Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.
April 9, 2020
April 20, 2020
April 29, 2020
September 1st, 2020
February 12, 2021
new_deaths
column.February 16, 2021
The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.
The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.
The AP is updating this dataset hourly at 45 minutes past the hour.
To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.
Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic
Filter cases by state here
Rank states by their status as current hotspots. Calculates the 7-day rolling average of new cases per capita in each state: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=481e82a4-1b2f-41c2-9ea1-d91aa4b3b1ac
Find recent hotspots within your state by running a query to calculate the 7-day rolling average of new cases by capita in each county: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=b566f1db-3231-40fe-8099-311909b7b687&showTemplatePreview=true
Join county-level case data to an earlier dataset released by AP on local hospital capacity here. To find out more about the hospital capacity dataset, see the full details.
Pull the 100 counties with the highest per-capita confirmed cases here
Rank all the counties by the highest per-capita rate of new cases in the past 7 days here. Be aware that because this ranks per-capita caseloads, very small counties may rise to the very top, so take into account raw caseload figures as well.
The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.
@(https://datawrapper.dwcdn.net/nRyaf/15/)
<iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here
This data should be credited to Johns Hopkins University COVID-19 tracking project
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
Reporting of Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.
This archived public use dataset has 11 data elements reflecting United States COVID-19 community levels for all available counties.
The COVID-19 community levels were developed using a combination of three metrics — new COVID-19 admissions per 100,000 population in the past 7 days, the percent of staffed inpatient beds occupied by COVID-19 patients, and total new COVID-19 cases per 100,000 population in the past 7 days. The COVID-19 community level was determined by the higher of the new admissions and inpatient beds metrics, based on the current level of new cases per 100,000 population in the past 7 days. New COVID-19 admissions and the percent of staffed inpatient beds occupied represent the current potential for strain on the health system. Data on new cases acts as an early warning indicator of potential increases in health system strain in the event of a COVID-19 surge.
Using these data, the COVID-19 community level was classified as low, medium, or high.
COVID-19 Community Levels were used to help communities and individuals make decisions based on their local context and their unique needs. Community vaccination coverage and other local information, like early alerts from surveillance, such as through wastewater or the number of emergency department visits for COVID-19, when available, can also inform decision making for health officials and individuals.
For the most accurate and up-to-date data for any county or state, visit the relevant health department website. COVID Data Tracker may display data that differ from state and local websites. This can be due to differences in how data were collected, how metrics were calculated, or the timing of web updates.
Archived Data Notes:
This dataset was renamed from "United States COVID-19 Community Levels by County as Originally Posted" to "United States COVID-19 Community Levels by County" on March 31, 2022.
March 31, 2022: Column name for county population was changed to “county_population”. No change was made to the data points previous released.
March 31, 2022: New column, “health_service_area_population”, was added to the dataset to denote the total population in the designated Health Service Area based on 2019 Census estimate.
March 31, 2022: FIPS codes for territories American Samoa, Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands were re-formatted to 5-digit numeric for records released on 3/3/2022 to be consistent with other records in the dataset.
March 31, 2022: Changes were made to the text fields in variables “county”, “state”, and “health_service_area” so the formats are consistent across releases.
March 31, 2022: The “%” sign was removed from the text field in column “covid_inpatient_bed_utilization”. No change was made to the data. As indicated in the column description, values in this column represent the percentage of staffed inpatient beds occupied by COVID-19 patients (7-day average).
March 31, 2022: Data values for columns, “county_population”, “health_service_area_number”, and “health_service_area” were backfilled for records released on 2/24/2022. These columns were added since the week of 3/3/2022, thus the values were previously missing for records released the week prior.
April 7, 2022: Updates made to data released on 3/24/2022 for Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands to correct a data mapping error.
April 21, 2022: COVID-19 Community Level (CCL) data released for counties in Nebraska for the week of April 21, 2022 have 3 counties identified in the high category and 37 in the medium category. CDC has been working with state officials to verify the data submitted, as other data systems are not providing alerts for substantial increases in disease transmission or severity in the state.
May 26, 2022: COVID-19 Community Level (CCL) data released for McCracken County, KY for the week of May 5, 2022 have been updated to correct a data processing error. McCracken County, KY should have appeared in the low community level category during the week of May 5, 2022. This correction is reflected in this update.
