Facebook
TwitterThe Integrated Public Use Microdata Series (IPUMS) Complete Count Data include more than 650 million individual-level and 7.5 million household-level records. The microdata are the result of collaboration between IPUMS and the nation’s two largest genealogical organizations—Ancestry.com and FamilySearch—and provides the largest and richest source of individual level and household data.
All manuscripts (and other items you'd like to publish) must be submitted to
phsdatacore@stanford.edu for approval prior to journal submission.
We will check your cell sizes and citations.
For more information about how to cite PHS and PHS datasets, please visit:
https:/phsdocs.developerhub.io/need-help/citing-phs-data-core
This dataset was created on 2020-01-10 22:52:11.461 by merging multiple datasets together. The source datasets for this version were:
IPUMS 1930 households: This dataset includes all households from the 1930 US census.
IPUMS 1930 persons: This dataset includes all individuals from the 1930 US census.
IPUMS 1930 Lookup: This dataset includes variable names, variable labels, variable values, and corresponding variable value labels for the IPUMS 1930 datasets.
Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier.
In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier. In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.
The historic US 1930 census data was collected in April 1930. Enumerators collected data traveling to households and counting the residents who regularly slept at the household. Individuals lacking permanent housing were counted as residents of the place where they were when the data was collected. Household members absent on the day of data collected were either listed to the household with the help of other household members or were scheduled for the last census subdivision.
Notes
We provide IPUMS household and person data separately so that it is convenient to explore the descriptive statistics on each level. In order to obtain a full dataset, merge the household and person on the variables SERIAL and SERIALP. In order to create a longitudinal dataset, merge datasets on the variable HISTID.
Households with more than 60 people in the original data were broken up for processing purposes. Every person in the large households are considered to be in their own household. The original large households can be identified using the variable SPLIT, reconstructed using the variable SPLITHID, and the original count is found in the variable SPLITNUM.
Coded variables derived from string variables are still in progress. These variables include: occupation and industry.
Missing observations have been allocated and some inconsistencies have been edited for the following variables: SPEAKENG, YRIMMIG, CITIZEN, AGEMARR, AGE, BPL, MBPL, FBPL, LIT, SCHOOL, OWNERSHP, FARM, EMPSTAT, OCC1950, IND1950, MTONGUE, MARST, RACE, SEX, RELATE, CLASSWKR. The flag variables indicating an allocated observation for the associated variables can be included in your extract by clicking the ‘Select data quality flags’ box on the extract summary page.
Most inconsistent information was not edite
Facebook
TwitterThe TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) System (MTS). The MTS represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. The Feature Names Relationship File contains a record for each feature name and any attributes associated with it. Each feature name can be linked to the corresponding edges that make up that feature in the All Lines shapefile (edges.shp), where applicable to the corresponding address range or ranges in the Address Range Relationship File (addr.dbf), or to both files. Although this file includes feature names for all linear features, not just road features, the primary purpose of this relationship file is to identify all street names associated with each address range. An edge can have several feature names; an address range located on an edge can be associated with one or any combination of the available feature names (an address range can be linked to multiple feature names). The address range is identified by the address range identifier (ARID) attribute, which can be used to link to the Address Range Relationship File (addr.dbf). The linear feature is identified by the linear feature identifier (LINEARID) attribute, which can be used to relate the address range back to the name attributes of the feature in the Feature Names Relationship File or to the feature record in the Primary Roads, Primary and Secondary Roads, or All Roads shapefiles. The edge to which a feature name applies can be determined by linking the feature name record to the All Lines shapefile (edges.shp) using the permanent edge identifier (TLID) attribute. The address range identifier(s) (ARID) for a specific linear feature can be found by using the linear feature identifier (LINEARID) from the Feature Names Relationship File through the Address Range/Feature Name Relationship File (addrfn.dbf).
Facebook
TwitterThe Integrated Public Use Microdata Series (IPUMS) Complete Count Data include more than 650 million individual-level and 7.5 million household-level records. The microdata are the result of collaboration between IPUMS and the nation’s two largest genealogical organizations—Ancestry.com and FamilySearch—and provides the largest and richest source of individual level and household data.
All manuscripts (and other items you'd like to publish) must be submitted to
phsdatacore@stanford.edu for approval prior to journal submission.
We will check your cell sizes and citations.
For more information about how to cite PHS and PHS datasets, please visit:
https:/phsdocs.developerhub.io/need-help/citing-phs-data-core
Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier.
