemic was too risky.

  5. Dow Jones: monthly value 1920-1955

    • statista.com
    Updated Aug 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Dow Jones: monthly value 1920-1955 [Dataset]. https://www.statista.com/statistics/1249670/monthly-change-value-dow-jones-depression/
    Explore at:
    Dataset updated
    Aug 9, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 1920 - Dec 1955
    Area covered
    United States
    Description

    Throughout the 1920s, prices on the U.S. stock exchange rose exponentially, however, by the end of the decade, uncontrolled growth and a stock market propped up by speculation and borrowed money proved unsustainable, resulting in the Wall Street Crash of October 1929. This set a chain of events in motion that led to economic collapse - banks demanded repayment of debts, the property market crashed, and people stopped spending as unemployment rose. Within a year the country was in the midst of an economic depression, and the economy continued on a downward trend until late-1932.

    It was during this time where Franklin D. Roosevelt (FDR) was elected president, and he assumed office in March 1933 - through a series of economic reforms and New Deal policies, the economy began to recover. Stock prices fluctuated at more sustainable levels over the next decades, and developments were in line with overall economic development, rather than the uncontrolled growth seen in the 1920s. Overall, it took over 25 years for the Dow Jones value to reach its pre-Crash peak.

  6. Event dates and polarity.

    • plos.figshare.com
    pdf
    Updated Jun 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gabriele Ranco; Darko Aleksovski; Guido Caldarelli; Miha Grčar; Igor Mozetič (2023). Event dates and polarity. [Dataset]. http://doi.org/10.1371/journal.pone.0138441.s001
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Gabriele Ranco; Darko Aleksovski; Guido Caldarelli; Miha Grčar; Igor Mozetič
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Detailed information about the detected events from the Twitter data and their polarity. We show the 118 detected EA events and 182 detected non-EA events. (PDF)

  7. F

    S&P 500

    • fred.stlouisfed.org
    json
    Updated Aug 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). S&P 500 [Dataset]. https://fred.stlouisfed.org/series/SP500
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Aug 29, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval

    Description

    View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.

  8. Monthly development Dow Jones Industrial Average Index 2018-2025

    • statista.com
    Updated Jul 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Monthly development Dow Jones Industrial Average Index 2018-2025 [Dataset]. https://www.statista.com/statistics/261690/monthly-performance-of-djia-index/
    Explore at:
    Dataset updated
    Jul 22, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2018 - Jun 2025
    Area covered
    United States
    Description

    The value of the DJIA index amounted to ****** at the end of June 2025, up from ********* at the end of March 2020. Global panic about the coronavirus epidemic caused the drop in March 2020, which was the worst drop since the collapse of Lehman Brothers in 2008. Dow Jones Industrial Average index – additional information The Dow Jones Industrial Average index is a price-weighted average of 30 of the largest American publicly traded companies on New York Stock Exchange and NASDAQ, and includes companies like Goldman Sachs, IBM and Walt Disney. This index is considered to be a barometer of the state of the American economy. DJIA index was created in 1986 by Charles Dow. Along with the NASDAQ 100 and S&P 500 indices, it is amongst the most well-known and used stock indexes in the world. The year that the 2018 financial crisis unfolded was one of the worst years of the Dow. It was also in 2008 that some of the largest ever recorded losses of the Dow Jones Index based on single-day points were registered. On September 29, 2008, for instance, the Dow had a loss of ****** points, one of the largest single-day losses of all times. The best years in the history of the index still are 1915, when the index value increased by ***** percent in one year, and 1933, year when the index registered a growth of ***** percent.

  9. Dow Jones New Zealand Index Target Price Prediction (Forecast)

    • kappasignal.com
    Updated Nov 24, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). Dow Jones New Zealand Index Target Price Prediction (Forecast) [Dataset]. https://www.kappasignal.com/2022/11/dow-jones-new-zealand-index-target.html
    Explore at:
    Dataset updated
    Nov 24, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Dow Jones New Zealand Index Target Price Prediction

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  10. T

    United States Stock Market Index (US30) - Index Price | Live Quote |...

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Jun 7, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). United States Stock Market Index (US30) - Index Price | Live Quote | Historical Chart [Dataset]. https://tradingeconomics.com/indu:ind
    Explore at:
    json, xml, excel, csvAvailable download formats
    Dataset updated
    Jun 7, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2000 - Sep 1, 2025
    Area covered
    United States
    Description

    Prices for United States Stock Market Index (US30) including live quotes, historical charts and news. United States Stock Market Index (US30) was last updated by Trading Economics this September 1 of 2025.

  11. f

    A comparison of the inter-annotator agreement and the classifier...