May 26, 2022: COVID-19 Community Level (CCL) data released for several Florida counties for the week of May 19th, 2022, have been corrected for a data processing error. Of note, Broward, Miami-Dade, Palm Beach Counties should have appeared in the high CCL category, and Osceola County should have appeared in the medium CCL category. These corrections are reflected in this update.
May 26, 2022: COVID-19 Community Level (CCL) data released for Orange County, New York for the week of May 26, 2022 displayed an erroneous case rate of zero and a CCL category of low due to a data source error. This county should have appeared in the medium CCL category.
June 2, 2022: COVID-19 Community Level (CCL) data released for Tolland County, CT for the week of May 26, 2022 have been updated to correct a data processing error. Tolland County, CT should have appeared in the medium community level category during the week of May 26, 2022. This correction is reflected in this update.
June 9, 2022: COVID-19 Community Level (CCL) data released for Tolland County, CT for the week of May 26, 2022 have been updated to correct a misspelling. The medium community level category for Tolland County, CT on the week of May 26, 2022 was misspelled as “meduim” in the data set. This correction is reflected in this update.
June 9, 2022: COVID-19 Community Level (CCL) data released for Mississippi counties for the week of June 9, 2022 should be interpreted with caution due to a reporting cadence change over the Memorial Day holiday that resulted in artificially inflated case rates in the state.
July 7, 2022: COVID-19 Community Level (CCL) data released for Rock County, Minnesota for the week of July 7, 2022 displayed an artificially low case rate and CCL category due to a data source error. This county should have appeared in the high CCL category.
July 14, 2022: COVID-19 Community Level (CCL) data released for Massachusetts counties for the week of July 14, 2022 should be interpreted with caution due to a reporting cadence change that resulted in lower than expected case rates and CCL categories in the state.
July 28, 2022: COVID-19 Community Level (CCL) data released for all Montana counties for the week of July 21, 2022 had case rates of 0 due to a reporting issue. The case rates have been corrected in this update.
July 28, 2022: COVID-19 Community Level (CCL) data released for Alaska for all weeks prior to July 21, 2022 included non-resident cases. The case rates for the time series have been corrected in this update.
July 28, 2022: A laboratory in Nevada reported a backlog of historic COVID-19 cases. As a result, the 7-day case count and rate will be inflated in Clark County, NV for the week of July 28, 2022.
August 4, 2022: COVID-19 Community Level (CCL) data was updated on August 2, 2022 in error during performance testing. Data for the week of July 28, 2022 was changed during this update due to additional case and hospital data as a result of late reporting between July 28, 2022 and August 2, 2022. Since the purpose of this data set is to provide point-in-time views of COVID-19 Community Levels on Thursdays, any changes made to the data set during the August 2, 2022 update have been reverted in this update.
August 4, 2022: COVID-19 Community Level (CCL) data for the week of July 28, 2022 for 8 counties in Utah (Beaver County, Daggett County, Duchesne County, Garfield County, Iron County, Kane County, Uintah County, and Washington County) case data was missing due to data collection issues. CDC and its partners have resolved the issue and the correction is reflected in this update.
August 4, 2022: Due to a reporting cadence change, case rates for all Alabama counties will be lower than expected. As a result, the CCL levels published on August 4, 2022 should be interpreted with caution.
August 11, 2022: COVID-19 Community Level (CCL) data for the week of August 4, 2022 for South Carolina have been updated to correct a data collection error that resulted in incorrect case data. CDC and its partners have resolved the issue and the correction is reflected in this update.
August 18, 2022: COVID-19 Community Level (CCL) data for the week of August 11, 2022 for Connecticut have been updated to correct a data ingestion error that inflated the CT case rates. CDC, in collaboration with CT, has resolved the issue and the correction is reflected in this update.
August 25, 2022: A laboratory in Tennessee reported a backlog of historic COVID-19 cases. As a result, the 7-day case count and rate may be inflated in many counties and the CCLs published on August 25, 2022 should be interpreted with caution.
August 25, 2022: Due to a data source error, the 7-day case rate for St. Louis County, Missouri, is reported as zero in the COVID-19 Community Level data released on August 25, 2022. Therefore, the COVID-19 Community Level for this county should be interpreted with caution.
September 1, 2022: Due to a reporting issue, case rates for all Nebraska counties will include 6 days of data instead of 7 days in the COVID-19 Community Level (CCL) data released on September 1, 2022. Therefore, the CCLs for all Nebraska counties should be interpreted with caution.
