Facebook
TwitterOfficial statistics are produced impartially and free from political influence.
Facebook
TwitterOver 12 million people in the United States died from all causes between the beginning of January 2020 and August 21, 2023. Over 1.1 million of those deaths were with confirmed or presumed COVID-19.
Vaccine rollout in the United States Finding a safe and effective COVID-19 vaccine was an urgent health priority since the very start of the pandemic. In the United States, the first two vaccines were authorized and recommended for use in December 2020. One has been developed by Massachusetts-based biotech company Moderna, and the number of Moderna COVID-19 vaccines administered in the U.S. was over 250 million. Moderna has also said that its vaccine is effective against the coronavirus variants first identified in the UK and South Africa.
Facebook
TwitterAs of January 6, 2022, an average of 1,192 people per day have died from COVID-19 in the U.S. since the first case was confirmed in the country on January 20th the year before. On an average day, nearly 8,000 people die from all causes in the United States, based on data from 2019. Based on the latest information, roughly one in seven deaths each day were related to COVID-19 between January 2020 and January 2022. However, there were even days when more than every second death in the U.S. was connected to COVID-19. The daily death toll from the seasonal flu, using preliminary maximum estimates from the 2019-2020 influenza season, stood at an average of around 332 people. We have to keep in mind that a comparison of influenza and COVID-19 is somewhat difficult. COVID-19 cases and deaths are counted continuously since the begin of the pandemic, whereas flue counts are seasonal and often less accurate. Furthermore, during the last two years, COVID-19 more or less 'replaced' the flu, with COVID-19 absorbing potential flu cases. Many countries reported a very weak seasonal flu activity during the COVID-19 pandemic. But it has yet to be seen how the two infectious diseases will develop side by side during the winter season 2021/2022 and in the years to come.
Symptoms and self-isolation COVID-19 and influenza share similar symptoms – a cough, runny nose, and tiredness – and telling the difference between the two can be difficult. If you have minor symptoms, there is no need to seek urgent medical care, but it is recommended that you self-isolate, whereas rules vary from country to country. Additionally, rules depend on someone's vaccination status and infection history. However, if you think you have the disease, a diagnostic test can show if you have an active infection.
Scientists alert to coronavirus mutations The genetic material of the novel coronavirus is RNA, not DNA. Other notable human diseases caused by RNA viruses include SARS, Ebola, and influenza. A continual problem that vaccine developers encounter is that viruses can mutate, and a treatment developed against a certain virus type may not work on a mutated form. The seasonal flu vaccine, for example, is different each year because influenza viruses are frequently mutating, and it is critical that those genetic changes continue to be tracked.
Facebook
TwitterOfficial statistics are produced impartially and free from political influence.
Facebook
TwitterBetween January and August 2020, there has been approximately 48.2 thousand deaths in England and Wales with COVID-19 as an underlying cause. As illustrated in the table, the number of deaths as a result of COVID-19 are much higher than from either pneumonia or influenza. There has been over three times the number of deaths from COVID-19 than pneumonia and influenza so far in 2020. The overall number of confirmed COVID-19 cases in the UK can be found here. For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.
Facebook
TwitterThese reports summarise the surveillance of influenza, COVID-19 and other seasonal respiratory illnesses in England.
Weekly findings from community, primary care, secondary care and mortality surveillance systems are included in the reports.
This page includes reports published from 17 July 2025.
Please note that after the week 21 report (covering data up to week 20), this surveillance report will move to a condensed summer report and will be released every 2 weeks.
The COVID-19 vaccine uptake coverage report data 16 October 2025 (week 42) National flu and COVID-19 vaccine uptake coverage report data 9 October 2025 (week 41) were corrected on 23 October 2025. More details are provided in the statistics.
Previous reports on influenza surveillance are also available for:
View previous COVID-19 surveillance reports.
View the pre-release access list for these reports.
