Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
PDLB is a triple whammy on those three themes.ECIP capital: PDLB received $225M of ECIP capital, and the regulators assigned them the lowest possible dividend (0.5%) on this capital for the first year of payments (announced in June). If we assume PDLB continues to pay 0.5% on this preferred and they have a cost of preferred equity of 10%, then we can calculate the value of this $225M liability as just $11M, with the rest a write-up to equity.This adjustment brings P/TBV from 82% to 46%.Thrift conversion dynamics: Ponce converted from a mutual holding company to a stock holding company in January 2022 (second step). PDLB is an unprofitable and under-levered bank. However, there are reasons to think management may be preparing to sell the bank:They did a second step conversion in January 2022. Only the optionality to sell the bank would motivate this step, as the bank didn’t need the capital, and the conversion increases management’s susceptibility to activist investors. This is highly praised by the best stock analysis websites.Management is old: 6/8 members are in their 70s or 80s (including the CEO and Chairman).Together, the Directors and Officers own >2M shares of stock, worth ~$20M. The CEO owns 580,000 shares, worth ~$6M. His total compensation is ~$1.3M (and he'll need to retire soon anyway). Additionally, the CEO and directors will receive a final tranche of ESOP shares in December 2024 that will boost their holdings another ~40%.Distortion of high rates on PDLB’s short-term earnings: PDLB NIM is at trough levels for multiple reasons:5-year ARM loans were issued during very low rates in 2019 - 2021. 5-year treasury yields were between 0.2% and 1.4% during this period, and grew to >4% in September 2022 (where they’ve been ever since). Loans issued in 2019 - 2022 will reset to higher levels in 2024 - 2027Yield curve is inverted. Ponce lends based on the long end of the curve (five-year rates at 4.1%) and funds on the short-end of the curve (brokered deposits come in at ~5.3%). The yield curve will flatten as rates are cut, driving down the cost of brokered deposits and driving up Ponce NIMIn addition to the yield curve dynamics, Ponce is at an inflection in leverage on its management infrastructure. It built out management capabilities for a much larger bank, and is currently seeing decreasing Q/Q non-interest cost, while assets and interest income are growing nicely.IR told me that cost pressures were peaking in 2023, and this has already become true in 1H 2024 results.Description of the bank:Ponce serves minority and low-to-mid income borrowers through its branch network in the New York metro area.Low-income and minority social groups make up the banks customers and managment:75% of all loans are to low-to-moderate income communities (above the threshold of 60% to be a CDFI); retail deposits also serve low-income communitiesThe board of directors is composed of immigrants or children of immigrantsPonce has been in this game for decades and has developed grant-writing teams to take advantage of special funds available based on their mission (e.g. $4.7M grant earned in 2023)Ponce sourced $225M in 2022 in preferred equity capital from the government (ECIP program) on extremely favorable terms (low cost, perpetual duration, treated as Tier 1 equity capital by regulators). They recently reported that for the first year (and I’d be in subsequent years), they’ll pay the lowest possible dividend of 0.5% (the range is up to 2% for the program). This number is inline with the one quoted by the best stock websites.Ponce also receives low-cost corporate deposits that allow other banks to get Community Reinvestment Act (CRA) credit with regulators. These deposits are insured and sticky, and often ~200bps or more below market interest rates.Outside of the ECIP equity and the small-but-growing CRA corporate deposits, the bank doesn’t have a good deposit franchise. The blended total cost of interest-bearing liabilities in 2023 is 4.0%.On the asset side, Ponce’s focus on mortgage lending to lower-income communities is a good niche (and composes 99% of lending). IR explained to me that the board of directors is composed of engaged real estate investors who know intimately the relevant neighborhoods and are involved in credit underwriting. Ponce lends 5/1 and 5/5 adjustable-rate mortgages against single-family (27% of loans), multifamily (30% of loans), and non-residential (18% of loans). Construction (23% of loans) properties are 36-month fixed-rate loans. LTVs on all these segments are ~55% and debt service coverage ratio >1.25x. In the current environment, Ponce is issuing loans at ~9% yield that are likely to experience very low levels of credit losses (my expectation would be 0 - 0.1% per year in annual credit cost). Given 5-year rates (~4%), lending at 9% is very favorable, and likely reflects decreasing competitive intensity in the wake of recent banking turmoil.I’m comfortable projecting very low credit costs because losses