    • figshare.com
    xls
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gabriele Ranco; Darko Aleksovski; Guido Caldarelli; Miha Grčar; Igor Mozetič (2023). A comparison of the inter-annotator agreement and the classifier performance. [Dataset]. http://doi.org/10.1371/journal.pone.0138441.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Gabriele Ranco; Darko Aleksovski; Guido Caldarelli; Miha Grčar; Igor Mozetič
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The inter-annotator agreement is computed from the examples labeled twice. The classifier performance is estimated from the 10-fold cross-validation.

  12. F

    Dow-Jones Industrial Stock Price Index for United States

    • fred.stlouisfed.org
    json
    Updated Aug 15, 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2012). Dow-Jones Industrial Stock Price Index for United States [Dataset]. https://fred.stlouisfed.org/series/M1109BUSM293NNBR
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Aug 15, 2012
    License

    https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

    Area covered
    United States
    Description

    Graph and download economic data for Dow-Jones Industrial Stock Price Index for United States (M1109BUSM293NNBR) from Dec 1914 to Dec 1968 about stock market, industry, price index, indexes, price, and USA.

  13. The Dow Jones U.S. Completion Total Stock Market Index (Forecast)

    • kappasignal.com
    Updated May 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). The Dow Jones U.S. Completion Total Stock Market Index (Forecast) [Dataset]. https://www.kappasignal.com/2023/05/the-dow-jones-us-completion-total-stock.html
    Explore at:
    Dataset updated
    May 8, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    The Dow Jones U.S. Completion Total Stock Market Index

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  14. Will the Dow Jones Industrial Average Index Rise Today? (Forecast)

    • kappasignal.com
    Updated Aug 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Will the Dow Jones Industrial Average Index Rise Today? (Forecast) [Dataset]. https://www.kappasignal.com/2024/08/will-dow-jones-industrial-average-index_10.html
    Explore at:
    Dataset updated
    Aug 10, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Will the Dow Jones Industrial Average Index Rise Today?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  15. Will the Dow Jones Industrial Average Index Maintain Its Momentum?...

    • kappasignal.com
    Updated Aug 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Will the Dow Jones Industrial Average Index Maintain Its Momentum? (Forecast) [Dataset]. https://www.kappasignal.com/2024/08/will-dow-jones-industrial-average-index_27.html
    Explore at:
    Dataset updated
    Aug 27, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Will the Dow Jones Industrial Average Index Maintain Its Momentum?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  16. Results of the Pearson correlation and Granger causality tests.

    • plos.figshare.com
    xls
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gabriele Ranco; Darko Aleksovski; Guido Caldarelli; Miha Grčar; Igor Mozetič (2023). Results of the Pearson correlation and Granger causality tests. [Dataset]. http://doi.org/10.1371/journal.pone.0138441.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Gabriele Ranco; Darko Aleksovski; Guido Caldarelli; Miha Grčar; Igor Mozetič
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Companies are ordered as in Table 1. The arrows indicate a statistically significant Granger causality relation for a company, at the 5% significance level. A right arrow indicates that the Twitter variable (sentiment polarity Pd or volume TWd) Granger-causes the market variable (return Rd), while a left arrow indicates that the market variable Granger-causes the Twitter variable. The counts at the bottom show the total number of companies passing the Granger test.

  17. T

    United States Stock Market Index Data

    • tradingeconomics.com
    • ar.tradingeconomics.com
    • +12more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, United States Stock Market Index Data [Dataset]. https://tradingeconomics.com/united-states/stock-market
    Explore at:
    excel, xml, json, csvAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 3, 1928 - Sep 1, 2025
    Area covered
    United States
    Description

    The main stock market index of United States, the US500, rose to 6464 points on September 1, 2025, gaining 0.06% from the previous session. Over the past month, the index has climbed 2.13% and is up 16.92% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on September of 2025.

  18. Should You Buy Dow Jones Industrial Average Index Right Now? (Stock...

    • kappasignal.com
    Updated Sep 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). Should You Buy Dow Jones Industrial Average Index Right Now? (Stock Forecast) (Forecast) [Dataset]. https://www.kappasignal.com/2022/09/should-you-buy-dow-jones-industrial.html
    Explore at:
    Dataset updated
    Sep 10, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Should You Buy Dow Jones Industrial Average Index Right Now? (Stock Forecast)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  19. TRACE_DJIA

    • kaggle.com
    Updated Aug 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Guoxuan Sun (2025). TRACE_DJIA [Dataset]. https://www.kaggle.com/datasets/williamtage/trace-djia
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 1, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Guoxuan Sun
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Context Predicting stock market movements is a classic challenge in machine learning. While raw Open, High, Low, Close, and Volume (OHLCV) data is the standard starting point, its predictive power is often limited. To build robust models, data scientists require a much richer feature set that captures different aspects of market dynamics, from technical patterns to sentiment hidden in financial news.

