Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
de Rigo, D., Corti, P., Caudullo, G., McInerney, D., Di Leo, M., San Miguel-Ayanz, J., 2013. Toward open science at the European scale: Geospatial Semantic Array Programming for integrated environmental modelling. Geophysical Research Abstracts 15, 13245+. ISSN 1607-7962, European Geosciences Union (EGU).
This is the authors’ version of the work. The definitive version is published in the Vol. 15 of Geophysical Research Abstracts (ISSN 1607-7962) and presented at the European Geosciences Union (EGU) General Assembly 2013, Vienna, Austria, 07-12 April 2013http://www.egu2013.eu/
Toward open science at the European scale: Geospatial Semantic Array Programming for integrated environmental modelling
Daniele de Rigo ¹ ², Paolo Corti ¹ ³, Giovanni Caudullo ¹, Daniel McInerney ¹, Margherita Di Leo ¹, Jesús San-Miguel-Ayanz ¹ ¹ European Commission, Joint Research Centre, Institute for Environment and Sustainability,Via E. Fermi 2749, I-21027 Ispra (VA), Italy ² Politecnico di Milano, Dipartimento di Elettronica e Informazione,Via Ponzio 34/5, I-20133 Milano, Italy ³ United Nations World Food Programme,Via C.G.Viola 68 Parco dei Medici, I-00148 Rome, Italy
Excerpt: Interfacing science and policy raises challenging issues when large spatial-scale (regional, continental, global) environmental problems need transdisciplinary integration within a context of modelling complexity and multiple sources of uncertainty. This is characteristic of science-based support for environmental policy at European scale, and key aspects have also long been investigated by European Commission transnational research. Approaches (either of computational science or of policy-making) suitable at a given domain-specific scale may not be appropriate for wide-scale transdisciplinary modelling for environment (WSTMe) and corresponding policy-making. In WSTMe, the characteristic heterogeneity of available spatial information and complexity of the required data-transformation modelling (D-TM) appeal for a paradigm shift in how computational science supports such peculiarly extensive integration processes. In particular, emerging wide-scale integration requirements of typical currently available domain-specific modelling strategies may include increased robustness and scalability along with enhanced transparency and reproducibility. This challenging shift toward open data and reproducible research (open science) is also strongly suggested by the potential - sometimes neglected - huge impact of cascading effects of errors within the impressively growing interconnection among domain-specific computational models and frameworks. Concise array-based mathematical formulation and implementation (with array programming tools) have proved helpful in supporting and mitigating the complexity of WSTMe when complemented with generalized modularization and terse array-oriented semantic constraints. This defines the paradigm of Semantic Array Programming (SemAP) where semantic transparency also implies free software use (although black-boxes - e.g. legacy code - might easily be semantically interfaced). A new approach for WSTMe has emerged by formalizing unorganized best practices and experience-driven informal patterns. The approach introduces a lightweight (non-intrusive) integration of SemAP and geospatial tools - called Geospatial Semantic Array Programming (GeoSemAP). GeoSemAP exploits the joint semantics provided by SemAP and geospatial tools to split a complex D-TM into logical blocks which are easier to check by means of mathematical array-based and geospatial constraints. Those constraints take the form of precondition, invariant and postcondition semantic checks. This way, even complex WSTMe may be described as the composition of simpler GeoSemAP blocks. GeoSemAP allows intermediate data and information layers to be more easily and formally semantically described so as to increase fault-tolerance, transparency and reproducibility of WSTMe. This might also help to better communicate part of the policy-relevant knowledge, often diffcult to transfer from technical WSTMe to the science-policy interface. [...]