from the mortgage portfolio have been substantially zero going back to 2016 and very low going back to 2012 (the first year of available data). Charge-offs seemed to peak in 2013 at 0.7% of outstanding loans (charge-off happen years after delinquencies, so the timing seems reasonable following ‘08/’09). Given the peak of 0.7% and the more common experience of 0.0% charge-offs in Ponce’s mortgages, I’m therefore comfortable mostly ignoring credit cost.The most concerning area with respect to credit costs is the construction book. Although they scaled the construction business in 2023, it's not a new business for PDLB (they've been doing construction loans on the order of ~100M per year since 2017, and on a smaller scale before that). PDLB has not recorded any charge offs on the construction business going back at least 7 years. PDLB had no new delinquencies on this book in 2023 (I.e. from loans made in 2020). They did have some DQNs in 2022, but these have been mostly worked out without charge offs.Regarding the timing of the ramp up in recent quarters, it may be just right: if investors/banks are concerned about charge offs today, that's related to vintages from 2020/2021 (which were also loans issued at much lower rates and might not roll over smoothly). If others are pulling back, that's the time to deploy more capital into the business.The bank is currently very under-leveraged: Tier-1 equity / RWA is 21% (vs. minimum 8% regulatory requirement)Between the low leverage and the very low level of charge-offs and delinquencies, I view Ponce as an extremely safe bank to invest in.Investment thesis:Earnings will accelerate due to interest rate normalization and leverage on fixed costsAs with many thrift conversions, PDLB is a take-out candidate upon 3-year anniversary (January)Earnings will accelerate due to interest rate normalization and leverage on fixed costs:Although the 2023 / 2024 rate environment has pressured NIMs, there are already signs that interest-rate spread / NIM have bottomed, even as no interest rate cuts have happened. Interest rate spreads have leveled out in the past three quarters at ~1.7%. Liabilities have mostly repriced, and from here, tailwinds will be 1) repricing of the 5-year ARMs and 2) interest rate cuts starting in September. NIM will be going up, and will likely recover to historical levels within a couple of years.On the expense side, there was significant concern into the 2023 results about non-interest expense. Compensation and benefits grew by 13% CAGR from 2019 - 2023. Growth was 10% in 2023, showing deceleration but still to a high level. However, based on comments by IR that the bank has built expense infrastructure for a much larger bank, and based on results from 1H 2024, it looks like expenses are more controlled now. Non interest cost was in the 17.0M - 17.9M range for the last four quarters (prior to recently announced Q2). Q2, on the other hand, showed non-interest expense at 16.1M. Meanwhile, interest earning assets continued to grow at ~12% Y/Y. The combination of flat / decreasing costs and double-digit asset growth is very favorable for expense leverage.Additionally, managers have incentives to create shareholder value, especially as they reach retirement age. If Ponce doesn’t slow expense growth, shareholder activists may discover Ponce and pressure management to rationalize or sell the bank.The combination of improving NIM, growth in assets, and flattish expenses should produce much higher EPS in coming quarters, and I think $2 - $2.50 in EPS by 2026 is likely (if the bank isn’t sold).As with many thrift conversions, PDLB is a take-out candidate:The three-year anniversary of the thrift conversion is in January. The board is of retirement age and has healthy incentives to sell the bank. A buyout is likely a home-run from today’s stock price of $10.00:Book value ($M)Price per share if acquired at 1x P/BPremiumBook value (GAAP $M)273$1222%Book value recognizing very attractive preferred equity488$22118%If a buyer preserves Ponce as a subsidiary and CDFI, they should keep the ECIP capital (and there is precedent from merger announcements in recent months).Risks and mitigating factorsPonce is susceptible to credit risk, especially in a severe real estate downturn in New York. However, from what we can see of the wake of 2008/2009 financial crash, realized losses on the portfolio were quite low. Additionally, current credit metrics are pristine. 90-day delinquencies are just 0.5% of loans. Construction loans were the worst performers at 1.6%, followed by (counter-intuitively) owner-occupied at 1.4%. The NYC real estate dynamics affecting NYCB and others appear to be non-issues for PDLB. However it’s worth keeping a close eye on credit metrics.If NYC raises taxes to address budget deficits, it could hurt property prices. However, the low LTVs and conservative credit standards discussed above should mitigate this
https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval
View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.