September 8, 2022: Due to a data processing error, the case rate for Philadelphia County, Pennsylvania,
This dataset presents the age-adjusted death rates for the 10 leading causes of death in the United States beginning in 1999. Data are based on information from all resident death certificates filed in the 50 states and the District of Columbia using demographic and medical characteristics. Age-adjusted death rates (per 100,000 population) are based on the 2000 U.S. standard population. Populations used for computing death rates after 2010 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for non-census years before 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Causes of death classified by the International Classification of Diseases, Tenth Revision (ICD–10) are ranked according to the number of deaths assigned to rankable causes. Cause of death statistics are based on the underlying cause of death. SOURCES CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm. Murphy SL, Xu JQ, Kochanek KD, Curtin SC, and Arias E. Deaths: Final data for 2015. National vital statistics reports; vol 66. no. 6. Hyattsville, MD: National Center for Health Statistics. 2017. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr66/nvsr66_06.pdf.
The Research and Development Survey (RANDS) is a platform designed for conducting survey question evaluation and statistical research. RANDS is an ongoing series of surveys from probability-sampled commercial survey panels used for methodological research at the National Center for Health Statistics (NCHS). RANDS estimates are generated using an experimental approach that differs from the survey design approaches generally used by NCHS, including possible biases from different response patterns and sampling frames as well as increased variability from lower sample sizes. Use of the RANDS platform allows NCHS to produce more timely data than would be possible using traditional data collection methods. RANDS is not designed to replace NCHS’ higher quality, core data collections. Below are experimental estimates of loss of work due to illness with coronavirus for three rounds of RANDS during COVID-19. Data collection for the three rounds of RANDS during COVID-19 occurred between June 9, 2020 and July 6, 2020, August 3, 2020 and August 20, 2020, and May 17, 2021 and June 30, 2021. Information needed to interpret these estimates can be found in the Technical Notes. RANDS during COVID-19 included a question about the inability to work due to being sick or having a family member sick with COVID-19. The National Health Interview Survey, conducted by NCHS, is the source for high-quality data to monitor work-loss days and work limitations in the United States. For example, in 2018, 42.7% of adults aged 18 and over missed at least 1 day of work in the previous year due to illness or injury and 9.3% of adults aged 18 to 69 were limited in their ability to work or unable to work due to physical, mental, or emotional problems. The experimental estimates on this page are derived from RANDS during COVID-19 and show the percentage of U.S. adults who did not work for pay at a job or business, at any point, in the previous week because either they or someone in their family was sick with COVID-19. Technical Notes: https://www.cdc.gov/nchs/covid19/rands/work.htm#limitations
Reporting of Aggregate Case and Death Count data was discontinued on May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.
The surveillance case definition for COVID-19, a nationally notifiable disease, was first described in a position statement from the Council for State and Territorial Epidemiologists, which was later revised. However, there is some variation in how jurisdictions implemented these case definitions. More information on how CDC collects COVID-19 case surveillance data can be found at FAQ: COVID-19 Data and Surveillance.
Aggregate Data Collection Process Since the beginning of the COVID-19 pandemic, data were reported from state and local health departments through a robust process with the following steps:
This process was collaborative, with CDC and jurisdictions working together to ensure the accuracy of COVID-19 case and death numbers. County counts provided the most up-to-date numbers on cases and deaths by report date. Throughout data collection, CDC retrospectively updated counts to correct known data quality issues.
Description This archived public use dataset focuses on the cumulative and weekly case and death rates per 100,000 persons within various sociodemographic factors across all states and their counties. All resulting data are expressed as rates calculated as the number of cases or deaths per 100,000 persons in counties meeting various classification criteria using the US Census Bureau Population Estimates Program (2019 Vintage).
Each county within jurisdictions is classified into multiple categories for each factor. All rates in this dataset are based on classification of counties by the characteristics of their population, not individual-level factors. This applies to each of the available factors observed in this dataset. Specific factors and their corresponding categories are detailed below.
Population-level factors Each unique population factor is detailed below. Please note that the “Classification” column describes each of the 12 factors in the dataset, including a data dictionary describing what each numeric digit means within each classification. The “Category” column uses numeric digits (2-6, depending on the factor) defined in the “Classification” column.