This data set archives all inputs, outputs and scripts needed to reproduce the findings of W.H. Farmer and G.F. Koltun in the 2017 Journal of Hydrology Regional Studies article entitled “Geospatial Tools Effectively Estimated Nonexceedance Probabilities of Daily Streamflow at Ungauged and Intermittently Gauged Locations in Ohio”. Input data includes observed streamflow values, in cubic feet per second, for 152 streamgages in and around Ohio from 01 January 2009 through 31 August 2015. Data from the Ohio Environmental Protection Agency on where and when water quality samples were taken are also provided. Geospatial locations are provided for all streamgages and sampling sites considered. ESRI ArcGIS shapefiles are available for all maps produced in the original publication. Comma-separated-value files contain the output data required to reproduce every figure in the report. This archive also includes an R script capable of reading the input files and producing output files and figures. See the README.txt file for a full description of model application.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
We developed a new methodology for the assessment of landscape and ecological connectivity at regional scale. This method has been entirely formalized using mathematical language, is supported by a topological analysis of a 1:25,000 scale land use map, and has been developed using Geographic Information Systems (GIS). The method allows the elaboration of a diagnose of the connectivity of terrestrial landscape ecosystems, on the basis of a previously defined set of ecological functional areas, and a computational cost-distance model which includes the barrier effect. This last component takes into consideration the type of barrier, the distance impact, and the adjacent land use and vegetation type. We defined two new compound indices: one for ecological connectivity and another for the barrier effect. The practical interest of our model is that it not only allows a cost-effective assessment of the current situation, but it has predictive capabilities, allowing the quantitative assessment and comparison of the impacts resulting from different planning scenarios or different infrastructure alternatives on the landscape and ecological connectivity. The application of this model to the Barcelona Metropolitan Area (BMA), 16% of which is currently classified as urban, showed that 65% of the BMA area is currently occupied by functional ecological areas, and that 18% is covered by artificial barriers, although they have a direct negative impact on 56.5% of the area. The model also allowed the identification of vulnerable spots, including 1.7% of the BMA that has a critical importance for ecological connectivity, as well as the network of landscape linkages and ecological corridors that offer a high restoration potential. Further applications of this methodology assessing the impacts of regional and urban plans on ecological connectivity, suggest than it could easily be extrapolated to other regions.
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
This boundary dataset complements 13 other datasets as part of a study that compared ancient settlement patterns with modern environmental conditions in the Jazira region of Syria. This study examined settlement distribution and density patterns over the past five millennia using archaeological survey reports and French 1930s 1:200,000 scale maps to locate and map archaeological sites. An archaeological site dataset was created and compared to and modelled with soil, geology, terrain (contour), surface and subsurface hydrology and normal and dry year precipitation pattern datasets; there are also three spreadsheet datasets providing 1963 precipitation and temperature readings collected at three locations in the region. The environmental datasets were created to account for ancient and modern population subsistence activities, which comprise barley and wheat farming and livestock grazing. These environmental datasets were subsequently modelled with the archaeological site dataset, as well as, land use and population density datasets for the Jazira region. Ancient trade routes were also mapped and factored into the model, and a comparison was made to ascertain if there was a correlation between ancient and modern settlement patterns and environmental conditions; the latter influencing subsistence activities. This boundary dataset was generated to define the extent of the study area, which comprises the border between Syria and Turkey, Syria and Iraq, the River Tigris and the River Euphrates. All related data collected was confined within this boundary dataset with the exception of the archaeological dataset. Archaeological sites were identified and mapped along both banks of the River Euphrates. Also, the town of Dayr az-Zawr, where the 1963 precipitation and temperature monthly values were collected for one of the datasets, falls outside the Jazira Region. Derived from 1:200,000 French Levant Map Series (Further Information element in this metadata record provides list of sheets).The boundary line dataset was captured from 11 map sheets, which were based on the French Levant surveys conducted in Syria during the 1930s and mapped at a scale of 1:200,000. The size of each map measures 69 x 59 cm. The boundary line on each sheet was traced to mylar. Subsequently, each mylar sheet was photocopied and reduced in size to an 11 x 17 inch sheet. These sheets were merged to form the contiguous area comprising the full extent of the boundary for the study area. This was then traced again to another mylar sheet and subsequently scanned and cleaned for further processing and use in a GIS as a polygon coverage. Thesis M 2001 MATH, Ohio University Mathys, Antone J 'A GIS comparative analysis of bronze age settlement patterns and the contemporary physical landscape in the Jazira Region of Syria'., French Levant Map Series (1:200,000) for Syrie (Syria). Projected to Lambert grid. These are colour maps measuring to 69 x 59 cm in size. The dataset was created from the following sheet numbers and titles: 1) NI-37 XVII, Abou Kemal 2) NI-37 XVIII, Ana 3) NI-37 XXI, Ressafe 4) NI-37 XXII, Raqqa 5) NI-37 XXIII, Deir ez Zoir 6) NI-37 XXIV, Bouara 7) NI-37-III, Djerablous 8) NJ-37 IV, Toual Aaba 9) NJ-37 V, Hassetche 10) NJ-37 VI, Qamishliye-Sinjar 11) (No sheet number), Qaratchok-Darh Dressepar la Service Geographique des F.F.L. en 1945 Reimprime par l'Institut Geographique National en 1950 (Originally produced by this Geographic Service of the F.F.L. (Forces Francaises Libres) in 1945 and reprinted by the National Geographic Institute in 1950). Paris: France. Institut Geographique National, 1945-1950. Original map series might be traced to Beirut: Bureau Topographique des Troupes francaises du Levant, 1933-1938. GIS vector data. This dataset was first accessioned in the EDINA ShareGeo Open repository on 2010-06-09 and migrated to Edinburgh DataShare on 2017-02-21.