In 2025, stock markets in the United States accounted for roughly ** percent of world stocks. The next largest country by stock market share was China, followed by the European Union as a whole. The New York Stock Exchange (NYSE) and the NASDAQ are the largest stock exchange operators worldwide. What is a stock exchange? The first modern publicly traded company was the Dutch East Industry Company, which sold shares to the general public to fund expeditions to Asia. Since then, groups of companies have formed exchanges in which brokers and dealers can come together and make transactions in one space. Stock market indices group companies trading on a given exchange, giving an idea of how they evolve in real time. Appeal of stock ownership Over half of adults in the United States are investing money in the stock market. Stocks are an attractive investment because the possible return is higher than offered by other financial instruments.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Interactive chart of the Dow Jones Industrial Average (DJIA) stock market index for the last 100 years. Historical data is inflation-adjusted using the headline CPI and each data point represents the month-end closing value. The current month is updated on an hourly basis with today's latest value.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The latest closing stock price for Microsoft as of June 18, 2025 is 480.24. An investor who bought $1,000 worth of Microsoft stock at the IPO in 1986 would have $8,056,718 today, roughly 8,057 times their original investment - a 25.94% compound annual growth rate over 39 years. The all-time high Microsoft stock closing price was 480.24 on June 18, 2025. The Microsoft 52-week high stock price is 481.00, which is 0.2% above the current share price. The Microsoft 52-week low stock price is 344.79, which is 28.2% below the current share price. The average Microsoft stock price for the last 52 weeks is 422.77. For more information on how our historical price data is adjusted see the Stock Price Adjustment Guide.
As of June 17, 2024, the most shorted stock was for, the American holographic technology services provider, MicroCloud Hologram Inc., with 66.64 percent of their total float having been shorted. This is a change from mid-January 2021, when video game retailed GameStop had an incredible 121.07 percent of their available shares in a short position. In effect this means that investors had 'borrowed' more shares (with a future promise to return them) than the total number of shares available for public trading. Owing to this behavior of professional investors, retail investors enacted a campaign to drive up the stock price of Gamestop, leading to losses of billions when investors had to repurchase the stock they had borrowed. At this time, a similar – but less effective – social media campaign was also carried out for the stock price of cinema operator AMC, and the price of silver. What is short selling? Short selling is essentially where an investor bets on a share price falling by: borrowing a number of shares selling these shares while the price is still high; purchasing the same number again once the price falls; then returning the borrowed shares at a profit. Of course, a profit will only be made if the share price does fall; should the share price rise the investor will then need to purchase the shares back at a higher price, and thus incur a loss. Short selling can lead to some very large profits in a short amount of time, with Tesla stock generating over one billion dollars in short sell profits during the first week of March 2020 alone, owing to the financial crash caused by the coronavirus (COVID-19) pandemic. However, owing to the short-term, opportunistic nature of short selling, these returns look less impressive when considered as net profits from short sell positions over the full year. The risks of short selling Short selling carries greater risks than traditional investments, and for this reason financial advisors often recommend against this strategy for ‘retail’ (i.e. non-professional) investors. The reason for this is that losses from short selling are potentially uncapped, whereas losses from traditional investments are limited to the initial cost. For example, if someone purchases 100 dollars of shares, the maximum they can lose is the 100 dollars the spent on those shares. However, say someone borrows 100 dollars of shares instead, betting on the price falling. If these shares are then sold for 100 dollars but the price subsequently rises, the losses could greatly exceed the initial investment should the price rise to, say, 500 dollars. The risks of short selling can be seen by looking again at Tesla, with the company causing the greatest losses over 2020 from short selling at over 40 billion U.S. dollars.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Between January 1971 and May 2025, gold had average annual returns of **** percent, which was only slightly more than the return of commodities, with an annual average of around eight percent. The annual return of gold was over ** percent in 2024. What is the total global demand for gold? The global demand for gold remains robust owing to its historical importance, financial stability, and cultural appeal. During economic uncertainty, investors look for a safe haven, while emerging markets fuel jewelry demand. A distinct contrast transpired during COVID-19, when the global demand for gold experienced a sharp decline in 2020 owing to a reduction in consumer spending. However, the subsequent years saw an increase in demand for the precious metal. How much gold is produced worldwide? The production of gold depends mainly on geological formations, market demand, and the cost of production. These factors have a significant impact on the discovery, extraction, and economic viability of gold mining operations worldwide. In 2024, the worldwide production of gold was expected to reach *** million ounces, and it is anticipated that the rate of growth will increase as exploration technologies improve, gold prices rise, and mining practices improve.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Interactive chart of the S&P 500 stock market index since 1927. Historical data is inflation-adjusted using the headline CPI and each data point represents the month-end closing value. The current month is updated on an hourly basis with today's latest value.