In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier. In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.
The historic US 1910 census data was collected in April 1910. Enumerators collected data traveling to households and counting the residents who regularly slept at the household. Individuals lacking permanent housing were counted as residents of the place where they were when the data was collected. Household members absent on the day of data collected were either listed to the household with the help of other household members or were scheduled for the last census subdivision.
This dataset was created on 2020-01-10 23:47:27.924 by merging multiple datasets together. The source datasets for this version were:
IPUMS 1910 households: The Integrated Public Use Microdata Series (IPUMS) Complete Count Data are historic individual and household census records and are a unique source for research on social and economic change.
IPUMS 1910 persons: This dataset includes all individuals from the 1910 US census.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Easily lookup US historical demographics by county FIPS or zipcode in seconds with this file containing over 5,901 different columns including:
*Lat/Long *Boundaries *State FIPS *Population from 2010-2019 *Death Rate from 2010-2019 *Unemployment from 2001-2020 *Education from 1970-2019 *Gender and Age Population
Provided by bitrook.com to help Data Scientists clean data faster.
https://www.ers.usda.gov/data-products/county-level-data-sets/download-data/
https://www.ers.usda.gov/data-products/county-level-data-sets/download-data/
https://www.ers.usda.gov/data-products/county-level-data-sets/download-data/
https://data.world/niccolley/us-zipcode-to-county-state
https://www2.census.gov/programs-surveys/popest/datasets/2010-2019/counties/asrh/cc-est2019-agesex-**.csv https://www2.census.gov/programs-surveys/popest/technical-documentation/file-layouts/2010-2019/cc-est2019-agesex.pdf
https://www2.census.gov/programs-surveys/popest/datasets/2010-2019/counties/asrh/cc-est2019-alldata.csv https://www2.census.gov/programs-surveys/popest/technical-documentation/file-layouts/2010-2019/cc-est2019-alldata.pdf
Facebook
TwitterThe TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. The Address Ranges Relationship File (ADDR.dbf) contains the attributes of each address range. Each address range applies to a single edge and has a unique address range identifier (ARID) value. The edge to which an address range applies can be determined by linking the address range to the All Lines Shapefile (EDGES.shp) using the permanent topological edge identifier (TLID) attribute. Multiple address ranges can apply to the same edge since an edge can have multiple address ranges. Note that the most inclusive address range associated with each side of a street edge already appears in the All Lines Shapefile (EDGES.shp). The TIGER/Line Files contain potential address ranges, not individual addresses. The term "address range" refers to the collection of all possible structure numbers from the first structure number to the last structure number and all numbers of a specified parity in between along an edge side relative to the direction in which the edge is coded. The address ranges in the TIGER/Line Files are potential ranges that include the full range of possible structure numbers even though the actual structures may not exist.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This code is used to generate a combined data set of US ZIP, FIPS, and County data for most ZIP Codes in the U.S. (41,867 to be exact).
Code to generate the data set from the government files listed below can be found here.
The dataset is organized as follows:
The data used to create this data set was taken from several recent government data sets.
These are:
The final csv is in 'latin1' encoding to preserve the Spanish county names in Puerto Rico.
This data is from, and shall remain in the public domain, and the onus of responsibility lies with the user of this data.
Facebook
TwitterThe TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. The Address Ranges Feature Shapefile (ADDRFEAT.dbf) contains the geospatial edge geometry and attributes of all unsuppressed address ranges for a county or county equivalent area. The term "address range" refers to the collection of all possible structure numbers from the first structure number to the last structure number and all numbers of a specified parity in between along an edge side relative to the direction in which the edge is coded. Single-address address ranges have been suppressed to maintain the confidentiality of the addresses they describe. Multiple coincident address range feature edge records are represented in the shapefile if more than one left or right address ranges are associated to the edge. The ADDRFEAT shapefile contains a record for each address range to street name combination. Address range associated to more than one street name are also represented by multiple coincident address range feature edge records. Note that the ADDRFEAT shapefile includes all unsuppressed address ranges compared to the All Lines Shapefile (EDGES.shp) which only includes the most inclusive address range associated with each side of a street edge. The TIGER/Line shapefile contain potential address ranges, not individual addresses. The address ranges in the TIGER/Line Files are potential ranges that include the full range of possible structure numbers even though the actual structures may not exist.