Metro vs. Non-Metro – “Metro_Rural” Metro vs. Non-Metro classification type is an aggregation of the 6 National Center for Health Statistics (NCHS) Urban-Rural classifications, where “Metro” counties include Large Central Metro, Large Fringe Metro, Medium Metro, and Small Metro areas and “Non-Metro” counties include Micropolitan and Non-Core (Rural) areas. 1 – Metro, including “Large Central Metro, Large Fringe Metro, Medium Metro, and Small Metro” areas 2 – Non-Metro, including “Micropolitan, and Non-Core” areas
Urban/rural - “NCHS_Class” Urban/rural classification type is based on the 2013 National Center for Health Statistics Urban-Rural Classification Scheme for Counties. Levels consist of:
1 Large Central Metro
2 Large Fringe Metro
3 Medium Metro
4 Small Metro
5 Micropolitan
6 Non-Core (Rural)
American Community Survey (ACS) data were used to classify counties based on their age, race/ethnicity, household size, poverty level, and health insurance status distributions. Cut points were generated by using tertiles and categorized as High, Moderate, and Low percentages. The classification “Percent non-Hispanic, Native Hawaiian/Pacific Islander” is only available for “Hawaii” due to low numbers in this category for other available locations. This limitation also applies to other race/ethnicity categories within certain jurisdictions, where 0 counties fall into the certain category. The cut points for each ACS category are further detailed below:
Age 65 - “Age65”
1 Low (0-24.4%) 2 Moderate (>24.4%-28.6%) 3 High (>28.6%)
Non-Hispanic, Asian - “NHAA”
1 Low (<=5.7%) 2 Moderate (>5.7%-17.4%) 3 High (>17.4%)
Non-Hispanic, American Indian/Alaskan Native - “NHIA”
1 Low (<=0.7%) 2 Moderate (>0.7%-30.1%) 3 High (>30.1%)
Non-Hispanic, Black - “NHBA”
1 Low (<=2.5%) 2 Moderate (>2.5%-37%) 3 High (>37%)
Hispanic - “HISP”
1 Low (<=18.3%) 2 Moderate (>18.3%-45.5%) 3 High (>45.5%)
Population in Poverty - “Pov”
1 Low (0-12.3%) 2 Moderate (>12.3%-17.3%) 3 High (>17.3%)
Population Uninsured- “Unins”
1 Low (0-7.1%) 2 Moderate (>7.1%-11.4%) 3 High (>11.4%)
Average Household Size - “HH”
1 Low (1-2.4) 2 Moderate (>2.4-2.6) 3 High (>2.6)
Community Vulnerability Index Value - “CCVI” COVID-19 Community Vulnerability Index (CCVI) scores are from Surgo Ventures, which range from 0 to 1, were generated based on tertiles and categorized as:
1 Low Vulnerability (0.0-0.4) 2 Moderate Vulnerability (0.4-0.6) 3 High Vulnerability (0.6-1.0)
Social Vulnerability Index Value – “SVI" Social Vulnerability Index (SVI) scores (vintage 2020), which also range from 0 to 1, are from CDC/ASTDR’s Geospatial Research, Analysis & Service Program. Cut points for CCVI and SVI scores were generated based on tertiles and categorized as:
1 Low Vulnerability (0-0.333) 2 Moderate Vulnerability (0.334-0.666) 3 High Vulnerability (0.667-1)
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
Effective September 27, 2023, this dataset will no longer be updated. Similar data are accessible from wonder.cdc.gov.
Provisional counts of deaths by the month the death occurred and by select causes of death for 2020-2023.
The share of the population with overweight in the United States was forecast to continuously increase between 2024 and 2029 by in total 1.6 percentage points. After the fifteenth consecutive increasing year, the overweight population share is estimated to reach 77.43 percent and therefore a new peak in 2029. Notably, the share of the population with overweight of was continuously increasing over the past years.Overweight is defined as a body mass index (BMI) of more than 25.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the share of the population with overweight in countries like Canada and Mexico.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This dataset contains model-based county estimates. PLACES covers the entire United States—50 states and the District of Columbia—at county, place, census tract, and ZIP Code Tabulation Area levels. It provides information uniformly on this large scale for local areas at four geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. PLACES was funded by the Robert Wood Johnson Foundation in conjunction with the CDC Foundation. This dataset includes estimates for 40 measures: 12 for health outcomes, 7 for preventive services use, 4 for chronic disease-related health risk behaviors, 7 for disabilities, 3 for health status, and 7 for health-related social needs. These estimates can be used to identify emerging health problems and to help develop and carry out effective, targeted public health prevention activities. Because the small area model cannot detect effects due to local interventions, users are cautioned against using these estimates for program or policy evaluations. Data sources used to generate these model-based estimates are Behavioral Risk Factor Surveillance System (BRFSS) 2022 or 2021 data, Census Bureau 2022 county population estimate data, and American Community Survey 2018–2022 estimates. The 2024 release uses 2022 BRFSS data for 36 measures and 2021 BRFSS data for 4 measures (high blood pressure, high cholesterol, cholesterol screening, and taking medicine for high blood pressure control among those with high blood pressure) that the survey collects data on every other year. More information about the methodology can be found at www.cdc.gov/places.