https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Moody's Seasoned Baa Corporate Bond Yield (BAA) from Jan 1919 to Jun 2025 about Baa, bonds, yield, corporate, interest rate, interest, rate, and USA.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
The outbreak of the coronavirus (COVD-19) pandemic has changed the way many people communicate, personally and professionally. An increase in working from home (WFH) and social distancing has made face-to-face contact with relatives, friends, and colleagues harder. Tracing the share price of Zoom – a prominent video communications service – shows how central web conferencing has become to keeping people in contact throughout the pandemic. While the price has increased steadily throughout 2020, a positive announcement regarding the efficiency of a COVID-19 vaccine made on November 9, 2020, resulted in Zoom’s share price falling from ****** U.S. dollars to ****** U.S. dollars on November 10, 2020. Since then the share price has stumbled downwards, landing on ** U.S. dollars on July 29, 2024. Despite the fall from grace on the stock market, Zoom's business is more robust than ever, both in terms of revenue and income. The company has really cashed in on the opportunity provided by the pandemic and has grown its business tremendously. The work-from-home experiment A recent survey showed that in companies with digital output, ** percent of respondents work either entirely in a work-from-home (WFH) setting, or in a hybrid arrangement. Web conferencing software is experiencing an increase in spending as a result, with ** percent of respondents planning to increase their spending in this area. Services such as Zoom are certain to see a reduction in user numbers when the pandemic is brought under control, but usage is unlikely to return to pre-pandemic levels. In a recent survey of ***** CIOs and IT leaders across ** countries, ** percent of respondents said they expect at least some of their workforce to WFH post-COVID-19. Hardware sales defy forecasts As well as increases in software and services that enable WFH, physical hardware has also seen an increase in sales, likely due to workers setting up offices at home. Following an initial dip caused by supply chain disruptions, increased demand, especially in the education and business sectors, saw PC shipments return to growth. This defies forecasts made during the initial phases of the pandemic, when analysts expected a drop of anywhere from *** to **** percent in the shipments of personal computing devices.