Summary: Week 2: Quiz Answer KeyStorymap metadata page: URL forthcoming Possible K-12 Next Generation Science standards addressed:Grade level(s) K: Standard K-ESS3-2 - Earth and Human Activity - Ask questions to obtain information about the purpose of weather forecasting to prepare for, and respond to, severe weatherGrade level(s) 1: Standard 1-LS1-1 - From Molecules to Organisms: Structures and Processes - Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needsGrade level(s) K-2: Standard K-2-ETS1-1 - Engineering Design - Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.Grade level(s) 3: Standard 3-PS2-3 - Motion and Stability: Forces and Interactions - Ask questions to determine cause and effect relationships of electric or magnetic interactions between two objects not in contact with each otherGrade level(s) 4: Standard 4-PS3-3 - Energy - Ask questions and predict outcomes about the changes in energy that occur when objects collideGrade level(s) 6-8: Standard MS-PS2-3 - Motion and Stability: Forces and Interactions - Ask questions about data to determine the factors that affect the strength of electric and magnetic forcesGrade level(s) 6-8: Standard MS-ESS1-3 - Earth’s Place in the Universe - Analyze and interpret data to determine scale properties of objects in the solar systemGrade level(s) 6-8: Standard MS-ESS1-4 - Earth’s Place in the Universe - Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth’s 4.6-billion-year-old historyGrade level(s) 6-8: Standard MS-ESS2-2 - Earth’s Systems - Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying time and spatial scalesGrade level(s) 6-8: Standard MS-ESS3-5 - Earth and Human Activity - Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past centuryGrade level(s) 9-12: Standard HS-PS1-3 - Matter and Its Interactions - Plan and conduct an investigation to gather evidence to compare the structure of substances at the bulk scale to infer the strength of electrical forces between particlesGrade level(s) 9-12: Standard HS-PS1-7 - Matter and Its Interactions - Use mathematical representations to support the claim that atoms, and therefore mass, are conserved during a chemical reactionGrade level(s) 9-12: Standard HS-PS1-8 - Matter and Its Interactions - Develop models to illustrate the changes in the composition of the nucleus of the atom and the energy released during the processes of fission, fusion, and radioactive decay.Grade level(s) 9-12: Standard HS-PS3-2 - Energy - Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motion of particles (objects) and energy associated with the relative position of particles (objects).Grade level(s) 9-12: Standard HS-PS4-2 - Waves and Their Applications in Technologies for Information Transfer - Evaluate questions about the advantages of using digital transmission and storage of informationGrade level(s) 9-12: Standard HS-LS2-1 - Ecosystems: Interactions, Energy, and Dynamics - Use mathematical and/or computational representations to support explanations of factors that affect carrying capacity of ecosystems at different scalesGrade level(s) 9-12: Standard HS-LS2-2 - Ecosystems: Interactions, Energy, and Dynamics - Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scalesGrade level(s) 9-12: Standard HS-LS3-1 - Heredity: Inheritance and Variation of Traits - Ask questions to clarify relationships about the role of DNA and chromosomes in coding the instructions for characteristic traits passed from parents to offspringGrade level(s) 9-12: Standard HS-ESS2-1 - Earth’s Systems - Develop a model to illustrate how Earth’s internal and surface processes operate at different spatial and temporal scales to form continental and ocean-floor features.Most frequently used words:questionscaleApproximate Flesch-Kincaid reading grade level: 9.8. The FK reading grade level should be considered carefully against the grade level(s) in the NGSS content standards above.