Our statistical practice is regulated by the Office for Statistics Regulation (OSR). The OSR sets the standards of trustworthiness, quality and value in the https://code.statisticsauthority.gov.uk/">Code of Practice for Statistics that all producers of Official Statistics should adhere to.
Facebook
TwitterAs of May 2, 2023, the outbreak of the coronavirus disease (COVID-19) had spread to almost every country in the world, and more than 6.86 million people had died after contracting the respiratory virus. Over 1.16 million of these deaths occurred in the United States.
Waves of infections Almost every country and territory worldwide have been affected by the COVID-19 disease. At the end of 2021 the virus was once again circulating at very high rates, even in countries with relatively high vaccination rates such as the United States and Germany. As rates of new infections increased, some countries in Europe, like Germany and Austria, tightened restrictions once again, specifically targeting those who were not yet vaccinated. However, by spring 2022, rates of new infections had decreased in many countries and restrictions were once again lifted.
What are the symptoms of the virus? It can take up to 14 days for symptoms of the illness to start being noticed. The most commonly reported symptoms are a fever and a dry cough, leading to shortness of breath. The early symptoms are similar to other common viruses such as the common cold and flu. These illnesses spread more during cold months, but there is no conclusive evidence to suggest that temperature impacts the spread of the SARS-CoV-2 virus. Medical advice should be sought if you are experiencing any of these symptoms.
Facebook
Twitterhttps://www.usa.gov/government-workshttps://www.usa.gov/government-works
Deaths counts for influenza, pneumonia, and COVID-19 reported to NCHS by week ending date, by state and HHS region, and age group.
Facebook
Twitterhttps://www.usa.gov/government-workshttps://www.usa.gov/government-works
This dataset represents preliminary estimates of cumulative U.S. COVID-19 disease burden for the 2024-2025 period, including illnesses, outpatient visits, hospitalizations, and deaths. The weekly COVID-19-associated burden estimates are preliminary and based on continuously collected surveillance data from patients hospitalized with laboratory-confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. The data come from the Coronavirus Disease 2019 (COVID-19)-Associated Hospitalization Surveillance Network (COVID-NET), a surveillance platform that captures data from hospitals that serve about 10% of the U.S. population. Each week CDC estimates a range (i.e., lower estimate and an upper estimate) of COVID-19 -associated burden that have occurred since October 1, 2024.
Note: Data are preliminary and subject to change as more data become available. Rates for recent COVID-19-associated hospital admissions are subject to reporting delays; as new data are received each week, previous rates are updated accordingly.
References
Facebook
TwitterThis dataset is a per-state amalgamation of demographic, public health and other relevant predictors for COVID-19.
Used positive, death and totalTestResults from the API for, respectively, Infected, Deaths and Tested in this dataset.
Please read the documentation of the API for more context on those columns
Density is people per meter squared https://worldpopulationreview.com/states/
https://worldpopulationreview.com/states/gdp-by-state/
https://worldpopulationreview.com/states/per-capita-income-by-state/
https://en.wikipedia.org/wiki/List_of_U.S._states_by_Gini_coefficient
Rates from Feb 2020 and are percentage of labor force
https://www.bls.gov/web/laus/laumstrk.htm
Ratio is Male / Female
https://www.kff.org/other/state-indicator/distribution-by-gender/
https://worldpopulationreview.com/states/smoking-rates-by-state/
Death rate per 100,000 people
https://www.cdc.gov/nchs/pressroom/sosmap/flu_pneumonia_mortality/flu_pneumonia.htm
Death rate per 100,000 people
https://www.cdc.gov/nchs/pressroom/sosmap/lung_disease_mortality/lung_disease.htm
https://www.kff.org/other/state-indicator/total-active-physicians/
https://www.kff.org/other/state-indicator/total-hospitals
Includes spending for all health care services and products by state of residence. Hospital spending is included and reflects the total net revenue. Costs such as insurance, administration, research, and construction expenses are not included.