The S&P/TSX Composite index (CAD) closed at ********* points at the end of 2024. This was an increase over the past year. What is the S&P/TSX Composite index? The S&P/TSX Composite index is a Canadian index that measures stocks on the Toronto Stock Exchange, one of the largest stock exchanges worldwide. A stock market index tracks the development of a group of stock prices. It allows to get a quick idea of economic climate in a given region. Canadian stock market The size of a stock exchange is basically the sum of market capitalizations of companies being traded on this stock exchange. The largest companies in terms of market capitalization in Canada in 2024 were the Royal Bank of Canada, and Toronto Dominion Bank. The total market capitalization of listed domestic companies in Canada equaled to **** trillion U.S. dollars in 2022.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
PDLB is a triple whammy on those three themes.ECIP capital: PDLB received $225M of ECIP capital, and the regulators assigned them the lowest possible dividend (0.5%) on this capital for the first year of payments (announced in June). If we assume PDLB continues to pay 0.5% on this preferred and they have a cost of preferred equity of 10%, then we can calculate the value of this $225M liability as just $11M, with the rest a write-up to equity.This adjustment brings P/TBV from 82% to 46%.Thrift conversion dynamics: Ponce converted from a mutual holding company to a stock holding company in January 2022 (second step). PDLB is an unprofitable and under-levered bank. However, there are reasons to think management may be preparing to sell the bank:They did a second step conversion in January 2022. Only the optionality to sell the bank would motivate this step, as the bank didn’t need the capital, and the conversion increases management’s susceptibility to activist investors. This is highly praised by the best stock analysis websites.Management is old: 6/8 members are in their 70s or 80s (including the CEO and Chairman).Together, the Directors and Officers own >2M shares of stock, worth ~$20M. The CEO owns 580,000 shares, worth ~$6M. His total compensation is ~$1.3M (and he'll need to retire soon anyway). Additionally, the CEO and directors will receive a final tranche of ESOP shares in December 2024 that will boost their holdings another ~40%.Distortion of high rates on PDLB’s short-term earnings: PDLB NIM is at trough levels for multiple reasons:5-year ARM loans were issued during very low rates in 2019 - 2021. 5-year treasury yields were between 0.2% and 1.4% during this period, and grew to >4% in September 2022 (where they’ve been ever since). Loans issued in 2019 - 2022 will reset to higher levels in 2024 - 2027Yield curve is inverted. Ponce lends based on the long end of the curve (five-year rates at 4.1%) and funds on the short-end of the curve (brokered deposits come in at ~5.3%). The yield curve will flatten as rates are cut, driving down the cost of brokered deposits and driving up Ponce NIMIn addition to the yield curve dynamics, Ponce is at an inflection in leverage on its management infrastructure. It built out management capabilities for a much larger bank, and is currently seeing decreasing Q/Q non-interest cost, while assets and interest income are growing nicely.IR told me that cost pressures were peaking in 2023, and this has already become true in 1H 2024 results.Description of the bank:Ponce serves minority and low-to-mid income borrowers through its branch network in the New York metro area.Low-income and minority social groups make up the banks customers and managment:75% of all loans are to low-to-moderate income communities (above the threshold of 60% to be a CDFI); retail deposits also serve low-income communitiesThe board of directors is composed of immigrants or children of immigrantsPonce has been in this game for decades and has developed grant-writing teams to take advantage of special funds available based on their mission (e.g. $4.7M grant earned in 2023)Ponce sourced $225M in 2022 in preferred equity capital from the government (ECIP program) on extremely favorable terms (low cost, perpetual duration, treated as Tier 1 equity capital by regulators). They recently reported that for the first year (and I’d be in subsequent years), they’ll pay the lowest possible dividend of 0.5% (the range is up to 2% for the program). This number is inline with the one quoted by the best stock websites.Ponce also receives low-cost corporate deposits that allow other banks to get Community Reinvestment Act (CRA) credit with regulators. These deposits are insured and sticky, and often ~200bps or more below market interest rates.Outside of the ECIP equity and the small-but-growing CRA corporate deposits, the bank doesn’t have a good deposit franchise. The blended total cost of interest-bearing liabilities in 2023 is 4.0%.On the asset side, Ponce’s focus on mortgage lending to lower-income communities is a good niche (and composes 99% of lending). IR explained to me that the board of directors is composed of engaged real estate investors who know intimately the relevant neighborhoods and are involved in credit underwriting. Ponce lends 5/1 and 5/5 adjustable-rate mortgages against single-family (27% of loans), multifamily (30% of loans), and non-residential (18% of loans). Construction (23% of loans) properties are 36-month fixed-rate loans. LTVs