Facebook
TwitterThe TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. The Address Ranges Feature Shapefile (ADDRFEAT.dbf) contains the geospatial edge geometry and attributes of all unsuppressed address ranges for a county or county equivalent area. The term "address range" refers to the collection of all possible structure numbers from the first structure number to the last structure number and all numbers of a specified parity in between along an edge side relative to the direction in which the edge is coded. Single-address address ranges have been suppressed to maintain the confidentiality of the addresses they describe. Multiple coincident address range feature edge records are represented in the shapefile if more than one left or right address ranges are associated to the edge. The ADDRFEAT shapefile contains a record for each address range to street name combination. Address range associated to more than one street name are also represented by multiple coincident address range feature edge records. Note that the ADDRFEAT shapefile includes all unsuppressed address ranges compared to the All Lines Shapefile (EDGES.shp) which only includes the most inclusive address range associated with each side of a street edge. The TIGER/Line shapefile contain potential address ranges, not individual addresses. The address ranges in the TIGER/Line Files are potential ranges that include the full range of possible structure numbers even though the actual structures may not exist.
Facebook
TwitterThe TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Edge refers to the linear topological primitives that make up MTDB. The All Lines Shapefile contains linear features such as roads, railroads, and hydrography. Additional attribute data associated with the linear features found in the All Lines Shapefile are available in relationship (.dbf) files that users must download separately. The All Lines Shapefile contains the geometry and attributes of each topological primitive edge. Each edge has a unique TIGER/Line identifier (TLID) value.
Facebook
TwitterThe TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) System (MTS). The MTS represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. The Feature Names Relationship File contains a record for each feature name and any attributes associated with it. Each feature name can be linked to the corresponding edges that make up that feature in the All Lines shapefile (edges.shp), where applicable to the corresponding address range or ranges in the Address Range Relationship File (addr.dbf), or to both files. Although this file includes feature names for all linear features, not just road features, the primary purpose of this relationship file is to identify all street names associated with each address range. An edge can have several feature names; an address range located on an edge can be associated with one or any combination of the available feature names (an address range can be linked to multiple feature names). The address range is identified by the address range identifier (ARID) attribute, which can be used to link to the Address Range Relationship File (addr.dbf). The linear feature is identified by the linear feature identifier (LINEARID) attribute, which can be used to relate the address range back to the name attributes of the feature in the Feature Names Relationship File or to the feature record in the Primary Roads, Primary and Secondary Roads, or All Roads shapefiles. The edge to which a feature name applies can be determined by linking the feature name record to the All Lines shapefile (edges.shp) using the permanent edge identifier (TLID) attribute. The address range identifier(s) (ARID) for a specific linear feature can be found by using the linear feature identifier (LINEARID) from the Feature Names Relationship File through the Address Range/Feature Name Relationship File (addrfn.dbf).
Facebook
TwitterThe TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Edge refers to the linear topological primitives that make up MTDB. The All Lines Shapefile contains linear features such as roads, railroads, and hydrography. Additional attribute data associated with the linear features found in the All Lines Shapefile are available in relationship (.dbf) files that users must download separately. The All Lines Shapefile contains the geometry and attributes of each topological primitive edge. Each edge has a unique TIGER/Line identifier (TLID) value.
Facebook
TwitterThe TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) System (MTS). The MTS represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. The Address Range Relationship File contains the attributes of each address range. The term "address range" refers to the collection of all possible structure numbers from the first structure number to the last structure number and all numbers of a specified parity in between along an edge side relative to the direction in which the edge is coded. The address ranges in the TIGER/Line files are potential ranges that include the full range of possible structure numbers even though the actual structures may not exist. Each address range applies to a single edge and has a unique address range identifier (ARID) value. The edge to which an address range applies can be determined by linking the address range to the All Lines shapefile (edges.shp) using the permanent topological edge identifier (TLID) attribute. Multiple address ranges can apply to the same edge since an edge can have multiple address ranges. Note that the most inclusive address range associated with each side of a street edge already appears in the All Lines Shapefile (edges.shp). The TIGER/Line files contain potential address ranges, not individual addresses.
Facebook
TwitterThe TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Edge refers to the linear topological primitives that make up MTDB. The All Lines Shapefile contains linear features such as roads, railroads, and hydrography. Additional attribute data associated with the linear features found in the All Lines Shapefile are available in relationship (.dbf) files that users must download separately. The All Lines Shapefile contains the geometry and attributes of each topological primitive edge. Each edge has a unique TIGER/Line identifier (TLID) value.