The percentage of students who met or exceeded PARCC exams in reading and mathematics in 3rd, 5th, and 8th grades. Partnership for Assessment of Readiness for College and Careers (PARCC) scores measure the number of students scoring in one of three classifications out of all students enrolled in that grade. Students can either be rated as exceeded, met, approached, partially met, or did not meet expectations of a subject. This indicator includes only those students who have tested as exceeded or met expectations. Source: Baltimore City Public School System Years Available: 2015, 2016, 2017
The New Jersey Department of Community Affairs’ (NJDCA) Local Planning Services (LPS) Division was tasked with preparing a spatial dataset and map of science, technology, engineering and math (STEM) assets for the Greater Atlantic City, NJ Area, which includes Atlantic City and other municipalities within Atlantic County. The aim is to collect as much information throughout the Greater Atlantic City Area relevant to building a vibrant, strong STEM education and program community, which will be helpful to: Industry (to understand the workforce skills being developed); Educators (to align, support and enhance curriculums and find facilities for programs); Parents (to find resources and programs for their children); and the Community (to access programs for adults for up-skilling, re-skilling changing career paths).LPS worked with the South Jersey STEM Innovation & Partnership and the Atlantic City Initiatives Project Office, a unit within the NJDCA's Division of Local Government Services to prepare a STEM asset survey. The data collected from this survey and from additional research by LPS staff was used to populate the dataset. The dataset contains known assets to date and will be updated periodically as additional information is provided and/or compiled. In addition to the survey, sources for the data displayed on the map include the New Jersey Office of Information Technology, Office of GIS (NJOGIS), the National Center for Education Statistics, the Greater Atlantic City Chamber of Commerce, and the New Jersey Department of Education. Based on the data collected and compiled, LPS mapped over 105 STEM facilities ( e.g. aquariums, museums, science centers, institutions of higher education, etc.), in-school and out-of-school curriculums and programs, and/or industry partner/employer programs (e.g. internships, co-ops, scholarships, fellowships, career workshops) in the Greater Atlantic City region using GIS software.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
de Rigo, D., Corti, P., Caudullo, G., McInerney, D., Di Leo, M., San Miguel-Ayanz, J., 2013. Toward open science at the European scale: Geospatial Semantic Array Programming for integrated environmental modelling. Geophysical Research Abstracts 15, 13245+. ISSN 1607-7962, European Geosciences Union (EGU).
This is the authors’ version of the work. The definitive version is published in the Vol. 15 of Geophysical Research Abstracts (ISSN 1607-7962) and presented at the European Geosciences Union (EGU) General Assembly 2013, Vienna, Austria, 07-12 April 2013http://www.egu2013.eu/
Toward open science at the European scale: Geospatial Semantic Array Programming for integrated environmental modelling
Daniele de Rigo ¹ ², Paolo Corti ¹ ³, Giovanni Caudullo ¹, Daniel McInerney ¹, Margherita Di Leo ¹, Jesús San-Miguel-Ayanz ¹ ¹ European Commission, Joint Research Centre, Institute for Environment and Sustainability,Via E. Fermi 2749, I-21027 Ispra (VA), Italy ² Politecnico di Milano, Dipartimento di Elettronica e Informazione,Via Ponzio 34/5, I-20133 Milano, Italy ³ United Nations World Food Programme,Via C.G.Viola 68 Parco dei Medici, I-00148 Rome, Italy
Excerpt: Interfacing science and policy raises challenging issues when large spatial-scale (regional, continental, global) environmental problems need transdisciplinary integration within a context of modelling complexity and multiple sources of uncertainty. This is characteristic of science-based support for environmental policy at European scale, and key aspects have also long been investigated by European Commission transnational research. Approaches (either of computational science or of policy-making) suitable at a given domain-specific scale may not be appropriate for wide-scale transdisciplinary modelling for environment (WSTMe) and corresponding policy-making. In WSTMe, the characteristic heterogeneity of available spatial information and complexity of the required data-transformation modelling (D-TM) appeal for a paradigm shift in how computational science supports such peculiarly extensive integration processes. In particular, emerging wide-scale integration requirements of typical currently available domain-specific modelling strategies may include increased robustness and scalability along with enhanced transparency and reproducibility. This challenging shift toward open data and reproducible research (open science) is also strongly suggested by the potential - sometimes neglected - huge impact of cascading effects of errors within the impressively growing interconnection among domain-specific computational models and frameworks. Concise array-based mathematical formulation and implementation (with array programming tools) have proved helpful in supporting and mitigating the complexity of WSTMe when complemented with generalized modularization and terse array-oriented semantic constraints. This defines the paradigm of Semantic Array Programming (SemAP) where semantic transparency also implies free software use (although black-boxes - e.g. legacy code - might easily be semantically interfaced). A new approach for WSTMe has emerged by formalizing unorganized best practices and experience-driven informal patterns. The approach introduces a lightweight (non-intrusive) integration of SemAP and geospatial tools - called Geospatial Semantic Array Programming (GeoSemAP). GeoSemAP exploits the joint semantics provided by SemAP and geospatial tools to split a complex D-TM into logical blocks which are easier to check by means of mathematical array-based and geospatial constraints. Those constraints take the form of precondition, invariant and postcondition semantic checks. This way, even complex WSTMe may be described as the composition of simpler GeoSemAP blocks. GeoSemAP allows intermediate data and information layers to be more easily and formally semantically described so as to increase fault-tolerance, transparency and reproducibility of WSTMe. This might also help to better communicate part of the policy-relevant knowledge, often diffcult to transfer from technical WSTMe to the science-policy interface. [...]