Note: This dataset is historical only and there are not corresponding datasets for more recent time periods. For that more-recent information, please visit the Chicago Health Atlas at https://chicagohealthatlas.org.
This dataset contains a selection of 27 indicators of public health significance by Chicago community area, with the most updated information available. The indicators are rates, percents, or other measures related to natality, mortality, infectious disease, lead poisoning, and economic status. See the full description at https://data.cityofchicago.org/api/assets/2107948F-357D-4ED7-ACC2-2E9266BBFFA2.
A dataset to advance the study of life-cycle interactions of biomedical and socioeconomic factors in the aging process. The EI project has assembled a variety of large datasets covering the life histories of approximately 39,616 white male volunteers (drawn from a random sample of 331 companies) who served in the Union Army (UA), and of about 6,000 African-American veterans from 51 randomly selected United States Colored Troops companies (USCT). Their military records were linked to pension and medical records that detailed the soldiers������?? health status and socioeconomic and family characteristics. Each soldier was searched for in the US decennial census for the years in which they were most likely to be found alive (1850, 1860, 1880, 1900, 1910). In addition, a sample consisting of 70,000 men examined for service in the Union Army between September 1864 and April 1865 has been assembled and linked only to census records. These records will be useful for life-cycle comparisons of those accepted and rejected for service. Military Data: The military service and wartime medical histories of the UA and USCT men were collected from the Union Army and United States Colored Troops military service records, carded medical records, and other wartime documents. Pension Data: Wherever possible, the UA and USCT samples have been linked to pension records, including surgeon''''s certificates. About 70% of men in the Union Army sample have a pension. These records provide the bulk of the socioeconomic and demographic information on these men from the late 1800s through the early 1900s, including family structure and employment information. In addition, the surgeon''''s certificates provide rich medical histories, with an average of 5 examinations per linked recruit for the UA, and about 2.5 exams per USCT recruit. Census Data: Both early and late-age familial and socioeconomic information is collected from the manuscript schedules of the federal censuses of 1850, 1860, 1870 (incomplete), 1880, 1900, and 1910. Data Availability: All of the datasets (Military Union Army; linked Census; Surgeon''''s Certificates; Examination Records, and supporting ecological and environmental variables) are publicly available from ICPSR. In addition, copies on CD-ROM may be obtained from the CPE, which also maintains an interactive Internet Data Archive and Documentation Library, which can be accessed on the Project Website. * Dates of Study: 1850-1910 * Study Features: Longitudinal, Minority Oversamples * Sample Size: ** Union Army: 35,747 ** Colored Troops: 6,187 ** Examination Sample: 70,800 ICPSR Link: http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06836
2019 to 2021, 3-year average. Rates are age-standardized. County rates are spatially smoothed. The data can be viewed by sex and race/ethnicity. Data source: National Vital Statistics System. Additional data, maps, and methodology can be viewed on the Interactive Atlas of Heart Disease and Stroke https://www.cdc.gov/heart-disease-stroke-atlas/about/index.html
The United States Cancer Statistics (USCS) online databases in WONDER provide cancer incidence and mortality data for the United States for the years since 1999, by year, state and metropolitan areas (MSA), age group, race, ethnicity, sex, childhood cancer classifications and cancer site. Report case counts, deaths, crude and age-adjusted incidence and death rates, and 95% confidence intervals for rates. The USCS data are the official federal statistics on cancer incidence from registries having high-quality data and cancer mortality statistics for 50 states and the District of Columbia. USCS are produced by the Centers for Disease Control and Prevention (CDC) and the National Cancer Institute (NCI), in collaboration with the North American Association of Central Cancer Registries (NAACCR). Mortality data are provided by the Centers for Disease Control and Prevention (CDC), National Center for Health Statistics (NCHS), National Vital Statistics System (NVSS).