https://www.kff.org/other/state-indicator/avg-annual-growth-per-capita/
Pollution: Average exposure of the general public to particulate matter of 2.5 microns or less (PM2.5) measured in micrograms per cubic meter (3-year estimate)
https://www.americashealthrankings.org/explore/annual/measure/air/state/ALL
For each state, number of medium and large airports https://en.wikipedia.org/wiki/List_of_the_busiest_airports_in_the_United_States
Note that FL was incorrect in the table, but is corrected in the Hottest States paragraph
https://worldpopulationreview.com/states/average-temperatures-by-state/
District of Columbia temperature computed as the average of Maryland and Virginia
Urbanization as a percentage of the population https://www.icip.iastate.edu/tables/population/urban-pct-states
https://www.kff.org/other/state-indicator/distribution-by-age/
Schools that haven't closed are marked NaN https://www.edweek.org/ew/section/multimedia/map-coronavirus-and-school-closures.html
Note that some datasets above did not contain data for District of Columbia, this missing data was found via Google searches manually entered.
Facebook
TwitterThese reports summarise the surveillance of influenza, COVID-19 and other seasonal respiratory illnesses.
Weekly findings from community, primary care, secondary care and mortality surveillance systems are included in the reports.
This page includes reports published from 14 July 2022 to 6 July 2023.
Previous reports on influenza surveillance are also available for:
View previous COVID-19 surveillance reports.
Facebook
TwitterEffective September 27, 2023, this dataset will no longer be updated. Similar data are accessible from wonder.cdc.gov. Deaths involving COVID-19, pneumonia, and influenza reported to NCHS by sex, age group, and jurisdiction of occurrence.
Facebook
TwitterThe burden of influenza in the United States can vary from year to year depending on which viruses are circulating, how many people receive an influenza vaccination, and how effective the vaccination is in that particular year. During the 2023-2024 flu season, around 28,000 people lost their lives to the disease. Although most people recover from influenza without needing medical care, the disease can be deadly among young children, the elderly, and those with weakened immune systems or chronic illnesses. Deaths due to influenza Even though most people recover from influenza without medical care, influenza and pneumonia can be deadly, especially for older people and those with certain preexisting conditions. Influenza is a common cause of pneumonia and although most cases of influenza do not develop into pneumonia, those that do are often more severe and more deadly. Deaths due to influenza are most common among the elderly, with a mortality rate of around 32 per 100,000 population during the 2023-2024 flu season. In comparison, the mortality rate for those aged 50 to 64 years was 9.1 per 100,000 population. Flu vaccinations The most effective way to prevent influenza is to receive an annual influenza vaccination. These vaccines have proven to be safe and are usually cheap and easily accessible. Nevertheless, every year a large share of the population in the United States still fails to get vaccinated against influenza. For example, in the 2022-2023 flu season, only 35 percent of those aged 18 to 49 years received a flu vaccination. Unsurprisingly, children and the elderly are the most likely to get vaccinated. It is estimated that during the 2022-2023 flu season, vaccinations prevented over 929 thousand influenza cases among children aged 6 months to 4 years.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Age-standardised mortality rates for deaths involving coronavirus (COVID-19), non-COVID-19 deaths and all deaths by vaccination status, broken down by age group.