Facebook
TwitterThe TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. The Address Ranges Feature Shapefile (ADDRFEAT.dbf) contains the geospatial edge geometry and attributes of all unsuppressed address ranges for a county or county equivalent area. The term "address range" refers to the collection of all possible structure numbers from the first structure number to the last structure number and all numbers of a specified parity in between along an edge side relative to the direction in which the edge is coded. Single-address address ranges have been suppressed to maintain the confidentiality of the addresses they describe. Multiple coincident address range feature edge records are represented in the shapefile if more than one left or right address ranges are associated to the edge. The ADDRFEAT shapefile contains a record for each address range to street name combination. Address range associated to more than one street name are also represented by multiple coincident address range feature edge records. Note that the ADDRFEAT shapefile includes all unsuppressed address ranges compared to the All Lines Shapefile (EDGES.shp) which only includes the most inclusive address range associated with each side of a street edge. The TIGER/Line shapefile contain potential address ranges, not individual addresses. The address ranges in the TIGER/Line Files are potential ranges that include the full range of possible structure numbers even though the actual structures may not exist.
Facebook
TwitterThe TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) System (MTS). The MTS represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. The Address Range Relationship File contains the attributes of each address range. The term "address range" refers to the collection of all possible structure numbers from the first structure number to the last structure number and all numbers of a specified parity in between along an edge side relative to the direction in which the edge is coded. The address ranges in the TIGER/Line files are potential ranges that include the full range of possible structure numbers even though the actual structures may not exist. Each address range applies to a single edge and has a unique address range identifier (ARID) value. The edge to which an address range applies can be determined by linking the address range to the All Lines shapefile (edges.shp) using the permanent topological edge identifier (TLID) attribute. Multiple address ranges can apply to the same edge since an edge can have multiple address ranges. Note that the most inclusive address range associated with each side of a street edge already appears in the All Lines Shapefile (edges.shp). The TIGER/Line files contain potential address ranges, not individual addresses.
Facebook
TwitterThe TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Edge refers to the linear topological primitives that make up MTDB. The All Lines Shapefile contains linear features such as roads, railroads, and hydrography. Additional attribute data associated with the linear features found in the All Lines Shapefile are available in relationship (.dbf) files that users must download separately. The All Lines Shapefile contains the geometry and attributes of each topological primitive edge. Each edge has a unique TIGER/Line identifier (TLID) value.
Facebook
TwitterThe TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. The Address Ranges Relationship File (ADDR.dbf) contains the attributes of each address range. Each address range applies to a single edge and has a unique address range identifier (ARID) value. The edge to which an address range applies can be determined by linking the address range to the All Lines Shapefile (EDGES.shp) using the permanent topological edge identifier (TLID) attribute. Multiple address ranges can apply to the same edge since an edge can have multiple address ranges. Note that the most inclusive address range associated with each side of a street edge already appears in the All Lines Shapefile (EDGES.shp). The TIGER/Line Files contain potential address ranges, not individual addresses. The term "address range" refers to the collection of all possible structure numbers from the first structure number to the last structure number and all numbers of a specified parity in between along an edge side relative to the direction in which the edge is coded. The address ranges in the TIGER/Line Files are potential ranges that include the full range of possible structure numbers even though the actual structures may not exist.
Facebook
TwitterThe TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) System (MTS). The MTS represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. The Address Range Relationship File contains the attributes of each address range. The term "address range" refers to the collection of all possible structure numbers from the first structure number to the last structure number and all numbers of a specified parity in between along an edge side relative to the direction in which the edge is coded. The address ranges in the TIGER/Line files are potential ranges that include the full range of possible structure numbers even though the actual structures may not exist. Each address range applies to a single edge and has a unique address range identifier (ARID) value. The edge to which an address range applies can be determined by linking the address range to the All Lines shapefile (edges.shp) using the permanent topological edge identifier (TLID) attribute. Multiple address ranges can apply to the same edge since an edge can have multiple address ranges. Note that the most inclusive address range associated with each side of a street edge already appears in the All Lines Shapefile (edges.shp). The TIGER/Line files contain potential address ranges, not individual addresses.