Death rate has been age-adjusted to the 2000 U.S. standard population. Single-year data are only available for Los Angeles County overall, Service Planning Areas, Supervisorial Districts, City of Los Angeles overall, and City of Los Angeles Council Districts.Coronary heart disease is a type of heart disease in which the arteries of the heart cannot deliver enough oxygen-rich blood to the heart muscles. Over time, this can weaken the heart muscle and may lead to heart attack or heart failure. It is the most common type of heart disease in the US and has been the leading cause of death in Los Angeles County for the last two decades. Poor diet, sedentary lifestyle, tobacco exposure, and chronic stress are all important risk factors for coronary heart disease. Cities and communities can mitigate these risks by improving local food environments and encouraging physical activity by making communities safer and more walkable.For more information about the Community Health Profiles Data Initiative, please see the initiative homepage.
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
This public use dataset has 11 data elements reflecting United States COVID-19 community levels for all available counties. This dataset contains the same values used to display information available on the COVID Data Tracker at: https://covid.cdc.gov/covid-data-tracker/#county-view?list_select_state=all_states&list_select_county=all_counties&data-type=CommunityLevels The data are updated weekly.
CDC looks at the combination of three metrics — new COVID-19 admissions per 100,000 population in the past 7 days, the percent of staffed inpatient beds occupied by COVID-19 patients, and total new COVID-19 cases per 100,000 population in the past 7 days — to determine the COVID-19 community level. The COVID-19 community level is determined by the higher of the new admissions and inpatient beds metrics, based on the current level of new cases per 100,000 population in the past 7 days. New COVID-19 admissions and the percent of staffed inpatient beds occupied represent the current potential for strain on the health system. Data on new cases acts as an early warning indicator of potential increases in health system strain in the event of a COVID-19 surge. Using these data, the COVID-19 community level is classified as low, medium, or high. COVID-19 Community Levels can help communities and individuals make decisions based on their local context and their unique needs. Community vaccination coverage and other local information, like early alerts from surveillance, such as through wastewater or the number of emergency department visits for COVID-19, when available, can also inform decision making for health officials and individuals.
See https://www.cdc.gov/coronavirus/2019-ncov/science/community-levels.html for more information.
For the most accurate and up-to-date data for any county or state, visit the relevant health department website. COVID Data Tracker may display data that differ from state and local websites. This can be due to differences in how data were collected, how metrics were calculated, or the timing of web updates.
For more details on the Minnesota Department of Health COVID-19 thresholds, see COVID-19 Public Health Risk Measures: Data Notes (Updated 4/13/22). https://mn.gov/covid19/assets/phri_tcm1148-434773.pdf
Note: This dataset was renamed from "United States COVID-19 Community Levels by County as Originally Posted" to "United States COVID-19 Community Levels by County" on March 31, 2022. March 31, 2022: Column name for county population was changed to “county_population”. No change was made to the data points previous released. March 31, 2022: New column, “health_service_area_population”, was added to the dataset to denote the total population in the designated Health Service Area based on 2019 Census estimate. March 31, 2022: FIPS codes for territories American Samoa, Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands were re-formatted to 5-digit numeric for records released on 3/3/2022 to be consistent with other records in the dataset. March 31, 2022: Changes were made to the text fields in variables “county”, “state”, and “health_service_area” so the formats are consistent across releases. March 31, 2022: The “%” sign was removed from the text field in column “covid_inpatient_bed_utilization”. No change was made to the data. As indicated in the column description, values in this column represent the percentage of staffed inpatient beds occupied by COVID-19 patients (7-day average). March 31, 2022: Data values for columns, “county_population”, “health_service_area_number”, and “health_service_area” were backfilled for records released on 2/24/2022. These columns were added since the week of 3/3/2022, thus the values were previously missing for records released the week prior. April 7, 2022: Updates made to data released on 3/24/2022 for Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands to correct a data mapping error.
This dataset contains numbers of COVID-19 outbreaks and associated cases, categorized by setting, reported to CDPH since January 1, 2021.
AB 685 (Chapter 84, Statutes of 2020) and the Cal/OSHA COVID-19 Emergency Temporary Standards (Title 8, Subchapter 7, Sections 3205-3205.4) required non-healthcare employers in California to report workplace COVID-19 outbreaks to their local health department (LHD) between January 1, 2021 – December 31, 2022. Beginning January 1, 2023, non-healthcare employer reporting of COVID-19 outbreaks to local health departments is voluntary, unless a local order is in place. More recent data collected without mandated reporting may therefore be less representative of all outbreaks that have occurred, compared to earlier data collected during mandated reporting. Licensed health facilities continue to be mandated to report outbreaks to LHDs.