Facebook
TwitterData is from the California Department of Public Health (CDPH) Respiratory Virus Weekly Report. The report is updated each Friday. Laboratory surveillance data: California laboratories report SARS-CoV-2 test results to CDPH through electronic laboratory reporting. Los Angeles County SARS-CoV-2 lab data has a 7-day reporting lag. Test positivity is calculated using SARS-CoV-2 lab tests that has a specimen collection date reported during a given week. Laboratory surveillance for influenza, respiratory syncytial virus (RSV), and other respiratory viruses (parainfluenza types 1-4, human metapneumovirus, non-SARS-CoV-2 coronaviruses, adenovirus, enterovirus/rhinovirus) involves the use of data from clinical sentinel laboratories (hospital, academic or private) located throughout California. Specimens for testing are collected from patients in healthcare settings and do not reflect all testing for influenza, respiratory syncytial virus, and other respiratory viruses in California. These laboratories report the number of laboratory-confirmed influenza, respiratory syncytial virus, and other respiratory virus detections and isolations, and the total number of specimens tested by virus type on a weekly basis. Test positivity for a given week is calculated by dividing the number of positive COVID-19, influenza, RSV, or other respiratory virus results by the total number of specimens tested for that virus. Weekly laboratory surveillance data are defined as Sunday through Saturday. Hospitalization data: Data on COVID-19 and influenza hospital admissions are from Centers for Disease Control and Prevention’s (CDC) National Healthcare Safety Network (NHSN) Hospitalization dataset. The requirement to report COVID-19 and influenza-associated hospitalizations was effective November 1, 2024. CDPH pulls NHSN data from the CDC on the Wednesday prior to the publication of the report. Results may differ depending on which day data are pulled. Admission rates are calculated using population estimates from the P-3: Complete State and County Projections Dataset provided by the State of California Department of Finance (https://dof.ca.gov/forecasting/demographics/projections/). Reported weekly admission rates for the entire season use the population estimates for the year the season started. For more information on NHSN data including the protocol and data collection information, see the CDC NHSN webpage (https://www.cdc.gov/nhsn/index.html). CDPH collaborates with Northern California Kaiser Permanente (NCKP) to monitor trends in RSV admissions. The percentage of RSV admissions is calculated by dividing the number of RSV-related admissions by the total number of admissions during the same period. Admissions for pregnancy, labor and delivery, birth, and outpatient procedures are not included in total number of admissions. These admissions serve as a proxy for RSV activity and do not necessarily represent laboratory confirmed hospitalizations for RSV infections; NCKP members are not representative of all Californians. Weekly hospitalization data are defined as Sunday through Saturday. Death certificate data: CDPH receives weekly year-to-date dynamic data on deaths occurring in California from the CDPH Center for Health Statistics and Informatics. These data are limited to deaths occurring among California residents and are analyzed to identify influenza, respiratory syncytial virus, and COVID-19-coded deaths. These deaths are not necessarily laboratory-confirmed and are an underestimate of all influenza, respiratory syncytial virus, and COVID-19-associated deaths in California. Weekly death data are defined as Sunday through Saturday. Wastewater data: This dataset represents statewide weekly SARS-CoV-2 wastewater summary values. SARS-CoV-2 wastewater concentrations from all sites in California are combined into a single, statewide, unit-less summary value for each week, using a method for data transformation and aggregation developed by the CDC National Wastewater Surveillance System (NWSS). Please see the CDC NWSS data methods page for a description of how these summary values are calculated. Weekly wastewater data are defined as Sunday through Saturday.