Facebook
TwitterThe TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. The Feature Names Relationship File (FEATNAMES.dbf) contains a record for each feature name and any attributes associated with it. Each feature name can be linked to the corresponding edges that make up that feature in the All Lines Shapefile (EDGES.shp), where applicable to the corresponding address range or ranges in the Address Ranges Relationship File (ADDR.dbf), or to both files. Although this file includes feature names for all linear features, not just road features, the primary purpose of this relationship file is to identify all street names associated with each address range. An edge can have several feature names; an address range located on an edge can be associated with one or any combination of the available feature names (an address range can be linked to multiple feature names). The address range is identified by the address range identifier (ARID) attribute, which can be used to link to the Address Ranges Relationship File (ADDR.dbf). The linear feature is identified by the linear feature identifier (LINEARID) attribute, which can be used to relate the address range back to the name attributes of the feature in the Feature Names Relationship File or to the feature record in the Primary Roads, Primary and Secondary Roads, or All Roads Shapefiles. The edge to which a feature name applies can be determined by linking the feature name record to the All Lines Shapefile (EDGES.shp) using the permanent edge identifier (TLID) attribute. The address range identifier(s) (ARID) for a specific linear feature can be found by using the linear feature identifier (LINEARID) from the Feature Names Relationship File (FEATNAMES.dbf) through the Address Range / Feature Name Relationship File (ADDRFN.dbf).
Facebook
TwitterThe TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) System (MTS). The MTS represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. The Address Range Relationship File contains the attributes of each address range. The term "address range" refers to the collection of all possible structure numbers from the first structure number to the last structure number and all numbers of a specified parity in between along an edge side relative to the direction in which the edge is coded. The address ranges in the TIGER/Line files are potential ranges that include the full range of possible structure numbers even though the actual structures may not exist. Each address range applies to a single edge and has a unique address range identifier (ARID) value. The edge to which an address range applies can be determined by linking the address range to the All Lines shapefile (edges.shp) using the permanent topological edge identifier (TLID) attribute. Multiple address ranges can apply to the same edge since an edge can have multiple address ranges. Note that the most inclusive address range associated with each side of a street edge already appears in the All Lines Shapefile (edges.shp). The TIGER/Line files contain potential address ranges, not individual addresses.
Facebook
TwitterThe Integrated Public Use Microdata Series (IPUMS) Complete Count Data include more than 650 million individual-level and 7.5 million household-level records. The microdata are the result of collaboration between IPUMS and the nation’s two largest genealogical organizations—Ancestry.com and FamilySearch—and provides the largest and richest source of individual level and household data.
All manuscripts (and other items you'd like to publish) must be submitted to
phsdatacore@stanford.edu for approval prior to journal submission.
We will check your cell sizes and citations.
For more information about how to cite PHS and PHS datasets, please visit:
https:/phsdocs.developerhub.io/need-help/citing-phs-data-core
This dataset was created on 2020-01-10 22:52:11.461 by merging multiple datasets together. The source datasets for this version were:
IPUMS 1930 households: This dataset includes all households from the 1930 US census.
IPUMS 1930 persons: This dataset includes all individuals from the 1930 US census.
IPUMS 1930 Lookup: This dataset includes variable names, variable labels, variable values, and corresponding variable value labels for the IPUMS 1930 datasets.
Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier.
In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier. In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.
The historic US 1930 census data was collected in April 1930. Enumerators collected data traveling to households and counting the residents who regularly slept at the household. Individuals lacking permanent housing were counted as residents of the place where they were when the data was collected. Household members absent on the day of data collected were either listed to the household with the help of other household members or were scheduled for the last census subdivision.
Notes
We provide IPUMS household and person data separately so that it is convenient to explore the descriptive statistics on each level. In order to obtain a full dataset, merge the household and person on the variables SERIAL and SERIALP. In order to create a longitudinal dataset, merge datasets on the variable HISTID.
Households with more than 60 people in the original data were broken up for processing purposes. Every person in the large households are considered to be in their own household. The original large households can be identified using the variable SPLIT, reconstructed using the variable SPLITHID, and the original count is found in the variable SPLITNUM.
Coded variables derived from string variables are still in progress. These variables include: occupation and industry.
Missing observations have been allocated and some inconsistencies have been edited for the following variables: SPEAKENG, YRIMMIG, CITIZEN, AGEMARR, AGE, BPL, MBPL, FBPL, LIT, SCHOOL, OWNERSHP, FARM, EMPSTAT, OCC1950, IND1950, MTONGUE, MARST, RACE, SEX, RELATE, CLASSWKR. The flag variables indicating an allocated observation for the associated variables can be included in your extract by clicking the ‘Select data quality flags’ box on the extract summary page.
Most inconsistent information was not edite