    This dataset was created to bridge that gap. It provides a highly-enriched, pre-processed collection of features for the Dow Jones Industrial Average (DJIA), designed to accelerate research and modeling for stock price prediction.

    Content The dataset is organized into several files, each representing a distinct category of engineered features. This modular structure allows you to easily select, combine, or test the importance of different feature types.

    • final_daily_news_graph_embeddings.npy This is a 3D NumPy tensor with the shape (Number of Days, 25, 128).

    Description: Each day's top 25 news headlines have been transformed into a sophisticated knowledge graph. These graphs, enriched with data from Wikidata, are then encoded into 128-dimensional vectors using a Graph Convolutional Network (GCN). This file captures the semantic meaning and relationships within the news, providing a powerful non-price-based feature.

    • DJIA_engineered_features_1.csv

    Description: Contains fundamental features derived directly from OHLCV data. These are crucial for capturing intraday volatility and price action.

    Example Features: intraday_range, body_size, price_change, simple_return, log_return, price_volume_interaction.

    • DJIA_technical_indicators_2.csv

    Description: A wide array of popular technical indicators calculated using the pandas-ta library. These features are staples of financial analysis and help identify trends, momentum, and volatility.

    Example Features: Simple Moving Averages (SMA_20, SMA_50, SMA_200), Exponential Moving Averages (EMA_12, EMA_26), MACD, RSI, Bollinger Bands (BBL, BBM, BBU), On-Balance Volume (OBV), and more.

    • DJIA_statistical_time_features_3.csv

    Description: This file includes features based on the statistical properties of returns over an optimized rolling window, as well as cyclical time-based features. The optimal window was determined by finding the period with the highest correlation to future returns.

    Example Features: rolling_mean, rolling_std (volatility), rolling_skew, rolling_kurt, day_of_week_sin, day_of_week_cos, is_month_end.

    • DJIA_advanced_features_4.csv

    Description: More complex and transformational features designed to capture deeper market dynamics.

    Example Features: Lagged returns and RSI, quantitative candlestick pattern features, wavelet transform coefficients (to decompose price signals into different frequencies), and the Hurst Exponent (to measure long-term memory in the time series).

    Methodology The features were systematically generated using a series of Python scripts.

    News Embeddings: Headlines were processed to extract named entities. These entities were used to build knowledge subgraphs from Wikidata. Finally, a Graph Convolutional Network (GCN) model encoded these graphs into dense vectors.

    Tabular Features: All other features were generated from the raw DJIA price and volume data. The process involved several stages, from basic price calculations to advanced transformations. For features requiring a lookback period (e.g., rolling statistics, Hurst exponent), an optimal window length was programmatically determined to maximize its correlation with the target variable.

    Acknowledgements The raw OHLCV and news data was originally sourced from: https://www.kaggle.com/datasets/aaron7sun/stocknews. We thank them for making the data available.

    Inspiration This dataset is perfect for a variety of financial machine learning tasks:

    Can you build a model to predict the next day's market direction (Up/Down)?

    Which feature set is the most powerful? The technical indicators, the news embeddings, or a combination of all?

    How do advanced features like the Hurst exponent or wavelet coefficients contribute to model performance?

    Can you use these features to build a profitable trading strategy (backtesting required)?

  20. u

    Stock market statistics, Canada and United States, Bank of Canada

    • beta.data.urbandatacentre.ca
    • www150.statcan.gc.ca
    • +3more
    Updated Sep 13, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Stock market statistics, Canada and United States, Bank of Canada [Dataset]. https://beta.data.urbandatacentre.ca/dataset/gov-canada-e037b4dd-4c13-4cc2-b8c4-0262083dbbd0
    Explore at:
    Dataset updated
    Sep 13, 2024
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Area covered
    Canada, United States
    Description

    This table contains 14 series, with data starting from 1953 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (1 items: Canada ...), Stock market statistics (14 items: Toronto Stock Exchange; value of shares traded; United States common stocks; Dow-Jones industrials; high; United States common stocks; Dow-Jones industrials; low; Toronto Stock Exchange; volume of shares traded ...).

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2025). Dow Jones Industrial Average [Dataset]. https://fred.stlouisfed.org/series/DJIA

Dow Jones Industrial Average

DJIA

Explore at:
27 scholarly articles cite this dataset (View in Google Scholar)
jsonAvailable download formats
Dataset updated
Aug 29, 2025
License

https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval

Description

Graph and download economic data for Dow Jones Industrial Average (DJIA) from 2015-08-31 to 2025-08-29 about stock market, average, industry, and USA.

Search
Clear search
Close search
Google apps
Main menu