LHDs report confirmed outbreaks to the California Department of Public Health (CDPH) via the California Reportable Disease Information Exchange (CalREDIE), the California Connected (CalCONNECT) system, or other established processes. Data are compiled and categorized by setting by CDPH. Settings are categorized by U.S. Census industry codes. Total outbreaks and cases are included for individual industries as well as for broader industrial sectors.
The first dataset includes numbers of outbreaks in each setting by month of onset, for outbreaks reported to CDPH since January 1, 2021. This dataset includes some outbreaks with onset prior to January 1 that were reported to CDPH after January 1; these outbreaks are denoted with month of onset “Before Jan 2021.” The second dataset includes cumulative numbers of COVID-19 outbreaks with onset after January 1, 2021, categorized by setting. Due to reporting delays, the reported numbers may not reflect all outbreaks that have occurred as of the reporting date; additional outbreaks may have occurred that have not yet been reported to CDPH.
While many of these settings are workplaces, cases may have occurred among workers, other community members who visited the setting, or both. Accordingly, these data do not distinguish between outbreaks involving only workers, outbreaks involving only residents or patrons, or outbreaks involving both.
Several additional data limitations should be kept in mind:
Outbreaks are classified as “Insufficient information” for outbreaks where not enough information was available for CDPH to assign an industry code.
Some sectors, particularly congregate residential settings, may have increased testing and therefore increased likelihood of outbreak recognition and reporting. As a result, in congregate residential settings, the number of outbreak-associated cases may be more accurate.
However, in most settings, outbreak and case counts are likely underestimates. For most cases, it is not possible to identify the source of exposure, as many cases have multiple possible exposures.
Because some settings have been at times been closed or open with capacity restrictions, numbers of outbreak reports in those settings do not reflect COVID-19 transmission risk.
The number of outbreaks in different settings will depend on the number of different workplaces in each setting. More outbreaks would be expected in settings with many workplaces compared to settings with few workplaces.
Dataset aims to facilitate a state by state comparison of potential risk factors that may heighten Covid 19 transmission rates or deaths. It includes state by state estimates of: covid 19 positives/deaths, flu/pneumonia deaths, major city population densities, available hospital resources, high risk health condition prevalance, population over 60, and means of work transportation rates.
The Data Includes:
1) Covid 19 Outcome Stats:
Covid_Death : Covid Deaths by State
Covid_Positive : Covid Positive Tests by State
2) US Major City Population Density by State: CBSA_Major_City_max_weighted_density
3) KFF Estimates of Total Hospital Beds by State:
Kaiser_Total_Hospital_Beds
4) 2018 Season Flu and Pneumonia Death Stats:
FLUVIEW_TOTAL_PNEUMONIA_DEATHS_Season_2018
FLUVIEW_TOTAL_INFLUENZA_DEATHS_Season_2018
5)US Total Rates of Flu Hospitalization by Underlying Condition:
Fluview_US_FLU_Hospitalization_Rate_....
6) State by State BRFSS Prevalance Rates of Conditions Associated with Higher Flu Hospitalization Rates
BRFSS_Diabetes_Prevalance
BRFSS_Asthma_Prevalance
BRFSS_COPD_Prevalance
BRFSS_Obesity BMI Prevalance
BRFSS_Other_Cancer_Prevalance
BRFSS_Kidney_Disease_Prevalance
BRFSS_Obesity BMI Prevalance
BRFSS_2017_High_Cholestoral_Prevalance
BRFSS_2017_High_Blood_Pressure_Prevalance
Census_Population_Over_60
7)State by state breakdown of Means of Work Transpotation:
COMMUTE_Census_Worker_Public_Transportation_Rate
Links to data sources:
https://worldpopulationreview.com/states/
https://covidtracking.com/data/
https://gis.cdc.gov/GRASP/Fluview/FluHospRates.html https://www.kff.org/health-costs/issue-brief/state-data-and-policy-actions-to-address-coronavirus/#stateleveldata
Tables: ACSST1Y2018.S1811 ACSST1Y2018.S0102
https://www.census.gov/library/visualizations/2012/dec/c2010sr-01-density.html
https://gis.cdc.gov/grasp/fluview/mortality.html
I hope to show the existence of correlations that warrant a deeper county by county analysis to identify areas of increased risk requiring increased resource allocation or increased attention to preventative measures.