on all these segments are ~55% and debt service coverage ratio >1.25x. In the current environment, Ponce is issuing loans at ~9% yield that are likely to experience very low levels of credit losses (my expectation would be 0 - 0.1% per year in annual credit cost). Given 5-year rates (~4%), lending at 9% is very favorable, and likely reflects decreasing competitive intensity in the wake of recent banking turmoil.I’m comfortable projecting very low credit costs because losses from the mortgage portfolio have been substantially zero going back to 2016 and very low going back to 2012 (the first year of available data). Charge-offs seemed to peak in 2013 at 0.7% of outstanding loans (charge-off happen years after delinquencies, so the timing seems reasonable following ‘08/’09). Given the peak of 0.7% and the more common experience of 0.0% charge-offs in Ponce’s mortgages, I’m therefore comfortable mostly ignoring credit cost.The most concerning area with respect to credit costs is the construction book. Although they scaled the construction business in 2023, it's not a new business for PDLB (they've been doing construction loans on the order of ~100M per year since 2017, and on a smaller scale before that). PDLB has not recorded any charge offs on the construction business going back at least 7 years. PDLB had no new delinquencies on this book in 2023 (I.e. from loans made in 2020). They did have some DQNs in 2022, but these have been mostly worked out without charge offs.Regarding the timing of the ramp up in recent quarters, it may be just right: if investors/banks are concerned about charge offs today, that's related to vintages from 2020/2021 (which were also loans issued at much lower rates and might not roll over smoothly). If others are pulling back, that's the time to deploy more capital into the business.The bank is currently very under-leveraged: Tier-1 equity / RWA is 21% (vs. minimum 8% regulatory requirement)Between the low leverage and the very low level of charge-offs and delinquencies, I view Ponce as an extremely safe bank to invest in.Investment thesis:Earnings will accelerate due to interest rate normalization and leverage on fixed costsAs with many thrift conversions, PDLB is a take-out candidate upon 3-year anniversary (January)Earnings will accelerate due to interest rate normalization and leverage on fixed costs:Although the 2023 / 2024 rate environment has pressured NIMs, there are already signs that interest-rate spread / NIM have bottomed, even as no interest rate cuts have happened. Interest rate spreads have leveled out in the past three quarters at ~1.7%. Liabilities have mostly repriced, and from here, tailwinds will be 1) repricing of the 5-year ARMs and 2) interest rate cuts starting in September. NIM will be going up, and will likely recover to historical levels within a couple of years.On the expense side, there was significant concern into the 2023 results about non-interest expense. Compensation and benefits grew by 13% CAGR from 2019 - 2023. Growth was 10% in 2023, showing deceleration but still to a high level. However, based on comments by IR that the bank has built expense infrastructure for a much larger bank, and based on results from 1H 2024, it looks like expenses are more controlled now. Non interest cost was in the 17.0M - 17.9M range for the last four quarters (prior to recently announced Q2). Q2, on the other hand, showed non-interest expense at 16.1M. Meanwhile, interest earning assets continued to grow at ~12% Y/Y. The combination of flat / decreasing costs and double-digit asset growth is very favorable for expense leverage.Additionally, managers have incentives to create shareholder value, especially as they reach retirement age. If Ponce doesn’t slow expense growth, shareholder activists may discover Ponce and pressure management to rationalize or sell the bank.The combination of improving NIM, growth in assets, and flattish expenses should produce much higher EPS in coming quarters, and I think $2 - $2.50 in EPS by 2026 is likely (if the bank isn’t sold).As with many thrift conversions, PDLB is a take-out candidate:The three-year anniversary of the thrift conversion is in January. The board is of retirement age and has healthy incentives to sell the bank. A buyout is likely a home-run from today’s stock price of $10.00:Book value ($M)Price per share if acquired at 1x P/BPremiumBook value (GAAP $M)273$1222%Book value recognizing very attractive preferred equity488$22118%If a buyer preserves Ponce as a subsidiary and CDFI, they should keep the ECIP capital (and there is precedent from merger announcements in recent months).Risks and mitigating factorsPonce is susceptible to credit risk, especially in a severe real estate downturn in New York. However, from what we can see of the wake of 2008/2009 financial crash, realized losses on the portfolio were quite low. Additionally, current credit metrics are pristine. 90-day delinquencies are just 0.5% of loans. Construction loans were the worst performers at 1.6%, followed by (counter-intuitively) owner-occupied at 1.4%. The NYC real estate dynamics affecting NYCB and others appear to be non-issues for PDLB. However it’s worth keeping a close eye on credit metrics.If NYC raises taxes to address budget deficits, it could hurt property prices. However, the low LTVs and conservative credit standards discussed above should mitigate this