Facebook
TwitterAmong the ten major virus outbreaks in the last 50 years, Marburg ranked first in terms of the fatality rate with 80 percent. In comparison, the recent novel coronavirus, originating from the Chinese city of Wuhan, had an estimated fatality rate of 2.2 percent as of January 31, 2020. Alarming COVID-19 fatality rate in Mexico More than 812,000 people worldwide had died from COVID-19 as of August 24, 2020. Three of the most populous countries in the world have reported particularly large numbers of coronavirus-related deaths: Mexico, Brazil, and the United States. Out of those three nations, Mexico has the highest COVID-19 death rate, with around one in ten confirmed cases resulting in death. The high fatality rate in Mexico indicates that cases may be much higher than reported because testing capacity has been severely stretched. Post-lockdown complacency a real danger In March 2020, each infected person was estimated to transmit the COVID-19 virus to between 1.5 and 3.5 other people, which was a higher infection rate than the seasonal flu. The coronavirus is primarily spread through respiratory droplets, and transmission commonly occurs when people are in close contact. As lockdowns ease around the world, people are being urged not to become complacent; continue to wear face coverings and practice social distancing, which can help to prevent further infections.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Background and Aim: Co-infection of COVID-19 with other respiratory pathogens which may complicate the diagnosis, treatment, and prognosis of COVID-19 emerge new concern. The overlap of COVID-19 and influenza, as two epidemics at the same time can occur in the cold months of the year. The aim of current study was to evaluate the rate of such co-infection as a systematic review and meta-analysis.Methods: A systematic literature search was performed on September 28, 2019 for original research articles published in Medline, Web of Science, and Embase databases from December 2019 to September 2020 using relevant keywords. Patients of all ages with simultaneous COVID-19 and influenza were included. Statistical analysis was performed using STATA 14 software.Results: Eleven prevalence studies with total of 3,070 patients with COVID-19, and 79 patients with concurrent COVID-19 and influenza were selected for final evaluation. The prevalence of influenza infection was 0.8% in patients with confirmed COVID-19. The frequency of influenza virus co-infection among patients with COVID-19 was 4.5% in Asia and 0.4% in the America. Four prevalence studies reported the sex of patients, which were 30 men and 31 women. Prevalence of co-infection with influenza in men and women with COVID-19 was 5.3 and 9.1%, respectively. Eight case reports and 7 case series with a total of 123 patients with COVID-19 were selected, 29 of them (16 men, 13 women) with mean age of 48 years had concurrent infection with influenza viruses A/B. Fever, cough, and shortness of breath were the most common clinical manifestations. Two of 29 patients died (6.9%), and 17 out of 29 patients recovered (58.6%). Oseltamivir and hydroxychloroquine were the most widely used drugs used for 41.4, and 31% of patients, respectively.Conclusion: Although a low proportion of COVID-19 patients have influenza co-infection, however, the importance of such co-infection, especially in high-risk individuals and the elderly, cannot be ignored. We were unable to report the exact rate of simultaneous influenza in COVID-19 patients worldwide due to a lack of data from several countries. Obviously, more studies are needed to evaluate the exact effect of the COVID-19 and influenza co-infection in clinical outcomes.
Facebook
TwitterThe COVID-19 dashboard includes data on city/town COVID-19 activity, confirmed and probable cases of COVID-19, confirmed and probable deaths related to COVID-19, and the demographic characteristics of cases and deaths.
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
Why did I create this dataset? This is my first time creating a notebook in Kaggle and I am interested in learning more about COVID-19 and how different countries are affected by it and why. It might be useful to compare different metrics between different countries. And I also wanted to participate in a challenge, and I've decided to join the COVID-19 datasets challenge. While looking through the projects, I noticed https://www.kaggle.com/koryto/countryinfo and it inspired me to start this project.
My approach is to scour the Internet and Kaggle looking for country data that can potentially have an impact on how the COVID-19 pandemic spreads. In the end, I ended up with the following for each country:
See covid19_data - data_sources.csv for data source details.
Notebook: https://www.kaggle.com/bitsnpieces/covid19-data
Since I did not personally collect each datapoint, and because each datasource is different with different objectives, collected at different times, measured in different ways, any inferences from this dataset will need further investigation.
I want to acknowledge the authors of the datasets that made their data publicly available which has made this project possible. Banner image is by Brian.
I hope that the community finds this dataset useful. Feel free to recommend other datasets that you think will be useful / relevant! Thanks for looking.
Facebook
TwitterThe Respiratory Virus Hospitalization Surveillance Network (RESP-NET) is a network that conducts, active, population-based surveillance for laboratory confirmed hospitalizations associated with Influenza, COVID-19, and RSV. The RESP-NET platforms have overlapping surveillance areas and use similar methods to collect data. Hospitalization rates show how many people in the surveillance area are hospitalized with influenza, COVID-19, and RSV compared to the total number of people residing in that area.
Data will be updated weekly. Data are preliminary and subject to change as more data become available.
Facebook
TwitterOfficial statistics are produced impartially and free from political influence.