NNDSS - TABLE 1HH. Streptococcal toxic shock syndrome to Syphilis, Primary and Secondary - 2019. In this Table, provisional cases* of notifiable diseases are displayed for United States, U.S. territories, and Non-U.S. residents.
Note: This table contains provisional cases of national notifiable diseases from the National Notifiable Diseases Surveillance System (NNDSS). NNDSS data from the 50 states, New York City, the District of Columbia and the U.S. territories are collated and published weekly on the NNDSS Data and Statistics web page (https://wwwn.cdc.gov/nndss/data-and-statistics.html). Cases reported by state health departments to CDC for weekly publication are provisional because of the time needed to complete case follow-up. Therefore, numbers presented in later weeks may reflect changes made to these counts as additional information becomes available. The national surveillance case definitions used to define a case are available on the NNDSS web site at https://wwwn.cdc.gov/nndss/. Information about the weekly provisional data and guides to interpreting data are available at: https://wwwn.cdc.gov/nndss/infectious-tables.html.
Footnotes: U: Unavailable — The reporting jurisdiction was unable to send the data to CDC or CDC was unable to process the data. -: No reported cases — The reporting jurisdiction did not submit any cases to CDC. N: Not reportable — The disease or condition was not reportable by law, statute, or regulation in the reporting jurisdiction. NN: Not nationally notifiable — This condition was not designated as being nationally notifiable. NP: Nationally notifiable but not published — CDC does not have data because of changes in how conditions are categorized. Cum: Cumulative year-to-date counts. Max: Maximum — Maximum case count during the previous 52 weeks. * Case counts for reporting years 2018 and 2019 are provisional and subject to change. Cases are assigned to the reporting jurisdiction submitting the case to NNDSS, if the case's country of usual residence is the US, a US territory, unknown, or null (i.e. country not reported); otherwise, the case is assigned to the 'Non-US Residents' category. For further information on interpretation of these data, see https://wwwn.cdc.gov/nndss/document/Users_guide_WONDER_tables_cleared_final.pdf. † Previous 52 week maximum and cumulative YTD are determined from periods of time when the condition was reportable in the jurisdiction (i.e., may be less than 52 weeks of data or incomplete YTD data).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Excess Death excl COVID: Predicted: Single Excess Est: Florida data was reported at 0.000 Number in 16 Sep 2023. This stayed constant from the previous number of 0.000 Number for 09 Sep 2023. Excess Death excl COVID: Predicted: Single Excess Est: Florida data is updated weekly, averaging 0.000 Number from Jan 2017 (Median) to 16 Sep 2023, with 350 observations. The data reached an all-time high of 526.000 Number in 21 Aug 2021 and a record low of 0.000 Number in 16 Sep 2023. Excess Death excl COVID: Predicted: Single Excess Est: Florida data remains active status in CEIC and is reported by Centers for Disease Control and Prevention. The data is categorized under Global Database’s United States – Table US.G012: Number of Excess Deaths: by States: All Causes excluding COVID-19: Predicted (Discontinued).
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
Rank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.
Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.
April 9, 2020
April 20, 2020
April 29, 2020
September 1st, 2020
February 12, 2021
new_deaths
column.February 16, 2021
The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.
The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.
The AP is updating this dataset hourly at 45 minutes past the hour.
To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.
Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic
Filter cases by state here
Rank states by their status as current hotspots. Calculates the 7-day rolling average of new cases per capita in each state: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=481e82a4-1b2f-41c2-9ea1-d91aa4b3b1ac
Find recent hotspots within your state by running a query to calculate the 7-day rolling average of new cases by capita in each county: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=b566f1db-3231-40fe-8099-311909b7b687&showTemplatePreview=true
Join county-level case data to an earlier dataset released by AP on local hospital capacity here. To find out more about the hospital capacity dataset, see the full details.
Pull the 100 counties with the highest per-capita confirmed cases here
Rank all the counties by the highest per-capita rate of new cases in the past 7 days here. Be aware that because this ranks per-capita caseloads, very small counties may rise to the very top, so take into account raw caseload figures as well.
The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.
@(https://datawrapper.dwcdn.net/nRyaf/15/)
<iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here
This data should be credited to Johns Hopkins University COVID-19 tracking project