2 datasets found
  1. h

    kovidore-vqa-v1.0-beir

    • huggingface.co
    Updated Oct 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yongbin Choi (2025). kovidore-vqa-v1.0-beir [Dataset]. https://huggingface.co/datasets/whybe-choi/kovidore-vqa-v1.0-beir
    Explore at:
    Dataset updated
    Oct 5, 2025
    Authors
    Yongbin Choi
    Description

    KoViDoRe - VQA v1.0

    This dataset is part of the KoViDoRe Benchmark for Korean visual document retrieval evaluation. Specifically, it is focused on Visual Question Answering (VQA) tasks for Korean document images.

      Dataset Summary
    

    Domain: Korean structured document images (e.g., 환경기상, 공공행정 등 다양한 카테고리) Task: Visual document retrieval (text question → relevant document image) Format: BEIR-compatible (corpus, queries, qrels)

    Statistics:

    Number of Documents (Pages): 1,100+… See the full description on the dataset page: https://huggingface.co/datasets/whybe-choi/kovidore-vqa-v1.0-beir.

  2. O

    OCRBench

    • opendatalab.com
    zip
    Updated May 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Huazhong University of Science and Technology (2023). OCRBench [Dataset]. https://opendatalab.com/OpenDataLab/OCRBench
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 1, 2023
    Dataset provided by
    Huazhong University of Science and Technology
    Description

    OCRBench is a comprehensive evaluation benchmark designed to assess the OCR capabilities of Large Multimodal Models. It comprises five components: Text Recognition, SceneText-Centric VQA, Document-Oriented VQA, Key Information Extraction, and Handwritten Mathematical Expression Recognition. The benchmark includes 1000 question-answer pairs, and all the answers undergo manual verification and correction to ensure a more precise evaluation.

  3. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Yongbin Choi (2025). kovidore-vqa-v1.0-beir [Dataset]. https://huggingface.co/datasets/whybe-choi/kovidore-vqa-v1.0-beir

kovidore-vqa-v1.0-beir

whybe-choi/kovidore-vqa-v1.0-beir

Explore at:
Dataset updated
Oct 5, 2025
Authors
Yongbin Choi
Description

KoViDoRe - VQA v1.0

This dataset is part of the KoViDoRe Benchmark for Korean visual document retrieval evaluation. Specifically, it is focused on Visual Question Answering (VQA) tasks for Korean document images.

  Dataset Summary

Domain: Korean structured document images (e.g., 환경기상, 공공행정 등 다양한 카테고리) Task: Visual document retrieval (text question → relevant document image) Format: BEIR-compatible (corpus, queries, qrels)

Statistics:

Number of Documents (Pages): 1,100+… See the full description on the dataset page: https://huggingface.co/datasets/whybe-choi/kovidore-vqa-v1.0-beir.

Search
Clear search
Close search
Google apps
Main menu